Compare commits

...

36 Commits

Author SHA1 Message Date
Ed Hennis
024d05b70c Merge branch 'develop' into ximinez/number-maxint-range 2026-02-20 18:49:46 -04:00
dependabot[bot]
3542daa4cc ci: [DEPENDABOT] bump actions/upload-artifact from 4.6.2 to 6.0.0 (#6396)
Bumps [actions/upload-artifact](https://github.com/actions/upload-artifact) from 4.6.2 to 6.0.0.
- [Release notes](https://github.com/actions/upload-artifact/releases)
- [Commits](ea165f8d65...b7c566a772)

---
updated-dependencies:
- dependency-name: actions/upload-artifact
  dependency-version: 6.0.0
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-20 22:48:01 +00:00
Ed Hennis
ffb3e1da53 Merge branch 'develop' into ximinez/number-maxint-range 2026-02-20 18:26:05 -04:00
dependabot[bot]
fd9f57ec97 ci: [DEPENDABOT] bump actions/checkout from 4.3.0 to 6.0.2 (#6397)
Bumps [actions/checkout](https://github.com/actions/checkout) from 4.3.0 to 6.0.2.
- [Release notes](https://github.com/actions/checkout/releases)
- [Changelog](https://github.com/actions/checkout/blob/main/CHANGELOG.md)
- [Commits](https://github.com/actions/checkout/compare/v4.3.0...de0fac2e4500dabe0009e67214ff5f5447ce83dd)

---
updated-dependencies:
- dependency-name: actions/checkout
  dependency-version: 6.0.2
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-20 22:09:48 +00:00
Ed Hennis
aef7e5b335 Merge branch 'develop' into ximinez/number-maxint-range 2026-02-20 17:31:47 -04:00
dependabot[bot]
625becff18 ci: [DEPENDABOT] bump actions/setup-python from 5.6.0 to 6.2.0 (#6395)
Bumps [actions/setup-python](https://github.com/actions/setup-python) from 5.6.0 to 6.2.0.
- [Release notes](https://github.com/actions/setup-python/releases)
- [Commits](a26af69be9...a309ff8b42)

---
updated-dependencies:
- dependency-name: actions/setup-python
  dependency-version: 6.2.0
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-20 21:29:05 +00:00
Ed Hennis
e2c09e79d0 Merge branch 'develop' into ximinez/number-maxint-range 2026-02-20 17:21:09 -04:00
dependabot[bot]
4bcbc6e50f ci: [DEPENDABOT] bump tj-actions/changed-files from 46.0.5 to 47.0.4 (#6394)
Bumps [tj-actions/changed-files](https://github.com/tj-actions/changed-files) from 46.0.5 to 47.0.4.
- [Release notes](https://github.com/tj-actions/changed-files/releases)
- [Changelog](https://github.com/tj-actions/changed-files/blob/main/HISTORY.md)
- [Commits](ed68ef82c0...7dee1b0c15)

---
updated-dependencies:
- dependency-name: tj-actions/changed-files
  dependency-version: 47.0.4
  dependency-type: direct:production
  update-type: version-update:semver-major
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-20 19:59:37 +00:00
Ed Hennis
c6f854bbd8 Merge branch 'develop' into ximinez/number-maxint-range 2026-02-20 15:14:29 -04:00
dependabot[bot]
0bc4a0cfe8 ci: [DEPENDABOT] bump codecov/codecov-action from 5.4.3 to 5.5.2 (#6398)
Bumps [codecov/codecov-action](https://github.com/codecov/codecov-action) from 5.4.3 to 5.5.2.
- [Release notes](https://github.com/codecov/codecov-action/releases)
- [Changelog](https://github.com/codecov/codecov-action/blob/main/CHANGELOG.md)
- [Commits](18283e04ce...671740ac38)

---
updated-dependencies:
- dependency-name: codecov/codecov-action
  dependency-version: 5.5.2
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <support@github.com>
Co-authored-by: dependabot[bot] <49699333+dependabot[bot]@users.noreply.github.com>
2026-02-20 19:11:26 +00:00
Ayaz Salikhov
cb54adefed ci: Build docs in PRs and in private repos (#6400) 2026-02-20 13:41:43 -05:00
Ed Hennis
6a1e0b0f5a Merge remote-tracking branch 'upstream/develop' into ximinez/number-maxint-range
* upstream/develop:
  ci: Add dependabot config (6379)
  Fix tautological assertion (6393)
2026-02-20 13:38:46 -05:00
Ed Hennis
01f5ae0927 Merge commit '2c1fad1023' into ximinez/number-maxint-range
* commit '2c1fad1023':
  chore: Apply clang-format width 100 (6387)
2026-02-20 13:38:00 -05:00
Ed Hennis
9b4587f9af Update formatting 2026-02-20 13:29:51 -05:00
Ed Hennis
fbc6f87983 Merge commit '25cca465538a56cce501477f9e5e2c1c7ea2d84c' into ximinez/number-maxint-range
* commit '25cca465538a56cce501477f9e5e2c1c7ea2d84c':
  chore: Set clang-format width to 100 in config file (6387)
2026-02-20 13:29:06 -05:00
Ed Hennis
0871eb0cb6 Address review feedback from @Copilot
- Clarify comments and add missing header
2026-02-19 19:06:03 -05:00
Ed Hennis
2ccf132f79 Apply suggestions from code review
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2026-02-19 19:02:03 -05:00
Ed Hennis
6600153958 Merge branch 'develop' into ximinez/number-maxint-range 2026-02-19 16:21:18 -05:00
Ed Hennis
fff73dac51 Merge branch 'develop' into ximinez/number-maxint-range 2026-02-18 20:18:56 -04:00
Ed Hennis
06ff77458a fixup! fixup! fixup! fixup! Address review feedback from @copilot 2026-02-05 20:33:30 -05:00
Ed Hennis
f19ecb3b80 fixup! fixup! fixup! Address review feedback from @copilot 2026-02-05 19:56:18 -05:00
Ed Hennis
cc2406bf3f fixup! fixup! Address review feedback from @copilot 2026-02-05 19:13:14 -05:00
Ed Hennis
30c65320e4 fixup! Address review feedback from @copilot 2026-02-05 18:25:23 -05:00
Ed Hennis
569d9ea94e Address review feedback from @copilot
- Update explanations.
- Use saver conversions between signed and unsigned.
2026-02-05 14:06:09 -05:00
Ed Hennis
02b7bcfa2b Merge branch 'develop' into ximinez/number-maxint-range 2026-02-05 13:29:56 -04:00
Ed Hennis
07c0c320a7 Fix formatting 2026-02-05 12:28:43 -05:00
Ed Hennis
d57e37c34b Fix renaming 2026-02-05 12:28:43 -05:00
Ed Hennis
154bb65c35 Merge remote-tracking branch 'upstream/develop' into ximinez/number-maxint-range
* upstream/develop:
  chore: Update secp256k1 and openssl (6327)
  chore: Remove unnecessary script (6326)
  refactor: Replace include guards by '#pragma once' (6322)
  chore: Remove unity builds (6300)
  refactor: Add ServiceRegistry to help modularization (6222)
  fix: Deletes expired NFToken offers from ledger (5707)
  chore: Add .zed editor config directory to .gitignore (6317)
  docs: Update API changelog, add APIv2+APIv3 version documentation (6308)
  fix: Restore config changes that broke standalone mode (6301)
  chore: Add upper-case match for ARM64 in CompilationEnv (6315)
  ci: Update hashes of XRPLF/actions (6316)
  chore: Format all cmake files without comments (6294)
  chore: Add cmake-format pre-commit hook (6279)
  chore: Remove unnecessary `boost::system` requirement from conanfile (6290)
2026-02-04 21:10:15 -05:00
Ed Hennis
111eda22e9 Merge commit '5f638f55536def0d88b970d1018a465a238e55f4' into ximinez/number-maxint-range
* commit '5f638f55536def0d88b970d1018a465a238e55f4':
  chore: Set ColumnLimit to 120 in clang-format (6288)
2026-02-04 21:09:02 -05:00
Ed Hennis
f7b6834d2a Add unit tests for normalizeToRange
- Steal changes from @pratik's #6150 to avoid UB
2026-02-04 21:08:48 -05:00
Ed Hennis
e464adaee6 Clean-ups and tweaks 2026-02-04 21:08:48 -05:00
Ed Hennis
cca92dedca Reduce expensive(?) accesses to thread_local MantissaRange 2026-02-04 21:08:48 -05:00
Ed Hennis
3d6f57a4df Fix bugs
- Simplify shiftExponent().
- Clean up to_string() to prevent integers from including "e0".
- Fix root() and root2() computations by ensuring the mantissas have
  a consistent length.
2026-02-04 21:08:46 -05:00
Ed Hennis
fc29fbe946 Convert "bool negative_ & uint64_t mantissa_" combo back to "rep mantissa_" 2026-02-04 21:08:34 -05:00
Ed Hennis
5e0a8d5c8a Remove the _ suffixes from doNormalize function parameters 2026-02-04 21:08:33 -05:00
Ed Hennis
d27788f12a Use 2^63-1 as maxMantissa for large range
- That makes minMantissa 2^63/10+1.
- Simplifies many of the existing operations, and removes the need for
  the accessors (mantissa() & exponent()) to do any math.
2026-02-04 21:08:33 -05:00
16 changed files with 1036 additions and 420 deletions

View File

@@ -33,7 +33,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Determine changed files
# This step checks whether any files have changed that should
# cause the next jobs to run. We do it this way rather than
@@ -46,7 +46,7 @@ jobs:
# that Github considers any skipped jobs to have passed, and in
# turn the required checks as well.
id: changes
uses: tj-actions/changed-files@ed68ef82c095e0d48ec87eccea555d944a631a4c # v46.0.5
uses: tj-actions/changed-files@7dee1b0c1557f278e5c7dc244927139d78c0e22a # v47.0.4
with:
files: |
# These paths are unique to `on-pr.yml`.

View File

@@ -4,6 +4,18 @@ name: Build and publish documentation
on:
push:
branches:
- "develop"
- "release*"
paths:
- ".github/workflows/publish-docs.yml"
- "*.md"
- "**/*.md"
- "docs/**"
- "include/**"
- "src/libxrpl/**"
- "src/xrpld/**"
pull_request:
paths:
- ".github/workflows/publish-docs.yml"
- "*.md"
@@ -23,7 +35,9 @@ defaults:
env:
BUILD_DIR: build
NPROC_SUBTRACT: 2
# ubuntu-latest has only 2 CPUs for private repositories
# https://docs.github.com/en/actions/reference/runners/github-hosted-runners#standard-github-hosted-runners-for--private-repositories
NPROC_SUBTRACT: ${{ github.event.repository.private && '1' || '2' }}
jobs:
publish:
@@ -33,7 +47,7 @@ jobs:
contents: write
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Get number of processors
uses: XRPLF/actions/get-nproc@cf0433aa74563aead044a1e395610c96d65a37cf
@@ -65,7 +79,7 @@ jobs:
cmake --build . --target docs --parallel ${BUILD_NPROC}
- name: Publish documentation
if: ${{ github.ref_type == 'branch' && github.ref_name == github.event.repository.default_branch }}
if: ${{ github.event_name == 'push' }}
uses: peaceiris/actions-gh-pages@4f9cc6602d3f66b9c108549d475ec49e8ef4d45e # v4.0.0
with:
github_token: ${{ secrets.GITHUB_TOKEN }}

View File

@@ -104,7 +104,7 @@ jobs:
uses: XRPLF/actions/cleanup-workspace@cf0433aa74563aead044a1e395610c96d65a37cf
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Prepare runner
uses: XRPLF/actions/prepare-runner@2cbf481018d930656e9276fcc20dc0e3a0be5b6d
@@ -177,7 +177,7 @@ jobs:
- name: Upload the binary (Linux)
if: ${{ github.repository_owner == 'XRPLF' && runner.os == 'Linux' }}
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@b7c566a772e6b6bfb58ed0dc250532a479d7789f # v6.0.0
with:
name: xrpld-${{ inputs.config_name }}
path: ${{ env.BUILD_DIR }}/xrpld
@@ -254,7 +254,7 @@ jobs:
- name: Upload coverage report
if: ${{ github.repository_owner == 'XRPLF' && !inputs.build_only && env.COVERAGE_ENABLED == 'true' }}
uses: codecov/codecov-action@18283e04ce6e62d37312384ff67231eb8fd56d24 # v5.4.3
uses: codecov/codecov-action@671740ac38dd9b0130fbe1cec585b89eea48d3de # v5.5.2
with:
disable_search: true
disable_telem: true

View File

@@ -18,7 +18,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Check levelization
run: .github/scripts/levelization/generate.sh
- name: Check for differences

View File

@@ -18,7 +18,7 @@ jobs:
runs-on: ubuntu-latest
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Check definitions
run: .github/scripts/rename/definitions.sh .
- name: Check copyright notices

View File

@@ -32,7 +32,7 @@ jobs:
contents: read
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Prepare runner
uses: XRPLF/actions/prepare-runner@2cbf481018d930656e9276fcc20dc0e3a0be5b6d
@@ -84,7 +84,7 @@ jobs:
- name: Upload clang-tidy output
if: steps.run_clang_tidy.outcome != 'success'
uses: actions/upload-artifact@ea165f8d65b6e75b540449e92b4886f43607fa02 # v4.6.2
uses: actions/upload-artifact@b7c566a772e6b6bfb58ed0dc250532a479d7789f # v6.0.0
with:
name: clang-tidy-results
path: clang-tidy-output.txt

View File

@@ -30,7 +30,7 @@ jobs:
- name: Get changed C++ files
id: changed_files
uses: tj-actions/changed-files@ed68ef82c095e0d48ec87eccea555d944a631a4c # v46.0.5
uses: tj-actions/changed-files@7dee1b0c1557f278e5c7dc244927139d78c0e22a # v47.0.4
with:
files: |
**/*.cpp

View File

@@ -29,10 +29,10 @@ jobs:
matrix: ${{ steps.generate.outputs.matrix }}
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Set up Python
uses: actions/setup-python@a26af69be951a213d495a4c3e4e4022e16d87065 # v5.6.0
uses: actions/setup-python@a309ff8b426b58ec0e2a45f0f869d46889d02405 # v6.2.0
with:
python-version: 3.13

View File

@@ -43,7 +43,7 @@ jobs:
container: ghcr.io/xrplf/ci/ubuntu-noble:gcc-13-sha-5dd7158
steps:
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Generate build version number
id: version

View File

@@ -67,7 +67,7 @@ jobs:
uses: XRPLF/actions/cleanup-workspace@cf0433aa74563aead044a1e395610c96d65a37cf
- name: Checkout repository
uses: actions/checkout@08eba0b27e820071cde6df949e0beb9ba4906955 # v4.3.0
uses: actions/checkout@de0fac2e4500dabe0009e67214ff5f5447ce83dd # v6.0.2
- name: Prepare runner
uses: XRPLF/actions/prepare-runner@2cbf481018d930656e9276fcc20dc0e3a0be5b6d

View File

@@ -7,8 +7,13 @@
#include <limits>
#include <optional>
#include <ostream>
#include <stdexcept>
#include <string>
#ifdef _MSC_VER
#include <boost/multiprecision/cpp_int.hpp>
#endif // !defined(_MSC_VER)
namespace xrpl {
class Number;
@@ -16,18 +21,39 @@ class Number;
std::string
to_string(Number const& amount);
/** Returns a rough estimate of log10(value).
*
* The return value is a pair (log, rem), where log is the estimated
* base-10 logarithm (roughly floor(log10(value))), and rem is value with
* all factors of 10 removed (i.e., divided by the largest power of 10 that
* divides value). If rem is 1, then value is an exact power of ten, and
* log is the exact log10(value).
*
* This function only works for positive values.
*/
template <typename T>
constexpr std::pair<int, T>
logTenEstimate(T value)
{
int log = 0;
T remainder = value;
while (value >= 10)
{
if (value % 10 == 0)
remainder = remainder / 10;
value /= 10;
++log;
}
return {log, remainder};
}
template <typename T>
constexpr std::optional<int>
logTen(T value)
{
int log = 0;
while (value >= 10 && value % 10 == 0)
{
value /= 10;
++log;
}
if (value == 1)
return log;
auto const est = logTenEstimate(value);
if (est.second == 1)
return est.first;
return std::nullopt;
}
@@ -41,12 +67,10 @@ isPowerOfTen(T value)
/** MantissaRange defines a range for the mantissa of a normalized Number.
*
* The mantissa is in the range [min, max], where
* * min is a power of 10, and
* * max = min * 10 - 1.
*
* The mantissa_scale enum indicates whether the range is "small" or "large".
* This intentionally restricts the number of MantissaRanges that can be
* instantiated to two: one for each scale.
* The mantissa_scale enum indicates whether the range is "small" or
* "large". This intentionally prevents the creation of any
* MantissaRanges representing other values.
*
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
* value of 10^15, and a max value of 10^16-1. This was sufficient for
@@ -60,8 +84,8 @@ isPowerOfTen(T value)
* "large" scale.
*
* The "large" scale is intended to represent all values that can be represented
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
* value of 10^19-1.
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
* (truncated), and a max value of 2^63-1.
*
* Note that if the mentioned amendments are eventually retired, this class
* should be left in place, but the "small" scale option should be removed. This
@@ -73,25 +97,50 @@ struct MantissaRange
enum mantissa_scale { small, large };
explicit constexpr MantissaRange(mantissa_scale scale_)
: min(getMin(scale_)), max(min * 10 - 1), log(logTen(min).value_or(-1)), scale(scale_)
: max(getMax(scale_))
, min(computeMin(max))
, referenceMin(getReferenceMin(scale_, min))
, log(computeLog(min))
, scale(scale_)
{
// Since this is constexpr, if any of these throw, it won't compile
if (min * 10 <= max)
throw std::out_of_range("min * 10 <= max");
if (max / 10 >= min)
throw std::out_of_range("max / 10 >= min");
if ((min - 1) * 10 > max)
throw std::out_of_range("(min - 1) * 10 > max");
// This is a little hacky
if ((max + 10) / 10 < min)
throw std::out_of_range("(max + 10) / 10 < min");
}
rep min;
// Explicitly delete copy and move operations
MantissaRange(MantissaRange const&) = delete;
MantissaRange(MantissaRange&&) = delete;
MantissaRange&
operator=(MantissaRange const&) = delete;
MantissaRange&
operator=(MantissaRange&&) = delete;
rep max;
rep min;
// This is not a great name. Used to determine if mantissas are in range,
// but have fewer digits than max
rep referenceMin;
int log;
mantissa_scale scale;
private:
static constexpr rep
getMin(mantissa_scale scale_)
getMax(mantissa_scale scale)
{
switch (scale_)
switch (scale)
{
case small:
return 1'000'000'000'000'000ULL;
return 9'999'999'999'999'999ULL;
case large:
return 1'000'000'000'000'000'000ULL;
return std::numeric_limits<std::int64_t>::max();
default:
// Since this can never be called outside a non-constexpr
// context, this throw assures that the build fails if an
@@ -99,19 +148,59 @@ private:
throw std::runtime_error("Unknown mantissa scale");
}
}
static constexpr rep
computeMin(rep max)
{
return max / 10 + 1;
}
static constexpr rep
getReferenceMin(mantissa_scale scale, rep min)
{
switch (scale)
{
case large:
return 1'000'000'000'000'000'000ULL;
default:
if (isPowerOfTen(min))
return min;
throw std::runtime_error("Unknown/bad mantissa scale");
}
}
static constexpr rep
computeLog(rep min)
{
auto const estimate = logTenEstimate(min);
return estimate.first + (estimate.second == 1 ? 0 : 1);
}
};
// Like std::integral, but only 64-bit integral types.
template <class T>
concept Integral64 = std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
namespace detail {
#ifdef _MSC_VER
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
template <class T>
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
} // namespace detail
/** Number is a floating point type that can represent a wide range of values.
*
* It can represent all values that can be represented by an STAmount -
* regardless of asset type - XRPAmount, MPTAmount, and IOUAmount, with at least
* as much precision as those types require.
*
* ---- Internal Representation ----
* ---- Internal Operational Representation ----
*
* Internally, Number is represented with three values:
* 1. a bool sign flag,
@@ -126,15 +215,21 @@ concept Integral64 = std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::u
*
* A non-zero mantissa is (almost) always normalized, meaning it and the
* exponent are grown or shrunk until the mantissa is in the range
* [MantissaRange.min, MantissaRange.max].
* [MantissaRange.referenceMin, MantissaRange.referenceMin * 10 - 1].
*
* This internal representation is only used during some operations to ensure
* that the mantissa is a known, predictable size. The class itself stores the
* values using the external representation described below.
*
* Note:
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
* should only be used at specific conversion points, some constexpr
* values, and in unit tests.
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
* 10^20-1 > 2^64-1). This avoids under- and overflows.
* 2. Unlike MantissaRange.min, referenceMin is always an exact power of 10,
* so a mantissa in the internal representation will always have a
* consistent number of digits.
* 3. The functions toInternal() and fromInternal() are used to convert
* between the two representations.
*
* ---- External Interface ----
*
@@ -147,13 +242,12 @@ concept Integral64 = std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::u
* represent the full range of valid XRP and MPT integer values accurately.
*
* Note:
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
* mantissa range.
* 1. The "large" mantissa range is (2^63/10+1) to 2^63-1. 2^63-1 is between
* 10^18 and 10^19-1, and (2^63/10+1) is between 10^17 and 10^18-1. Thus,
* the mantissa may have 18 or 19 digits. This value will be modified to
* always have 19 digits before some operations to ensure consistency.
* 2. The functions mantissa() and exponent() return the external view of the
* Number value, specifically using a signed 63-bit mantissa. This may
* require altering the internal representation to fit into that range
* before the value is returned. The interface guarantees consistency of
* the two values.
* Number value, specifically using a signed 63-bit mantissa.
* 3. Number cannot represent -2^63 (std::numeric_limits<std::int64_t>::min())
* as an exact integer, but it doesn't need to, because all asset values
* on-ledger are non-negative. This is due to implementation details of
@@ -208,8 +302,7 @@ class Number
using rep = std::int64_t;
using internalrep = MantissaRange::rep;
bool negative_{false};
internalrep mantissa_{0};
rep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
@@ -217,10 +310,6 @@ public:
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
static_assert(maxRep == 9'223'372'036'854'775'807);
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
// May need to make unchecked private
struct unchecked
{
@@ -298,8 +387,7 @@ public:
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ &&
x.exponent_ == y.exponent_;
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
@@ -313,8 +401,8 @@ public:
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.negative_;
bool const rneg = y.negative_;
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
if (lneg != rneg)
return lneg;
@@ -342,7 +430,7 @@ public:
constexpr int
signum() const noexcept
{
return negative_ ? -1 : (mantissa_ ? 1 : 0);
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
}
Number
@@ -381,6 +469,9 @@ public:
friend Number
root2(Number f);
friend Number
power(Number const& f, unsigned n, unsigned d);
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
@@ -445,22 +536,39 @@ private:
static_assert(isPowerOfTen(smallRange.min));
static_assert(smallRange.min == 1'000'000'000'000'000LL);
static_assert(smallRange.max == 9'999'999'999'999'999LL);
static_assert(smallRange.referenceMin == smallRange.min);
static_assert(smallRange.log == 15);
static_assert(smallRange.min < maxRep);
static_assert(smallRange.max < maxRep);
constexpr static MantissaRange largeRange{MantissaRange::large};
static_assert(isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
static_assert(!isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
static_assert(largeRange.max == std::numeric_limits<rep>::max());
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.log == 18);
static_assert(largeRange.min < maxRep);
static_assert(largeRange.max > maxRep);
// There are 2 values that will not fit in largeRange without some extra
// work
// * 9223372036854775808
// * 9223372036854775809
// They both end up < min, but with a leftover. If they round up, everything
// will be fine. If they don't, we'll need to bring them up into range.
// Guard::bringIntoRange handles this situation.
// The range for the mantissa when normalized.
// Use reference_wrapper to avoid making copies, and prevent accidentally
// changing the values inside the range.
static thread_local std::reference_wrapper<MantissaRange const> range_;
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one(MantissaRange const& range);
static Number
root(MantissaRange const& range, Number f, unsigned d);
void
normalize(MantissaRange const& range);
void
normalize();
@@ -483,11 +591,14 @@ private:
friend void
doNormalize(
bool& negative,
T& mantissa_,
int& exponent_,
T& mantissa,
int& exponent,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa);
bool
isnormal(MantissaRange const& range) const noexcept;
bool
isnormal() const noexcept;
@@ -497,14 +608,60 @@ private:
Number
shiftExponent(int exponentDelta) const;
// Safely convert rep (int64) mantissa to internalrep (uint64). If the rep
// is negative, returns the positive value. This takes a little extra work
// because converting std::numeric_limits<std::int64_t>::min() flirts with
// UB, and can vary across compilers.
// Safely return the absolute value of a rep (int64) mantissa as an internalrep (uint64).
static internalrep
externalToInternal(rep mantissa);
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal(MantissaRange const& range) const;
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal() const;
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange);
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent);
class Guard;
public:
constexpr static internalrep largestMantissa = largeRange.max;
};
inline constexpr Number::Number(
@@ -512,7 +669,8 @@ inline constexpr Number::Number(
internalrep mantissa,
int exponent,
unchecked) noexcept
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
: mantissa_{negative ? -static_cast<rep>(mantissa) : static_cast<rep>(mantissa)}
, exponent_{exponent}
{
}
@@ -523,12 +681,6 @@ inline constexpr Number::Number(internalrep mantissa, int exponent, unchecked) n
constexpr static Number numZero{};
inline Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
: Number(negative, mantissa, exponent, unchecked{})
{
normalize();
}
inline Number::Number(internalrep mantissa, int exponent, normalized)
: Number(false, mantissa, exponent, normalized{})
{
@@ -551,17 +703,7 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
inline constexpr Number::rep
Number::mantissa() const noexcept
{
auto m = mantissa_;
if (m > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
"xrpl::Number::mantissa",
"large normalized mantissa has no remainder");
m /= 10;
}
auto const sign = negative_ ? -1 : 1;
return sign * static_cast<Number::rep>(m);
return mantissa_;
}
/** Returns the exponent of the external view of the Number.
@@ -572,16 +714,7 @@ Number::mantissa() const noexcept
inline constexpr int
Number::exponent() const noexcept
{
auto e = exponent_;
if (mantissa_ > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
"xrpl::Number::exponent",
"large normalized mantissa has no remainder");
++e;
}
return e;
return exponent_;
}
inline constexpr Number
@@ -596,7 +729,7 @@ Number::operator-() const noexcept
if (mantissa_ == 0)
return Number{};
auto x = *this;
x.negative_ = !x.negative_;
x.mantissa_ = -x.mantissa_;
return x;
}
@@ -677,42 +810,58 @@ Number::min() noexcept
inline Number
Number::max() noexcept
{
return Number{false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
return Number{false, range_.get().max, maxExponent, unchecked{}};
}
inline Number
Number::lowest() noexcept
{
return Number{true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
return Number{true, range_.get().max, maxExponent, unchecked{}};
}
inline bool
Number::isnormal(MantissaRange const& range) const noexcept
{
auto const abs_m = externalToInternal(mantissa_);
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && //
minExponent <= exponent_ && exponent_ <= maxExponent);
}
inline bool
Number::isnormal() const noexcept
{
MantissaRange const& range = range_;
auto const abs_m = mantissa_;
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && (abs_m <= maxRep || abs_m % 10 == 0) &&
minExponent <= exponent_ && exponent_ <= maxExponent);
return isnormal(range_);
}
template <Integral64 T>
std::pair<T, int>
Number::normalizeToRange(T minMantissa, T maxMantissa) const
{
bool negative = negative_;
internalrep mantissa = mantissa_;
bool negative = mantissa_ < 0;
internalrep mantissa = externalToInternal(mantissa_);
int exponent = exponent_;
if constexpr (std::is_unsigned_v<T>)
{
XRPL_ASSERT_PARTS(
!negative,
"xrpl::Number::normalizeToRange",
"Number is non-negative for unsigned range.");
// To avoid logical errors in release builds, throw if the Number is
// negative for an unsigned range.
if (negative)
throw std::runtime_error(
"Number::normalizeToRange: Number is negative for "
"unsigned range.");
}
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
auto const sign = negative ? -1 : 1;
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
// Cast mantissa to signed type first (if T is a signed type) to avoid
// unsigned integer overflow when multiplying by negative sign
T signedMantissa = negative ? -static_cast<T>(mantissa) : static_cast<T>(mantissa);
return std::make_pair(signedMantissa, exponent);
}
inline constexpr Number

View File

@@ -232,7 +232,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
/** The maximum amount of MPTokenIssuance */
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
static_assert(Number::maxRep >= maxMPTokenAmount);
static_assert(Number::largestMantissa >= maxMPTokenAmount);
/** The maximum length of Data payload */
std::size_t constexpr maxDataPayloadLength = 256;

View File

@@ -539,6 +539,8 @@ STAmount::fromNumber(A const& a, Number const& number)
return STAmount{asset, intValue, 0, negative};
}
XRPL_ASSERT_PARTS(
working.signum() >= 0, "xrpl::STAmount::fromNumber", "non-negative Number to normalize");
auto const [mantissa, exponent] = working.normalizeToRange(cMinValue, cMaxValue);
return STAmount{asset, mantissa, exponent, negative};

View File

@@ -23,7 +23,7 @@ systemName()
/** Number of drops in the genesis account. */
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
static_assert(Number::maxRep >= INITIAL_XRP.drops());
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
/** Returns true if the amount does not exceed the initial XRP in existence. */
inline bool

View File

@@ -9,20 +9,17 @@
#include <iterator>
#include <limits>
#include <numeric>
#include <stdexcept>
#include <string>
#include <string_view>
#include <type_traits>
#include <utility>
#ifdef _MSC_VER
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
#include <boost/multiprecision/cpp_int.hpp>
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
#endif
using uint128_t = xrpl::detail::uint128_t;
using int128_t = xrpl::detail::int128_t;
namespace xrpl {
@@ -61,9 +58,6 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
// precision to an operation. This enables the final result
// to be correctly rounded to the internal precision of Number.
template <class T>
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
class Number::Guard
{
std::uint64_t digits_; // 16 decimal guard digits
@@ -99,7 +93,7 @@ public:
round() noexcept;
// Modify the result to the correctly rounded value
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
doRoundUp(
bool& negative,
@@ -107,22 +101,22 @@ public:
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa,
std::string location);
std::string_view location);
// Modify the result to the correctly rounded value
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
doRoundDown(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa);
// Modify the result to the correctly rounded value
void
doRound(rep& drops, std::string location);
doRound(rep& drops, std::string_view location);
private:
void
doPush(unsigned d) noexcept;
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
bringIntoRange(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa);
};
@@ -209,7 +203,7 @@ Number::Guard::round() noexcept
return 0;
}
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
Number::Guard::bringIntoRange(
bool& negative,
@@ -228,13 +222,13 @@ Number::Guard::bringIntoRange(
{
constexpr Number zero = Number{};
negative = zero.negative_;
negative = false;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
}
}
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
Number::Guard::doRoundUp(
bool& negative,
@@ -242,7 +236,7 @@ Number::Guard::doRoundUp(
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa,
std::string location)
std::string_view location)
{
auto r = round();
if (r == 1 || (r == 0 && (mantissa & 1) == 1))
@@ -250,7 +244,7 @@ Number::Guard::doRoundUp(
++mantissa;
// Ensure mantissa after incrementing fits within both the
// min/maxMantissa range and is a valid "rep".
if (mantissa > maxMantissa || mantissa > maxRep)
if (mantissa > maxMantissa)
{
mantissa /= 10;
++exponent;
@@ -258,10 +252,10 @@ Number::Guard::doRoundUp(
}
bringIntoRange(negative, mantissa, exponent, minMantissa);
if (exponent > maxExponent)
throw std::overflow_error(location);
throw std::overflow_error(std::string{location});
}
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
Number::Guard::doRoundDown(
bool& negative,
@@ -284,21 +278,22 @@ Number::Guard::doRoundDown(
// Modify the result to the correctly rounded value
void
Number::Guard::doRound(rep& drops, std::string location)
Number::Guard::doRound(rep& drops, std::string_view location)
{
auto r = round();
if (r == 1 || (r == 0 && (drops & 1) == 1))
{
if (drops >= maxRep)
auto const& range = range_.get();
if (drops >= range.max)
{
static_assert(sizeof(internalrep) == sizeof(rep));
// This should be impossible, because it's impossible to represent
// "maxRep + 0.6" in Number, regardless of the scale. There aren't
// enough digits available. You'd either get a mantissa of "maxRep"
// or "(maxRep + 1) / 10", neither of which will round up when
// "largestMantissa + 0.6" in Number, regardless of the scale. There aren't
// enough digits available. You'd either get a mantissa of "largestMantissa"
// or "largestMantissa / 10 + 1", neither of which will round up when
// converting to rep, though the latter might overflow _before_
// rounding.
throw std::overflow_error(location); // LCOV_EXCL_LINE
throw std::overflow_error(std::string{location}); // LCOV_EXCL_LINE
}
++drops;
}
@@ -318,23 +313,133 @@ Number::externalToInternal(rep mantissa)
// If the mantissa is already positive, just return it
if (mantissa >= 0)
return mantissa;
// If the mantissa is negative, but fits within the positive range of rep,
// return it negated
if (mantissa >= -std::numeric_limits<rep>::max())
return -mantissa;
// If the mantissa doesn't fit within the positive range, convert to
// int128_t, negate that, and cast it back down to the internalrep
// In practice, this is only going to cover the case of
// std::numeric_limits<rep>::min().
int128_t temp = mantissa;
return static_cast<internalrep>(-temp);
// Cast to unsigned before negating to avoid undefined behavior
// when v == INT64_MIN (negating INT64_MIN in signed is UB)
return -static_cast<internalrep>(mantissa);
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal(MantissaRange const& range) const
{
auto exponent = exponent_;
bool const negative = mantissa_ < 0;
// It should be impossible for mantissa_ to be INT64_MIN, but use externalToInternal just in
// case.
Rep mantissa = static_cast<Rep>(externalToInternal(mantissa_));
auto const referenceMin = range.referenceMin;
auto const minMantissa = range.min;
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
{
// Ensure the mantissa has the correct number of digits
mantissa *= 10;
--exponent;
XRPL_ASSERT_PARTS(
mantissa >= referenceMin && mantissa < referenceMin * 10,
"xrpl::Number::toInternal()",
"Number is within reference range and has 'log' digits");
}
return {negative, mantissa, exponent};
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has exactly range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal() const
{
return toInternal(range_);
}
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange)
{
if constexpr (std::is_same_v<std::bool_constant<expectNormal>, std::false_type>)
{
if (!pRange)
throw std::runtime_error("Missing range to Number::fromInternal!");
auto const& range = *pRange;
auto const maxMantissa = range.max;
auto const minMantissa = range.min;
XRPL_ASSERT_PARTS(
mantissa >= minMantissa, "xrpl::Number::fromInternal", "mantissa large enough");
if (mantissa > maxMantissa || mantissa < minMantissa)
{
normalize(negative, mantissa, exponent, range.min, maxMantissa);
}
XRPL_ASSERT_PARTS(
mantissa >= minMantissa && mantissa <= maxMantissa,
"xrpl::Number::fromInternal",
"mantissa in range");
}
// mantissa is unsigned, but it might not be uint64
mantissa_ = static_cast<rep>(static_cast<internalrep>(mantissa));
if (negative)
mantissa_ = -mantissa_;
exponent_ = exponent;
XRPL_ASSERT_PARTS(
(pRange && isnormal(*pRange)) || isnormal(),
"xrpl::Number::fromInternal",
"Number is normalized");
}
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all in
* their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near normalized",
* meaning that the mantissa has to be modified at most once to bring it back
* into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(bool negative, Rep mantissa, int exponent)
{
MantissaRange const* pRange = nullptr;
if constexpr (std::is_same_v<std::bool_constant<expectNormal>, std::false_type>)
{
pRange = &Number::range_.get();
}
fromInternal(negative, mantissa, exponent, pRange);
}
constexpr Number
Number::oneSmall()
{
return Number{false, Number::smallRange.min, -Number::smallRange.log, Number::unchecked{}};
return Number{
false, Number::smallRange.referenceMin, -Number::smallRange.log, Number::unchecked{}};
};
constexpr Number oneSml = Number::oneSmall();
@@ -342,103 +447,89 @@ constexpr Number oneSml = Number::oneSmall();
constexpr Number
Number::oneLarge()
{
return Number{false, Number::largeRange.min, -Number::largeRange.log, Number::unchecked{}};
return Number{
false, Number::largeRange.referenceMin, -Number::largeRange.log, Number::unchecked{}};
};
constexpr Number oneLrg = Number::oneLarge();
Number
Number::one()
Number::one(MantissaRange const& range)
{
if (&range_.get() == &smallRange)
if (&range == &smallRange)
return oneSml;
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
return oneLrg;
}
Number
Number::one()
{
return one(range_);
}
// Use the member names in this static function for now so the diff is cleaner
// TODO: Rename the function parameters to get rid of the "_" suffix
template <class T>
void
doNormalize(
bool& negative,
T& mantissa_,
int& exponent_,
T& mantissa,
int& exponent,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa)
{
auto constexpr minExponent = Number::minExponent;
auto constexpr maxExponent = Number::maxExponent;
auto constexpr maxRep = Number::maxRep;
using Guard = Number::Guard;
constexpr Number zero = Number{};
if (mantissa_ == 0)
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
{
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
return;
}
auto m = mantissa_;
while ((m < minMantissa) && (exponent_ > minExponent))
auto m = mantissa;
while ((m < minMantissa) && (exponent > minExponent))
{
m *= 10;
--exponent_;
--exponent;
}
Guard g;
if (negative)
g.set_negative();
while (m > maxMantissa)
{
if (exponent_ >= maxExponent)
if (exponent >= maxExponent)
throw std::overflow_error("Number::normalize 1");
g.push(m % 10);
m /= 10;
++exponent_;
++exponent;
}
if ((exponent_ < minExponent) || (m < minMantissa))
if ((exponent < minExponent) || (m == 0))
{
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
return;
}
// When using the largeRange, "m" needs fit within an int64, even if
// the final mantissa_ is going to end up larger to fit within the
// MantissaRange. Cut it down here so that the rounding will be done while
// it's smaller.
//
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
// so "m" will be modified to 990,000,000,000,012,345. Then that value
// will be rounded to 990,000,000,000,012,345 or
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
// mantissa_ will be "m*10" so it fits within the range, and end up as
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
// mantissa() will return mantissa_ / 10, and exponent() will return
// exponent_ + 1.
if (m > maxRep)
{
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1.5");
g.push(m % 10);
m /= 10;
++exponent_;
}
// Before modification, m should be within the min/max range. After
// modification, it must be less than maxRep. In other words, the original
// value should have been no more than maxRep * 10.
// (maxRep * 10 > maxMantissa)
XRPL_ASSERT_PARTS(m <= maxRep, "xrpl::doNormalize", "intermediate mantissa fits in int64");
mantissa_ = m;
XRPL_ASSERT_PARTS(m <= maxMantissa, "xrpl::doNormalize", "intermediate mantissa fits in int64");
mantissa = m;
g.doRoundUp(negative, mantissa, exponent, minMantissa, maxMantissa, "Number::normalize 2");
g.doRoundUp(negative, mantissa_, exponent_, minMantissa, maxMantissa, "Number::normalize 2");
XRPL_ASSERT_PARTS(
mantissa_ >= minMantissa && mantissa_ <= maxMantissa,
mantissa >= minMantissa && mantissa <= maxMantissa,
"xrpl::doNormalize",
"final mantissa fits in range");
XRPL_ASSERT_PARTS(
exponent >= minExponent && exponent <= maxExponent,
"xrpl::doNormalize",
"final exponent fits in range");
}
template <>
@@ -477,11 +568,20 @@ Number::normalize<unsigned long>(
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
}
void
Number::normalize(MantissaRange const& range)
{
auto [negative, mantissa, exponent] = toInternal(range);
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
void
Number::normalize()
{
auto const& range = range_.get();
normalize(negative_, mantissa_, exponent_, range.min, range.max);
normalize(range_);
}
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
@@ -491,21 +591,33 @@ Number
Number::shiftExponent(int exponentDelta) const
{
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
auto const newExponent = exponent_ + exponentDelta;
if (newExponent >= maxExponent)
Number result = *this;
result.exponent_ += exponentDelta;
if (result.exponent_ >= maxExponent)
throw std::overflow_error("Number::shiftExponent");
if (newExponent < minExponent)
if (result.exponent_ < minExponent)
{
return Number{};
}
Number const result{negative_, mantissa_, newExponent, unchecked{}};
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::Number::shiftExponent", "result is normalized");
return result;
}
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
{
auto const& range = range_.get();
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
Number&
Number::operator+=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
return *this;
@@ -520,7 +632,8 @@ Number::operator+=(Number const& y)
return *this;
}
XRPL_ASSERT(isnormal() && y.isnormal(), "xrpl::Number::operator+=(Number) : is normal");
XRPL_ASSERT(
isnormal(range) && y.isnormal(range), "xrpl::Number::operator+=(Number) : is normal");
// *n = negative
// *s = sign
// *m = mantissa
@@ -528,13 +641,10 @@ Number::operator+=(Number const& y)
// Need to use uint128_t, because large mantissas can overflow when added
// together.
bool xn = negative_;
uint128_t xm = mantissa_;
auto xe = exponent_;
auto [xn, xm, xe] = toInternal<uint128_t>(range);
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
bool yn = y.negative_;
uint128_t ym = y.mantissa_;
auto ye = y.exponent_;
Guard g;
if (xe < ye)
{
@@ -559,14 +669,13 @@ Number::operator+=(Number const& y)
} while (xe > ye);
}
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
if (xn == yn)
{
xm += ym;
if (xm > maxMantissa || xm > maxRep)
if (xm > maxMantissa)
{
g.push(xm % 10);
xm /= 10;
@@ -586,7 +695,7 @@ Number::operator+=(Number const& y)
xe = ye;
xn = yn;
}
while (xm < minMantissa && xm * 10 <= maxRep)
while (xm < minMantissa)
{
xm *= 10;
xm -= g.pop();
@@ -595,10 +704,8 @@ Number::operator+=(Number const& y)
g.doRoundDown(xn, xm, xe, minMantissa);
}
negative_ = xn;
mantissa_ = static_cast<internalrep>(xm);
exponent_ = xe;
normalize();
normalize(xn, xm, xe, minMantissa, maxMantissa);
fromInternal(xn, xm, xe, &range);
return *this;
}
@@ -633,6 +740,8 @@ divu10(uint128_t& u)
Number&
Number::operator*=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (*this == zero)
return *this;
@@ -646,15 +755,11 @@ Number::operator*=(Number const& y)
// *m = mantissa
// *e = exponent
bool xn = negative_;
auto [xn, xm, xe] = toInternal(range);
int xs = xn ? -1 : 1;
internalrep xm = mantissa_;
auto xe = exponent_;
bool yn = y.negative_;
auto [yn, ym, ye] = y.toInternal(range);
int ys = yn ? -1 : 1;
internalrep ym = y.mantissa_;
auto ye = y.exponent_;
auto zm = uint128_t(xm) * uint128_t(ym);
auto ze = xe + ye;
@@ -664,11 +769,10 @@ Number::operator*=(Number const& y)
if (zn)
g.set_negative();
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
while (zm > maxMantissa || zm > maxRep)
while (zm > maxMantissa)
{
// The following is optimization for:
// g.push(static_cast<unsigned>(zm % 10));
@@ -685,17 +789,17 @@ Number::operator*=(Number const& y)
minMantissa,
maxMantissa,
"Number::multiplication overflow : exponent is " + std::to_string(xe));
negative_ = zn;
mantissa_ = xm;
exponent_ = xe;
normalize();
normalize(zn, xm, xe, minMantissa, maxMantissa);
fromInternal(zn, xm, xe, &range);
return *this;
}
Number&
Number::operator/=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
throw std::overflow_error("Number: divide by 0");
@@ -708,17 +812,12 @@ Number::operator/=(Number const& y)
// *m = mantissa
// *e = exponent
bool np = negative_;
auto [np, nm, ne] = toInternal(range);
int ns = (np ? -1 : 1);
auto nm = mantissa_;
auto ne = exponent_;
bool dp = y.negative_;
auto [dp, dm, de] = y.toInternal(range);
int ds = (dp ? -1 : 1);
auto dm = y.mantissa_;
auto de = y.exponent_;
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
@@ -730,7 +829,7 @@ Number::operator/=(Number const& y)
// f can be up to 10^(38-19) = 10^19 safely
static_assert(smallRange.log == 15);
static_assert(largeRange.log == 18);
bool small = Number::getMantissaScale() == MantissaRange::small;
bool small = range.scale == MantissaRange::small;
uint128_t const f = small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
XRPL_ASSERT_PARTS(f >= minMantissa * 10, "Number::operator/=", "factor expected size");
@@ -780,10 +879,8 @@ Number::operator/=(Number const& y)
}
}
normalize(zn, zm, ze, minMantissa, maxMantissa);
negative_ = zn;
mantissa_ = static_cast<internalrep>(zm);
exponent_ = ze;
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::operator/=", "result is normalized");
fromInternal(zn, zm, ze, &range);
XRPL_ASSERT_PARTS(isnormal(range), "xrpl::Number::operator/=", "result is normalized");
return *this;
}
@@ -796,10 +893,10 @@ operator rep() const
Guard g;
if (drops != 0)
{
if (negative_)
if (drops < 0)
{
g.set_negative();
drops = -drops;
drops = externalToInternal(drops);
}
for (; offset < 0; ++offset)
{
@@ -808,7 +905,7 @@ operator rep() const
}
for (; offset > 0; --offset)
{
if (drops > maxRep / 10)
if (drops >= largeRange.min)
throw std::overflow_error("Number::operator rep() overflow");
drops *= 10;
}
@@ -838,19 +935,22 @@ Number::truncate() const noexcept
std::string
to_string(Number const& amount)
{
auto const& range = Number::range_.get();
// keep full internal accuracy, but make more human friendly if possible
constexpr Number zero = Number{};
if (amount == zero)
return "0";
auto exponent = amount.exponent_;
auto mantissa = amount.mantissa_;
bool const negative = amount.negative_;
// The mantissa must have a set number of decimal places for this to work
auto [negative, mantissa, exponent] = amount.toInternal(range);
// Use scientific notation for exponents that are too small or too large
auto const rangeLog = Number::mantissaLog();
if (((exponent != 0) && ((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
auto const rangeLog = range.log;
if (((exponent != 0 && amount.exponent() != 0) &&
((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
{
// Remove trailing zeroes from the mantissa.
while (mantissa != 0 && mantissa % 10 == 0 && exponent < Number::maxExponent)
{
mantissa /= 10;
@@ -858,8 +958,11 @@ to_string(Number const& amount)
}
std::string ret = negative ? "-" : "";
ret.append(std::to_string(mantissa));
ret.append(1, 'e');
ret.append(std::to_string(exponent));
if (exponent != 0)
{
ret.append(1, 'e');
ret.append(std::to_string(exponent));
}
return ret;
}
@@ -943,20 +1046,11 @@ power(Number const& f, unsigned n)
return r;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
Number::root(MantissaRange const& range, Number f, unsigned d)
{
constexpr Number zero = Number{};
auto const one = Number::one();
auto const one = Number::one(range);
if (f == one || d == 1)
return f;
@@ -973,21 +1067,28 @@ root(Number f, unsigned d)
if (f == zero)
return f;
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
auto const [e, di] = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
// Scale f into the range (0, 1) such that the scale change (e) is a
// multiple of the root (d)
auto e = exponent + range.log + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
return std::make_tuple(e, di);
}();
XRPL_ASSERT_PARTS(e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
XRPL_ASSERT_PARTS(f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
bool neg = false;
if (f < zero)
{
@@ -1020,15 +1121,33 @@ root(Number f, unsigned d)
// return r * 10^(e/d) to reverse scaling
auto const result = r.shiftExponent(e / di);
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::root(Number, unsigned)", "result is normalized");
XRPL_ASSERT_PARTS(
result.isnormal(range), "xrpl::root(Number, unsigned)", "result is normalized");
return result;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
{
auto const& range = Number::range_.get();
return Number::root(range, f, d);
}
Number
root2(Number f)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one();
auto const one = Number::one(range);
if (f == one)
return f;
@@ -1037,12 +1156,18 @@ root2(Number f)
if (f == zero)
return f;
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
auto const e = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that f's exponent is a
// multiple of d
auto e = exponent + range.log + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
return e;
}();
XRPL_ASSERT_PARTS(f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
auto const D = 105;
@@ -1064,7 +1189,7 @@ root2(Number f)
// return r * 10^(e/2) to reverse scaling
auto const result = r.shiftExponent(e / 2);
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::root2(Number)", "result is normalized");
XRPL_ASSERT_PARTS(result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
return result;
}
@@ -1074,8 +1199,10 @@ root2(Number f)
Number
power(Number const& f, unsigned n, unsigned d)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one();
auto const one = Number::one(range);
if (f == one)
return f;
@@ -1097,7 +1224,7 @@ power(Number const& f, unsigned n, unsigned d)
d /= g;
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
throw std::overflow_error("Number::power nan");
return root(power(f, n), d);
return Number::root(range, power(f, n), d);
}
} // namespace xrpl

View File

@@ -32,9 +32,10 @@ public:
test_limits()
{
auto const scale = Number::getMantissaScale();
testcase << "test_limits " << to_string(scale);
bool caught = false;
auto const minMantissa = Number::minMantissa();
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
bool caught = false;
try
{
Number x = Number{false, minMantissa * 10, 32768, Number::normalized{}};
@@ -58,8 +59,9 @@ public:
__LINE__);
test(Number{false, minMantissa, -32769, Number::normalized{}}, Number{}, __LINE__);
test(
// Use 1501 to force rounding up
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
Number{false, 1'500, 32000, Number::normalized{}},
Number{false, 1'501, 32000, Number::normalized{}},
Number{false, minMantissa + 2, 32003, Number::normalized{}},
__LINE__);
// 9,223,372,036,854,775,808
@@ -168,8 +170,12 @@ public:
{Number{true, 9'999'999'999'999'999'999ULL, -37, Number::normalized{}},
Number{1'000'000'000'000'000'000, -18},
Number{false, 9'999'999'999'999'999'990ULL, -19, Number::normalized{}}},
{Number{Number::maxRep}, Number{6, -1}, Number{Number::maxRep / 10, 1}},
{Number{Number::maxRep - 1}, Number{1, 0}, Number{Number::maxRep}},
{Number{Number::largestMantissa},
Number{6, -1},
Number{Number::largestMantissa / 10, 1}},
{Number{Number::largestMantissa - 1},
Number{1, 0},
Number{Number::largestMantissa}},
// Test extremes
{
// Each Number operand rounds up, so the actual mantissa is
@@ -179,11 +185,18 @@ public:
Number{2, 19},
},
{
// Does not round. Mantissas are going to be > maxRep, so if
// added together as uint64_t's, the result will overflow.
// With addition using uint128_t, there's no problem. After
// normalizing, the resulting mantissa ends up less than
// maxRep.
// Does not round. Mantissas are going to be >
// largestMantissa, so if added together as uint64_t's, the
// result will overflow. With addition using uint128_t,
// there's no problem. After normalizing, the resulting
// mantissa ends up less than largestMantissa.
Number{false, Number::largestMantissa, 0, Number::normalized{}},
Number{false, Number::largestMantissa, 0, Number::normalized{}},
Number{false, Number::largestMantissa * 2, 0, Number::normalized{}},
},
{
// These mantissas round down, so adding them together won't
// have any consequences.
Number{false, 9'999'999'999'999'999'990ULL, 0, Number::normalized{}},
Number{false, 9'999'999'999'999'999'990ULL, 0, Number::normalized{}},
Number{false, 1'999'999'999'999'999'998ULL, 1, Number::normalized{}},
@@ -272,14 +285,16 @@ public:
{Number{1'000'000'000'000'000'001, -18},
Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'000, -36}},
{Number{Number::maxRep}, Number{6, -1}, Number{Number::maxRep - 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
{Number{Number::largestMantissa},
Number{6, -1},
Number{Number::largestMantissa - 1}},
{Number{false, Number::largestMantissa + 1, 0, Number::normalized{}},
Number{1, 0},
Number{Number::maxRep / 10 + 1, 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
Number{Number::largestMantissa / 10 + 1, 1}},
{Number{false, Number::largestMantissa + 1, 0, Number::normalized{}},
Number{3, 0},
Number{Number::maxRep}},
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
Number{Number::largestMantissa}},
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
});
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
@@ -302,14 +317,15 @@ public:
auto const scale = Number::getMantissaScale();
testcase << "test_mul " << to_string(scale);
using Case = std::tuple<Number, Number, Number>;
// Case: Factor 1, Factor 2, Expected product, Line number
using Case = std::tuple<Number, Number, Number, int>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
for (auto const& [x, y, z, line] : c)
{
auto const result = x * y;
std::stringstream ss;
ss << x << " * " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str());
BEAST_EXPECTS(result == z, ss.str() + " line: " + std::to_string(line));
}
};
auto tests = [&](auto const& cSmall, auto const& cLarge) {
@@ -319,70 +335,100 @@ public:
test(cLarge);
};
auto const maxMantissa = Number::maxMantissa();
auto const maxInternalMantissa = static_cast<std::uint64_t>(static_cast<std::int64_t>(
power(10, Number::mantissaLog()))) *
10 -
1;
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
auto const cSmall = std::to_array<Case>({
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15}},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}},
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__},
// Maximum mantissa range
{Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'998, 16}},
Number{9'999'999'999'999'998, 16},
__LINE__},
});
auto const cLarge = std::to_array<Case>({
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18}},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}}},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18}},
Number{2000000000000000001, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18}},
Number{-1999999999999999998, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
// Maximum mantissa range - rounds up to 1e19
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds up to 1e19
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum actual mantissa range - same as int64 range
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{1, 38}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
// Maximum int64 range
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'85, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -390,66 +436,90 @@ public:
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " towards_zero";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}},
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15}},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18}},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{false, 9999999999999999579ULL, -18, Number::normalized{}}},
Number{false, 9999999999999999579ULL, -18, Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0}},
Number{2, 0},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18}},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18}},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}},
__LINE__},
// Maximum actual mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'84, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -457,66 +527,90 @@ public:
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " downward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}},
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15}},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18}},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}}},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0}},
Number{2, 0},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18}},
Number{-1999999999999999998, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18}},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10-1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'84, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -524,66 +618,89 @@ public:
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " upward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}},
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15}},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18}},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{999999999999999958, -17}},
Number{999999999999999958, -17},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18}},
Number{2000000000000000001, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18}},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{2, 0}},
Number{2, 0},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{1000000000000000001, -17}},
// Maximum mantissa range - rounds up to minMantissa*10
// 1e19*1e19=1e38
Number{1000000000000000001, -17},
__LINE__},
// Maximum internal mantissa range - rounds up to
// minMantissa*10 1e19*1e19=1e38
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{1, 38}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'85, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -814,6 +931,11 @@ public:
};
*/
auto const maxInternalMantissa = static_cast<std::uint64_t>(static_cast<std::int64_t>(
power(10, Number::mantissaLog()))) *
10 -
1;
auto const cSmall = std::to_array<Case>(
{{Number{2}, 2, Number{1414213562373095049, -18}},
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
@@ -825,16 +947,16 @@ public:
{Number{0}, 5, Number{0}},
{Number{5625, -4}, 2, Number{75, -2}}});
auto const cLarge = std::to_array<Case>({
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
2,
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
2,
Number{false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
{Number{Number::maxRep},
{Number{Number::largestMantissa},
2,
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
{Number{Number::maxRep},
{Number{Number::largestMantissa},
4,
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
});
@@ -883,6 +1005,8 @@ public:
}
};
auto const maxInternalMantissa = power(10, Number::mantissaLog()) * 10 - 1;
auto const cSmall = std::to_array<Number>({
Number{2},
Number{2'000'000},
@@ -892,7 +1016,10 @@ public:
Number{5, -1},
Number{0},
Number{5625, -4},
Number{Number::maxRep},
Number{Number::largestMantissa},
maxInternalMantissa,
Number{Number::minMantissa(), 0, Number::unchecked{}},
Number{Number::maxMantissa(), 0, Number::unchecked{}},
});
test(cSmall);
bool caught = false;
@@ -1243,18 +1370,18 @@ public:
case MantissaRange::large:
// Test the edges
// ((exponent < -(28)) || (exponent > -(8)))))
test(Number::min(), "1e-32750");
test(Number::min(), "922337203685477581e-32768");
test(Number::max(), "9223372036854775807e32768");
test(Number::lowest(), "-9223372036854775807e32768");
{
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
test(
Number{false, maxMantissa, 0, Number::normalized{}}, "9999999999999999990");
Number{false, maxMantissa, 0, Number::normalized{}}, "9223372036854775807");
test(
Number{true, maxMantissa, 0, Number::normalized{}}, "-9999999999999999990");
Number{true, maxMantissa, 0, Number::normalized{}}, "-9223372036854775807");
test(
Number{std::numeric_limits<std::int64_t>::max(), 0}, "9223372036854775807");
@@ -1490,7 +1617,7 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() > 0);
Number const maxInt64{Number::maxRep};
Number const maxInt64{Number::largestMantissa};
BEAST_EXPECT(maxInt64.exponent() > 0);
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
BEAST_EXPECT((power(maxInt64, 2) == Number{85'070'591'730'234'62, 22}));
@@ -1507,21 +1634,217 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() <= 0);
Number const maxInt64{Number::maxRep};
Number const maxInt64{Number::largestMantissa};
BEAST_EXPECT(maxInt64.exponent() <= 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
BEAST_EXPECT((power(maxInt64, 2) == Number{85'070'591'730'234'615'85, 19}));
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
Number const max = Number{false, maxMantissa, 0, Number::normalized{}};
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) == Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
{
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
// Rounds down to fit under 2^63
Number const max = Number{false, maxInternalMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}}));
}
{
auto const maxMantissa = Number::maxMantissa();
Number const max = Number{false, maxMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxMantissa);
BEAST_EXPECT(max.exponent() == 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{false, 85'070'591'730'234'615'84, 19, Number::normalized{}}));
}
}
}
void
testNormalizeToRange()
{
// Test edge-cases of normalizeToRange
auto const scale = Number::getMantissaScale();
testcase << "normalizeToRange " << to_string(scale);
auto test = [this](
Number const& n,
auto const rangeMin,
auto const rangeMax,
auto const expectedMantissa,
auto const expectedExponent,
auto const line) {
auto const normalized = n.normalizeToRange(rangeMin, rangeMax);
BEAST_EXPECTS(
normalized.first == expectedMantissa,
"Number " + to_string(n) + " scaled to " + std::to_string(rangeMax) +
". Expected mantissa:" + std::to_string(expectedMantissa) +
", got: " + std::to_string(normalized.first) + " @ " + std::to_string(line));
BEAST_EXPECTS(
normalized.second == expectedExponent,
"Number " + to_string(n) + " scaled to " + std::to_string(rangeMax) +
". Expected exponent:" + std::to_string(expectedExponent) +
", got: " + std::to_string(normalized.second) + " @ " + std::to_string(line));
};
std::int64_t constexpr iRangeMin = 100;
std::int64_t constexpr iRangeMax = 999;
std::uint64_t constexpr uRangeMin = 100;
std::uint64_t constexpr uRangeMax = 999;
constexpr static MantissaRange largeRange{MantissaRange::large};
std::int64_t constexpr iBigMin = largeRange.min;
std::int64_t constexpr iBigMax = largeRange.max;
auto const testSuite = [&](Number const& n,
auto const expectedSmallMantissa,
auto const expectedSmallExponent,
auto const expectedLargeMantissa,
auto const expectedLargeExponent,
auto const line) {
test(n, iRangeMin, iRangeMax, expectedSmallMantissa, expectedSmallExponent, line);
test(n, iBigMin, iBigMax, expectedLargeMantissa, expectedLargeExponent, line);
// Only test non-negative. testing a negative number with an
// unsigned range will assert, and asserts can't be tested.
if (n.signum() >= 0)
{
test(n, uRangeMin, uRangeMax, expectedSmallMantissa, expectedSmallExponent, line);
test(
n,
largeRange.min,
largeRange.max,
expectedLargeMantissa,
expectedLargeExponent,
line);
}
};
{
// zero
Number const n{0};
testSuite(
n,
0,
std::numeric_limits<int>::lowest(),
0,
std::numeric_limits<int>::lowest(),
__LINE__);
}
{
// Small positive number
Number const n{2};
testSuite(n, 200, -2, 2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Negative number
Number const n{-2};
testSuite(n, -200, -2, -2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Biggest valid mantissa
Number const n{Number::largestMantissa, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, Number::largestMantissa, 0, __LINE__);
}
{
// Biggest valid mantissa + 1
Number const n{Number::largestMantissa + 1, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 2
Number const n{Number::largestMantissa + 2, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 3
Number const n{Number::largestMantissa + 3, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min
Number const n{std::numeric_limits<std::int64_t>::min(), 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min + 1
Number const n{std::numeric_limits<std::int64_t>::min() + 1, 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -9'223'372'036'854'775'807, 0, __LINE__);
}
{
// int64 min - 1
// Need to cast to uint, even though we're dealing with a negative
// number to avoid overflow and UB
Number const n{
true,
-static_cast<std::uint64_t>(std::numeric_limits<std::int64_t>::min()) + 1,
0,
Number::normalized{}};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
}
@@ -1552,6 +1875,7 @@ public:
test_truncate();
testRounding();
testInt64();
testNormalizeToRange();
}
}
};