Compare commits

...

9 Commits

Author SHA1 Message Date
Ed Hennis
9457b82943 Merge branch 'ximinez/staging-3.1' into ximinez/number-maxint-range 2026-01-28 19:37:36 -04:00
Ed Hennis
495ed923d5 Merge branch 'ximinez/staging-3.1' into ximinez/number-maxint-range 2026-01-28 19:33:22 -04:00
Ed Hennis
9a30e3e098 Add unit tests for normalizeToRange
- Steal changes from @pratik's #6150 to avoid UB
2026-01-28 17:28:27 -05:00
Ed Hennis
6de36fbe91 Clean-ups and tweaks 2026-01-27 19:07:08 -05:00
Ed Hennis
6fcb32edfe Reduce expensive(?) accesses to thread_local MantissaRange 2026-01-27 18:22:22 -05:00
Ed Hennis
8804192761 Fix bugs
- Simplify shiftExponent().
- Clean up to_string() to prevent integers from including "e0".
- Fix root() and root2() computations by ensuring the mantissas have
  a consistent length.
2026-01-27 18:21:25 -05:00
Ed Hennis
f7b362ad58 Convert "bool negative_ & uint64_t mantissa_" combo back to "rep mantissa_" 2026-01-27 18:19:20 -05:00
Ed Hennis
722b929cb1 Remove the _ suffixes from doNormalize function parameters 2026-01-27 18:19:20 -05:00
Ed Hennis
01db5f1c38 Use 2^63-1 as maxMantissa for large range
- That makes minMantissa 2^63/10+1.
- Simplifies many of the existing operations, and removes the need for
  the accessors (mantissa() & exponent()) to do any math.
2026-01-27 18:19:02 -05:00
6 changed files with 1067 additions and 401 deletions

View File

@@ -29,6 +29,10 @@
#include <ostream>
#include <string>
#ifdef _MSC_VER
#include <boost/multiprecision/cpp_int.hpp>
#endif // !defined(_MSC_VER)
namespace ripple {
class Number;
@@ -36,18 +40,37 @@ class Number;
std::string
to_string(Number const& amount);
/** Returns a rough estimate of log10(value).
*
* The return value is a pair (log, rem), where log is the estimated log10,
* and rem is value divided by 10^log. If rem is 1, then value is an exact
* power of ten, and log is the exact log10(value).
*
* This function only works for positive values.
*/
template <typename T>
constexpr std::pair<int, T>
logTenEstimate(T value)
{
int log = 0;
T remainder = value;
while (value >= 10)
{
if (value % 10 == 0)
remainder = remainder / 10;
value /= 10;
++log;
}
return {log, remainder};
}
template <typename T>
constexpr std::optional<int>
logTen(T value)
{
int log = 0;
while (value >= 10 && value % 10 == 0)
{
value /= 10;
++log;
}
if (value == 1)
return log;
auto const est = logTenEstimate(value);
if (est.second == 1)
return est.first;
return std::nullopt;
}
@@ -61,12 +84,10 @@ isPowerOfTen(T value)
/** MantissaRange defines a range for the mantissa of a normalized Number.
*
* The mantissa is in the range [min, max], where
* * min is a power of 10, and
* * max = min * 10 - 1.
*
* The mantissa_scale enum indicates whether the range is "small" or "large".
* This intentionally restricts the number of MantissaRanges that can be
* instantiated to two: one for each scale.
* used to two: one for each scale.
*
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
* value of 10^15, and a max value of 10^16-1. This was sufficient for
@@ -80,8 +101,8 @@ isPowerOfTen(T value)
* "large" scale.
*
* The "large" scale is intended to represent all values that can be represented
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
* value of 10^19-1.
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
* (truncated), and a max value of 2^63-1.
*
* Note that if the mentioned amendments are eventually retired, this class
* should be left in place, but the "small" scale option should be removed. This
@@ -93,28 +114,50 @@ struct MantissaRange
enum mantissa_scale { small, large };
explicit constexpr MantissaRange(mantissa_scale scale_)
: min(getMin(scale_))
, max(min * 10 - 1)
, log(logTen(min).value_or(-1))
: max(getMax(scale_))
, min(computeMin(max))
, referenceMin(getReferenceMin(scale_, min))
, log(computeLog(min))
, scale(scale_)
{
// Since this is constexpr, if any of these throw, it won't compile
if (min * 10 <= max)
throw std::out_of_range("min * 10 <= max");
if (max / 10 >= min)
throw std::out_of_range("max / 10 >= min");
if ((min - 1) * 10 > max)
throw std::out_of_range("(min - 1) * 10 > max");
// This is a little hacky
if ((max + 10) / 10 < min)
throw std::out_of_range("(max + 10) / 10 < min");
}
rep min;
// Explicitly delete copy and move operations
MantissaRange(MantissaRange const&) = delete;
MantissaRange(MantissaRange&&) = delete;
MantissaRange&
operator=(MantissaRange const&) = delete;
MantissaRange&
operator=(MantissaRange&&) = delete;
rep max;
rep min;
// This is not a great name. Used to determine if mantissas are in range,
// but have fewer digits than max
rep referenceMin;
int log;
mantissa_scale scale;
private:
static constexpr rep
getMin(mantissa_scale scale_)
getMax(mantissa_scale scale)
{
switch (scale_)
switch (scale)
{
case small:
return 1'000'000'000'000'000ULL;
return 9'999'999'999'999'999ULL;
case large:
return 1'000'000'000'000'000'000ULL;
return std::numeric_limits<std::int64_t>::max();
default:
// Since this can never be called outside a non-constexpr
// context, this throw assures that the build fails if an
@@ -122,6 +165,33 @@ private:
throw std::runtime_error("Unknown mantissa scale");
}
}
static constexpr rep
computeMin(rep max)
{
return max / 10 + 1;
}
static constexpr rep
getReferenceMin(mantissa_scale scale, rep min)
{
switch (scale)
{
case large:
return 1'000'000'000'000'000'000ULL;
default:
if (isPowerOfTen(min))
return min;
throw std::runtime_error("Unknown/bad mantissa scale");
}
}
static constexpr rep
computeLog(rep min)
{
auto const estimate = logTenEstimate(min);
return estimate.first + (estimate.second == 1 ? 0 : 1);
}
};
// Like std::integral, but only 64-bit integral types.
@@ -129,6 +199,20 @@ template <class T>
concept Integral64 =
std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
namespace detail {
#ifdef _MSC_VER
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
template <class T>
concept UnsignedMantissa =
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
} // namespace detail
/** Number is a floating point type that can represent a wide range of values.
*
* It can represent all values that can be represented by an STAmount -
@@ -156,9 +240,7 @@ concept Integral64 =
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
* should only be used at specific conversion points, some constexpr
* values, and in unit tests.
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
* 10^20-1 > 2^64-1). This avoids under- and overflows.
* 2. The max of the "large" range, 2^63-1, TODO: explain the large range.
*
* ---- External Interface ----
*
@@ -172,7 +254,7 @@ concept Integral64 =
*
* Note:
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
* mantissa range.
* mantissa range. TODO: update this explanation.
* 2. The functions mantissa() and exponent() return the external view of the
* Number value, specifically using a signed 63-bit mantissa. This may
* require altering the internal representation to fit into that range
@@ -232,8 +314,7 @@ class Number
using rep = std::int64_t;
using internalrep = MantissaRange::rep;
bool negative_{false};
internalrep mantissa_{0};
rep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
@@ -241,9 +322,11 @@ public:
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
#if MAXREP
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
static_assert(maxRep == 9'223'372'036'854'775'807);
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
#endif
// May need to make unchecked private
struct unchecked
@@ -329,8 +412,7 @@ public:
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ &&
x.exponent_ == y.exponent_;
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
@@ -344,8 +426,8 @@ public:
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.negative_;
bool const rneg = y.negative_;
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
if (lneg != rneg)
return lneg;
@@ -373,7 +455,7 @@ public:
constexpr int
signum() const noexcept
{
return negative_ ? -1 : (mantissa_ ? 1 : 0);
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
}
Number
@@ -412,6 +494,9 @@ public:
friend Number
root2(Number f);
friend Number
power(Number const& f, unsigned n, unsigned d);
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
@@ -476,22 +561,48 @@ private:
static_assert(isPowerOfTen(smallRange.min));
static_assert(smallRange.min == 1'000'000'000'000'000LL);
static_assert(smallRange.max == 9'999'999'999'999'999LL);
static_assert(smallRange.referenceMin == smallRange.min);
static_assert(smallRange.log == 15);
#if MAXREP
static_assert(smallRange.min < maxRep);
static_assert(smallRange.max < maxRep);
#endif
constexpr static MantissaRange largeRange{MantissaRange::large};
static_assert(isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
static_assert(!isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
static_assert(largeRange.max == std::numeric_limits<rep>::max());
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.log == 18);
// There are 2 values that will not fit in largeRange without some extra
// work
// * 9223372036854775808
// * 9223372036854775809
// They both end up < min, but with a leftover. If they round up, everything
// will be fine. If they don't, well need to bring them up into range.
// Guard::bringIntoRange handles this situation.
#if MAXREP
static_assert(largeRange.min < maxRep);
static_assert(largeRange.max > maxRep);
#endif
// The range for the mantissa when normalized.
// Use reference_wrapper to avoid making copies, and prevent accidentally
// changing the values inside the range.
static thread_local std::reference_wrapper<MantissaRange const> range_;
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one(MantissaRange const& range);
static Number
root(MantissaRange const& range, Number f, unsigned d);
void
normalize(MantissaRange const& range);
void
normalize();
@@ -514,11 +625,14 @@ private:
friend void
doNormalize(
bool& negative,
T& mantissa_,
int& exponent_,
T& mantissa,
int& exponent,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa);
bool
isnormal(MantissaRange const& range) const noexcept;
bool
isnormal() const noexcept;
@@ -535,7 +649,64 @@ private:
static internalrep
externalToInternal(rep mantissa);
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal(MantissaRange const& range) const;
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal() const;
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "normalized" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <
bool expectNormal = true,
detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(
bool negative,
Rep mantissa,
int exponent,
MantissaRange const* pRange);
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "normalized" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <
bool expectNormal = true,
detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent);
class Guard;
public:
constexpr static internalrep largestMantissa = largeRange.max;
};
inline constexpr Number::Number(
@@ -543,7 +714,8 @@ inline constexpr Number::Number(
internalrep mantissa,
int exponent,
unchecked) noexcept
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
: mantissa_{(negative ? -1 : 1) * static_cast<rep>(mantissa)}
, exponent_{exponent}
{
}
@@ -557,16 +729,6 @@ inline constexpr Number::Number(
constexpr static Number numZero{};
inline Number::Number(
bool negative,
internalrep mantissa,
int exponent,
normalized)
: Number(negative, mantissa, exponent, unchecked{})
{
normalize();
}
inline Number::Number(internalrep mantissa, int exponent, normalized)
: Number(false, mantissa, exponent, normalized{})
{
@@ -589,17 +751,7 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
inline constexpr Number::rep
Number::mantissa() const noexcept
{
auto m = mantissa_;
if (m > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
"xrpl::Number::mantissa",
"large normalized mantissa has no remainder");
m /= 10;
}
auto const sign = negative_ ? -1 : 1;
return sign * static_cast<Number::rep>(m);
return mantissa_;
}
/** Returns the exponent of the external view of the Number.
@@ -610,16 +762,7 @@ Number::mantissa() const noexcept
inline constexpr int
Number::exponent() const noexcept
{
auto e = exponent_;
if (mantissa_ > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
"xrpl::Number::exponent",
"large normalized mantissa has no remainder");
++e;
}
return e;
return exponent_;
}
inline constexpr Number
@@ -634,7 +777,7 @@ Number::operator-() const noexcept
if (mantissa_ == 0)
return Number{};
auto x = *this;
x.negative_ = !x.negative_;
x.mantissa_ = -1 * x.mantissa_;
return x;
}
@@ -715,45 +858,62 @@ Number::min() noexcept
inline Number
Number::max() noexcept
{
return Number{
false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
return Number{false, range_.get().max, maxExponent, unchecked{}};
}
inline Number
Number::lowest() noexcept
{
return Number{
true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
return Number{true, range_.get().max, maxExponent, unchecked{}};
}
inline bool
Number::isnormal(MantissaRange const& range) const noexcept
{
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && //
minExponent <= exponent_ && exponent_ <= maxExponent);
}
inline bool
Number::isnormal() const noexcept
{
MantissaRange const& range = range_;
auto const abs_m = mantissa_;
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max &&
(abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
exponent_ <= maxExponent);
return isnormal(range_);
}
template <Integral64 T>
std::pair<T, int>
Number::normalizeToRange(T minMantissa, T maxMantissa) const
{
bool negative = negative_;
internalrep mantissa = mantissa_;
bool negative = mantissa_ < 0;
auto const sign = negative ? -1 : 1;
internalrep mantissa = sign * mantissa_;
int exponent = exponent_;
if constexpr (std::is_unsigned_v<T>)
{
XRPL_ASSERT_PARTS(
!negative,
"xrpl::Number::normalizeToRange",
"Number is non-negative for unsigned range.");
// To avoid logical errors in release builds, throw if the Number is
// negative for an unsigned range.
if (negative)
throw std::runtime_error(
"Number::normalizeToRange: Number is negative for "
"unsigned range.");
}
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
auto const sign = negative ? -1 : 1;
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
// Cast mantissa to signed type first (if T is a signed type) to avoid
// unsigned integer overflow when multiplying by negative sign
T signedMantissa = static_cast<T>(mantissa);
if (negative)
signedMantissa = -signedMantissa;
return std::make_pair(signedMantissa, exponent);
return std::make_pair(sign * static_cast<T>(mantissa), exponent);
}
inline constexpr Number

View File

@@ -252,7 +252,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
/** The maximum amount of MPTokenIssuance */
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
static_assert(Number::maxRep >= maxMPTokenAmount);
static_assert(Number::largestMantissa >= maxMPTokenAmount);
/** The maximum length of Data payload */
std::size_t constexpr maxDataPayloadLength = 256;

View File

@@ -587,6 +587,10 @@ STAmount::fromNumber(A const& a, Number const& number)
return STAmount{asset, intValue, 0, negative};
}
XRPL_ASSERT_PARTS(
working.signum() >= 0,
"ripple::STAmount::fromNumber",
"non-negative Number to normalize");
auto const [mantissa, exponent] =
working.normalizeToRange(cMinValue, cMaxValue);

View File

@@ -43,7 +43,7 @@ systemName()
/** Number of drops in the genesis account. */
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
static_assert(Number::maxRep >= INITIAL_XRP.drops());
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
/** Returns true if the amount does not exceed the initial XRP in existence. */
inline bool

View File

@@ -30,18 +30,16 @@
#include <numeric>
#include <stdexcept>
#include <string>
#include <string_view>
#include <type_traits>
#include <utility>
#ifdef _MSC_VER
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
#include <boost/multiprecision/cpp_int.hpp>
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
#endif
using uint128_t = ripple::detail::uint128_t;
using int128_t = ripple::detail::int128_t;
namespace ripple {
@@ -81,10 +79,6 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
// preicision to an operation. This enables the final result
// to be correctly rounded to the internal precision of Number.
template <class T>
concept UnsignedMantissa =
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
class Number::Guard
{
std::uint64_t digits_; // 16 decimal guard digits
@@ -120,7 +114,7 @@ public:
round() noexcept;
// Modify the result to the correctly rounded value
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
doRoundUp(
bool& negative,
@@ -128,10 +122,10 @@ public:
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa,
std::string location);
std::string_view location);
// Modify the result to the correctly rounded value
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
doRoundDown(
bool& negative,
@@ -141,13 +135,13 @@ public:
// Modify the result to the correctly rounded value
void
doRound(rep& drops, std::string location);
doRound(rep& drops, std::string_view location);
private:
void
doPush(unsigned d) noexcept;
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
bringIntoRange(
bool& negative,
@@ -238,7 +232,7 @@ Number::Guard::round() noexcept
return 0;
}
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
Number::Guard::bringIntoRange(
bool& negative,
@@ -257,13 +251,13 @@ Number::Guard::bringIntoRange(
{
constexpr Number zero = Number{};
negative = zero.negative_;
negative = false;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
}
}
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
Number::Guard::doRoundUp(
bool& negative,
@@ -271,7 +265,7 @@ Number::Guard::doRoundUp(
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa,
std::string location)
std::string_view location)
{
auto r = round();
if (r == 1 || (r == 0 && (mantissa & 1) == 1))
@@ -279,7 +273,7 @@ Number::Guard::doRoundUp(
++mantissa;
// Ensure mantissa after incrementing fits within both the
// min/maxMantissa range and is a valid "rep".
if (mantissa > maxMantissa || mantissa > maxRep)
if (mantissa > maxMantissa)
{
mantissa /= 10;
++exponent;
@@ -287,10 +281,10 @@ Number::Guard::doRoundUp(
}
bringIntoRange(negative, mantissa, exponent, minMantissa);
if (exponent > maxExponent)
throw std::overflow_error(location);
throw std::overflow_error(std::string{location});
}
template <UnsignedMantissa T>
template <detail::UnsignedMantissa T>
void
Number::Guard::doRoundDown(
bool& negative,
@@ -313,12 +307,13 @@ Number::Guard::doRoundDown(
// Modify the result to the correctly rounded value
void
Number::Guard::doRound(rep& drops, std::string location)
Number::Guard::doRound(rep& drops, std::string_view location)
{
auto r = round();
if (r == 1 || (r == 0 && (drops & 1) == 1))
{
if (drops >= maxRep)
auto const& range = range_.get();
if (drops >= range.max)
{
static_assert(sizeof(internalrep) == sizeof(rep));
// This should be impossible, because it's impossible to represent
@@ -327,7 +322,7 @@ Number::Guard::doRound(rep& drops, std::string location)
// or "(maxRep + 1) / 10", neither of which will round up when
// converting to rep, though the latter might overflow _before_
// rounding.
throw std::overflow_error(location); // LCOV_EXCL_LINE
throw std::overflow_error(std::string{location}); // LCOV_EXCL_LINE
}
++drops;
}
@@ -347,17 +342,134 @@ Number::externalToInternal(rep mantissa)
// If the mantissa is already positive, just return it
if (mantissa >= 0)
return mantissa;
// If the mantissa is negative, but fits within the positive range of rep,
// return it negated
if (mantissa >= -std::numeric_limits<rep>::max())
return -mantissa;
// If the mantissa doesn't fit within the positive range, convert to
// int128_t, negate that, and cast it back down to the internalrep
// In practice, this is only going to cover the case of
// std::numeric_limits<rep>::min().
int128_t temp = mantissa;
return static_cast<internalrep>(-temp);
// Cast to unsigned before negating to avoid undefined behavior
// when v == INT64_MIN (negating INT64_MIN in signed is UB)
return -static_cast<internalrep>(mantissa);
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal(MantissaRange const& range) const
{
auto exponent = exponent_;
bool const negative = mantissa_ < 0;
auto const sign = negative ? -1 : 1;
Rep mantissa = static_cast<Rep>(sign * mantissa_);
auto const referenceMin = range.referenceMin;
auto const minMantissa = range.min;
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
{
// Ensure the mantissa has the correct number of digits
mantissa *= 10;
--exponent;
XRPL_ASSERT_PARTS(
mantissa >= referenceMin && mantissa < referenceMin * 10,
"ripple::Number::toInternal()",
"Number is within reference range and has 'log' digits");
}
return {negative, mantissa, exponent};
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal() const
{
return toInternal(range_);
}
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "normalized" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(
bool negative,
Rep mantissa,
int exponent,
MantissaRange const* pRange)
{
if constexpr (std::is_same_v<
std::bool_constant<expectNormal>,
std::false_type>)
{
if (!pRange)
throw std::runtime_error("Missing range to Number::fromInternal!");
auto const& range = *pRange;
auto const maxMantissa = range.max;
auto const minMantissa = range.min;
XRPL_ASSERT_PARTS(
mantissa >= minMantissa,
"ripple::Number::fromInternal",
"mantissa large enough");
if (mantissa > maxMantissa || mantissa < minMantissa)
{
normalize(negative, mantissa, exponent, range.min, maxMantissa);
}
XRPL_ASSERT_PARTS(
mantissa >= minMantissa && mantissa <= maxMantissa,
"ripple::Number::fromInternal",
"mantissa in range");
}
auto const sign = negative ? -1 : 1;
mantissa_ = sign * static_cast<rep>(mantissa);
exponent_ = exponent;
XRPL_ASSERT_PARTS(
(pRange && isnormal(*pRange)) || isnormal(),
"ripple::Number::fromInternal",
"Number is normalized");
}
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all in
* their valid ranges.
*
* If "normalized" is false, the values are expected to be "near normalized",
* meaning that the mantissa has to be modified at most once to bring it back
* into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(bool negative, Rep mantissa, int exponent)
{
MantissaRange const* pRange = nullptr;
if constexpr (std::is_same_v<
std::bool_constant<expectNormal>,
std::false_type>)
{
pRange = &Number::range_.get();
}
fromInternal(negative, mantissa, exponent, pRange);
}
constexpr Number
@@ -365,7 +477,7 @@ Number::oneSmall()
{
return Number{
false,
Number::smallRange.min,
Number::smallRange.referenceMin,
-Number::smallRange.log,
Number::unchecked{}};
};
@@ -377,7 +489,7 @@ Number::oneLarge()
{
return Number{
false,
Number::largeRange.min,
Number::largeRange.referenceMin,
-Number::largeRange.log,
Number::unchecked{}};
};
@@ -385,106 +497,91 @@ Number::oneLarge()
constexpr Number oneLrg = Number::oneLarge();
Number
Number::one()
Number::one(MantissaRange const& range)
{
if (&range_.get() == &smallRange)
if (&range == &smallRange)
return oneSml;
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
return oneLrg;
}
Number
Number::one()
{
return one(range_);
}
// Use the member names in this static function for now so the diff is cleaner
// TODO: Rename the function parameters to get rid of the "_" suffix
template <class T>
void
doNormalize(
bool& negative,
T& mantissa_,
int& exponent_,
T& mantissa,
int& exponent,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa)
{
auto constexpr minExponent = Number::minExponent;
auto constexpr maxExponent = Number::maxExponent;
auto constexpr maxRep = Number::maxRep;
using Guard = Number::Guard;
constexpr Number zero = Number{};
if (mantissa_ == 0)
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
{
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
return;
}
auto m = mantissa_;
while ((m < minMantissa) && (exponent_ > minExponent))
auto m = mantissa;
while ((m < minMantissa) && (exponent > minExponent))
{
m *= 10;
--exponent_;
--exponent;
}
Guard g;
if (negative)
g.set_negative();
while (m > maxMantissa)
{
if (exponent_ >= maxExponent)
if (exponent >= maxExponent)
throw std::overflow_error("Number::normalize 1");
g.push(m % 10);
m /= 10;
++exponent_;
++exponent;
}
if ((exponent_ < minExponent) || (m < minMantissa))
if ((exponent < minExponent) || (m == 0))
{
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
return;
}
// When using the largeRange, "m" needs fit within an int64, even if
// the final mantissa_ is going to end up larger to fit within the
// MantissaRange. Cut it down here so that the rounding will be done while
// it's smaller.
//
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
// so "m" will be modified to 990,000,000,000,012,345. Then that value
// will be rounded to 990,000,000,000,012,345 or
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
// mantissa_ will be "m*10" so it fits within the range, and end up as
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
// mantissa() will return mantissa_ / 10, and exponent() will return
// exponent_ + 1.
if (m > maxRep)
{
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1.5");
g.push(m % 10);
m /= 10;
++exponent_;
}
// Before modification, m should be within the min/max range. After
// modification, it must be less than maxRep. In other words, the original
// value should have been no more than maxRep * 10.
// (maxRep * 10 > maxMantissa)
XRPL_ASSERT_PARTS(
m <= maxRep,
m <= maxMantissa,
"xrpl::doNormalize",
"intermediate mantissa fits in int64");
mantissa_ = m;
mantissa = m;
g.doRoundUp(
negative,
mantissa_,
exponent_,
mantissa,
exponent,
minMantissa,
maxMantissa,
"Number::normalize 2");
XRPL_ASSERT_PARTS(
mantissa_ >= minMantissa && mantissa_ <= maxMantissa,
mantissa >= minMantissa && mantissa <= maxMantissa,
"xrpl::doNormalize",
"final mantissa fits in range");
XRPL_ASSERT_PARTS(
exponent >= minExponent && exponent <= maxExponent,
"xrpl::doNormalize",
"final exponent fits in range");
}
template <>
@@ -523,11 +620,20 @@ Number::normalize<unsigned long>(
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
}
void
Number::normalize(MantissaRange const& range)
{
auto [negative, mantissa, exponent] = toInternal(range);
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
void
Number::normalize()
{
auto const& range = range_.get();
normalize(negative_, mantissa_, exponent_, range.min, range.max);
normalize(range_);
}
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
@@ -537,24 +643,33 @@ Number
Number::shiftExponent(int exponentDelta) const
{
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
auto const newExponent = exponent_ + exponentDelta;
if (newExponent >= maxExponent)
Number result = *this;
result.exponent_ += exponentDelta;
if (result.exponent_ >= maxExponent)
throw std::overflow_error("Number::shiftExponent");
if (newExponent < minExponent)
if (result.exponent_ < minExponent)
{
return Number{};
}
Number const result{negative_, mantissa_, newExponent, unchecked{}};
XRPL_ASSERT_PARTS(
result.isnormal(),
"xrpl::Number::shiftExponent",
"result is normalized");
return result;
}
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
{
auto const& range = range_.get();
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
Number&
Number::operator+=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
return *this;
@@ -570,7 +685,7 @@ Number::operator+=(Number const& y)
}
XRPL_ASSERT(
isnormal() && y.isnormal(),
isnormal(range) && y.isnormal(range),
"xrpl::Number::operator+=(Number) : is normal");
// *n = negative
// *m = mantissa
@@ -578,13 +693,10 @@ Number::operator+=(Number const& y)
// Need to use uint128_t, because large mantissas can overflow when added
// together.
bool xn = negative_;
uint128_t xm = mantissa_;
auto xe = exponent_;
auto [xn, xm, xe] = toInternal<uint128_t>(range);
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
bool yn = y.negative_;
uint128_t ym = y.mantissa_;
auto ye = y.exponent_;
Guard g;
if (xe < ye)
{
@@ -609,14 +721,13 @@ Number::operator+=(Number const& y)
} while (xe > ye);
}
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
if (xn == yn)
{
xm += ym;
if (xm > maxMantissa || xm > maxRep)
if (xm > maxMantissa)
{
g.push(xm % 10);
xm /= 10;
@@ -637,7 +748,7 @@ Number::operator+=(Number const& y)
xe = ye;
xn = yn;
}
while (xm < minMantissa && xm * 10 <= maxRep)
while (xm < minMantissa)
{
xm *= 10;
xm -= g.pop();
@@ -646,10 +757,8 @@ Number::operator+=(Number const& y)
g.doRoundDown(xn, xm, xe, minMantissa);
}
negative_ = xn;
mantissa_ = static_cast<internalrep>(xm);
exponent_ = xe;
normalize();
normalize(xn, xm, xe, minMantissa, maxMantissa);
fromInternal(xn, xm, xe, &range);
return *this;
}
@@ -684,6 +793,8 @@ divu10(uint128_t& u)
Number&
Number::operator*=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (*this == zero)
return *this;
@@ -697,15 +808,11 @@ Number::operator*=(Number const& y)
// *m = mantissa
// *e = exponent
bool xn = negative_;
auto [xn, xm, xe] = toInternal(range);
int xs = xn ? -1 : 1;
internalrep xm = mantissa_;
auto xe = exponent_;
bool yn = y.negative_;
auto [yn, ym, ye] = y.toInternal(range);
int ys = yn ? -1 : 1;
internalrep ym = y.mantissa_;
auto ye = y.exponent_;
auto zm = uint128_t(xm) * uint128_t(ym);
auto ze = xe + ye;
@@ -715,11 +822,10 @@ Number::operator*=(Number const& y)
if (zn)
g.set_negative();
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
while (zm > maxMantissa || zm > maxRep)
while (zm > maxMantissa)
{
// The following is optimization for:
// g.push(static_cast<unsigned>(zm % 10));
@@ -736,17 +842,17 @@ Number::operator*=(Number const& y)
minMantissa,
maxMantissa,
"Number::multiplication overflow : exponent is " + std::to_string(xe));
negative_ = zn;
mantissa_ = xm;
exponent_ = xe;
normalize();
normalize(zn, xm, xe, minMantissa, maxMantissa);
fromInternal(zn, xm, xe, &range);
return *this;
}
Number&
Number::operator/=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
throw std::overflow_error("Number: divide by 0");
@@ -759,17 +865,12 @@ Number::operator/=(Number const& y)
// *m = mantissa
// *e = exponent
bool np = negative_;
auto [np, nm, ne] = toInternal(range);
int ns = (np ? -1 : 1);
auto nm = mantissa_;
auto ne = exponent_;
bool dp = y.negative_;
auto [dp, dm, de] = y.toInternal(range);
int ds = (dp ? -1 : 1);
auto dm = y.mantissa_;
auto de = y.exponent_;
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
@@ -781,7 +882,7 @@ Number::operator/=(Number const& y)
// f can be up to 10^(38-19) = 10^19 safely
static_assert(smallRange.log == 15);
static_assert(largeRange.log == 18);
bool small = Number::getMantissaScale() == MantissaRange::small;
bool small = range.scale == MantissaRange::small;
uint128_t const f =
small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
XRPL_ASSERT_PARTS(
@@ -833,11 +934,9 @@ Number::operator/=(Number const& y)
}
}
normalize(zn, zm, ze, minMantissa, maxMantissa);
negative_ = zn;
mantissa_ = static_cast<internalrep>(zm);
exponent_ = ze;
fromInternal(zn, zm, ze, &range);
XRPL_ASSERT_PARTS(
isnormal(), "xrpl::Number::operator/=", "result is normalized");
isnormal(range), "xrpl::Number::operator/=", "result is normalized");
return *this;
}
@@ -849,7 +948,7 @@ Number::operator rep() const
Guard g;
if (drops != 0)
{
if (negative_)
if (drops < 0)
{
g.set_negative();
drops = -drops;
@@ -861,7 +960,7 @@ Number::operator rep() const
}
for (; offset > 0; --offset)
{
if (drops > maxRep / 10)
if (drops >= largeRange.min)
throw std::overflow_error("Number::operator rep() overflow");
drops *= 10;
}
@@ -891,20 +990,22 @@ Number::truncate() const noexcept
std::string
to_string(Number const& amount)
{
auto const& range = Number::range_.get();
// keep full internal accuracy, but make more human friendly if possible
constexpr Number zero = Number{};
if (amount == zero)
return "0";
auto exponent = amount.exponent_;
auto mantissa = amount.mantissa_;
bool const negative = amount.negative_;
// The mantissa must have a set number of decimal places for this to work
auto [negative, mantissa, exponent] = amount.toInternal(range);
// Use scientific notation for exponents that are too small or too large
auto const rangeLog = Number::mantissaLog();
if (((exponent != 0) &&
auto const rangeLog = range.log;
if (((exponent != 0 && amount.exponent() != 0) &&
((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
{
// Remove trailing zeroes from the mantissa.
while (mantissa != 0 && mantissa % 10 == 0 &&
exponent < Number::maxExponent)
{
@@ -913,8 +1014,11 @@ to_string(Number const& amount)
}
std::string ret = negative ? "-" : "";
ret.append(std::to_string(mantissa));
ret.append(1, 'e');
ret.append(std::to_string(exponent));
if (exponent != 0)
{
ret.append(1, 'e');
ret.append(std::to_string(exponent));
}
return ret;
}
@@ -1003,20 +1107,11 @@ power(Number const& f, unsigned n)
return r;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
Number::root(MantissaRange const& range, Number f, unsigned d)
{
constexpr Number zero = Number{};
auto const one = Number::one();
auto const one = Number::one(range);
if (f == one || d == 1)
return f;
@@ -1033,22 +1128,30 @@ root(Number f, unsigned d)
if (f == zero)
return f;
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
auto const [e, di] = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that the scale change (e) is a
// multiple of the root (d)
auto e = exponent + range.log + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
return std::make_tuple(e, di);
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(
f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
XRPL_ASSERT_PARTS(
f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
bool neg = false;
if (f < zero)
{
@@ -1082,17 +1185,34 @@ root(Number f, unsigned d)
// return r * 10^(e/d) to reverse scaling
auto const result = r.shiftExponent(e / di);
XRPL_ASSERT_PARTS(
result.isnormal(),
result.isnormal(range),
"xrpl::root(Number, unsigned)",
"result is normalized");
return result;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
{
auto const& range = Number::range_.get();
return Number::root(range, f, d);
}
Number
root2(Number f)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one();
auto const one = Number::one(range);
if (f == one)
return f;
@@ -1101,12 +1221,19 @@ root2(Number f)
if (f == zero)
return f;
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
auto const e = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that f's exponent is a
// multiple of d
auto e = exponent + range.log + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
return e;
}();
XRPL_ASSERT_PARTS(
f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
auto const D = 105;
@@ -1129,7 +1256,7 @@ root2(Number f)
// return r * 10^(e/2) to reverse scaling
auto const result = r.shiftExponent(e / 2);
XRPL_ASSERT_PARTS(
result.isnormal(), "xrpl::root2(Number)", "result is normalized");
result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
return result;
}
@@ -1139,8 +1266,10 @@ root2(Number f)
Number
power(Number const& f, unsigned n, unsigned d)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one();
auto const one = Number::one(range);
if (f == one)
return f;
@@ -1162,7 +1291,7 @@ power(Number const& f, unsigned n, unsigned d)
d /= g;
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
throw std::overflow_error("Number::power nan");
return root(power(f, n), d);
return Number::root(range, power(f, n), d);
}
} // namespace ripple

View File

@@ -51,9 +51,10 @@ public:
test_limits()
{
auto const scale = Number::getMantissaScale();
testcase << "test_limits " << to_string(scale);
bool caught = false;
auto const minMantissa = Number::minMantissa();
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
bool caught = false;
try
{
Number x =
@@ -81,8 +82,9 @@ public:
Number{},
__LINE__);
test(
// Use 1501 to force rounding up
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
Number{false, 1'500, 32000, Number::normalized{}},
Number{false, 1'501, 32000, Number::normalized{}},
Number{false, minMantissa + 2, 32003, Number::normalized{}},
__LINE__);
// 9,223,372,036,854,775,808
@@ -217,12 +219,12 @@ public:
9'999'999'999'999'999'990ULL,
-19,
Number::normalized{}}},
{Number{Number::maxRep},
{Number{Number::largestMantissa},
Number{6, -1},
Number{Number::maxRep / 10, 1}},
{Number{Number::maxRep - 1},
Number{Number::largestMantissa / 10, 1}},
{Number{Number::largestMantissa - 1},
Number{1, 0},
Number{Number::maxRep}},
Number{Number::largestMantissa}},
// Test extremes
{
// Each Number operand rounds up, so the actual mantissa is
@@ -240,11 +242,30 @@ public:
Number{2, 19},
},
{
// Does not round. Mantissas are going to be > maxRep, so if
// added together as uint64_t's, the result will overflow.
// With addition using uint128_t, there's no problem. After
// normalizing, the resulting mantissa ends up less than
// maxRep.
// Does not round. Mantissas are going to be >
// largestMantissa, so if added together as uint64_t's, the
// result will overflow. With addition using uint128_t,
// there's no problem. After normalizing, the resulting
// mantissa ends up less than largestMantissa.
Number{
false,
Number::largestMantissa,
0,
Number::normalized{}},
Number{
false,
Number::largestMantissa,
0,
Number::normalized{}},
Number{
false,
Number::largestMantissa * 2,
0,
Number::normalized{}},
},
{
// These mantissas round down, so adding them together won't
// have any consequences.
Number{
false,
9'999'999'999'999'999'990ULL,
@@ -371,16 +392,24 @@ public:
{Number{1'000'000'000'000'000'001, -18},
Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'000, -36}},
{Number{Number::maxRep},
{Number{Number::largestMantissa},
Number{6, -1},
Number{Number::maxRep - 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
Number{Number::largestMantissa - 1}},
{Number{
false,
Number::largestMantissa + 1,
0,
Number::normalized{}},
Number{1, 0},
Number{Number::maxRep / 10 + 1, 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
Number{Number::largestMantissa / 10 + 1, 1}},
{Number{
false,
Number::largestMantissa + 1,
0,
Number::normalized{}},
Number{3, 0},
Number{Number::maxRep}},
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
Number{Number::largestMantissa}},
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
});
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
@@ -403,14 +432,16 @@ public:
auto const scale = Number::getMantissaScale();
testcase << "test_mul " << to_string(scale);
using Case = std::tuple<Number, Number, Number>;
// Case: Factor 1, Factor 2, Expected product, Line number
using Case = std::tuple<Number, Number, Number, int>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
for (auto const& [x, y, z, line] : c)
{
auto const result = x * y;
std::stringstream ss;
ss << x << " * " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str());
BEAST_EXPECTS(
result == z, ss.str() + " line: " + std::to_string(line));
}
};
auto tests = [&](auto const& cSmall, auto const& cLarge) {
@@ -420,78 +451,105 @@ public:
test(cLarge);
};
auto const maxMantissa = Number::maxMantissa();
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
auto const cSmall = std::to_array<Case>({
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15}},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14}},
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Maximum mantissa range
{Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'998, 16}},
Number{9'999'999'999'999'998, 16},
__LINE__},
});
auto const cLarge = std::to_array<Case>({
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18}},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9'999'999'999'999'999'579ULL,
-18,
Number::normalized{}}},
Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18}},
Number{2000000000000000001, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18}},
Number{-1999999999999999998, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18}},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0}},
// Maximum mantissa range - rounds up to 1e19
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds up to 1e19
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum actual mantissa range - same as int64 range
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{1, 38}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
// Maximum int64 range
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'85, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -500,76 +558,100 @@ public:
<< " towards_zero";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}},
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15}},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15}},
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0}}});
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18}},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9999999999999999579ULL,
-18,
Number::normalized{}}},
Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0}},
Number{2, 0},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18}},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18}},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false,
maxMantissa / 10 - 1,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}}},
Number::normalized{}},
__LINE__},
// Maximum actual mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'84, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -578,76 +660,100 @@ public:
<< " downward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}},
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15}},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15}},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15}},
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0}}});
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18}},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18}},
Number{1999999999999999861, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9'999'999'999'999'999'579ULL,
-18,
Number::normalized{}}},
Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0}},
Number{2, 0},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18}},
Number{-1999999999999999998, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18}},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10-1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false,
maxMantissa / 10 - 1,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}}},
Number::normalized{}},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'84, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -656,68 +762,91 @@ public:
<< " upward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}},
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15}},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15}},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14}},
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0}}});
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}},
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18}},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18}},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{999999999999999958, -17}},
Number{999999999999999958, -17},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0}},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18}},
Number{2000000000000000001, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18}},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{2, 0}},
Number{2, 0},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{1000000000000000001, -17}},
// Maximum mantissa range - rounds up to minMantissa*10
// 1e19*1e19=1e38
Number{1000000000000000001, -17},
__LINE__},
// Maximum internal mantissa range - rounds up to
// minMantissa*10 1e19*1e19=1e38
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{1, 38}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'85, 19}},
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
@@ -990,6 +1119,12 @@ public:
};
*/
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
auto const cSmall = std::to_array<Case>(
{{Number{2}, 2, Number{1414213562373095049, -18}},
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
@@ -1001,17 +1136,17 @@ public:
{Number{0}, 5, Number{0}},
{Number{5625, -4}, 2, Number{75, -2}}});
auto const cLarge = std::to_array<Case>({
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
2,
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
2,
Number{
false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
{Number{Number::maxRep},
{Number{Number::largestMantissa},
2,
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
{Number{Number::maxRep},
{Number{Number::largestMantissa},
4,
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
});
@@ -1061,6 +1196,9 @@ public:
}
};
auto const maxInternalMantissa =
power(10, Number::mantissaLog()) * 10 - 1;
auto const cSmall = std::to_array<Number>({
Number{2},
Number{2'000'000},
@@ -1070,7 +1208,10 @@ public:
Number{5, -1},
Number{0},
Number{5625, -4},
Number{Number::maxRep},
Number{Number::largestMantissa},
maxInternalMantissa,
Number{Number::minMantissa(), 0, Number::unchecked{}},
Number{Number::maxMantissa(), 0, Number::unchecked{}},
});
test(cSmall);
bool caught = false;
@@ -1436,20 +1577,20 @@ public:
case MantissaRange::large:
// Test the edges
// ((exponent < -(28)) || (exponent > -(8)))))
test(Number::min(), "1e-32750");
test(Number::min(), "922337203685477581e-32768");
test(Number::max(), "9223372036854775807e32768");
test(Number::lowest(), "-9223372036854775807e32768");
{
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
test(
Number{false, maxMantissa, 0, Number::normalized{}},
"9999999999999999990");
"9223372036854775807");
test(
Number{true, maxMantissa, 0, Number::normalized{}},
"-9999999999999999990");
"-9223372036854775807");
test(
Number{std::numeric_limits<std::int64_t>::max(), 0},
@@ -1690,7 +1831,7 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() > 0);
Number const maxInt64{Number::maxRep};
Number const maxInt64{Number::largestMantissa};
BEAST_EXPECT(maxInt64.exponent() > 0);
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
BEAST_EXPECT(
@@ -1710,7 +1851,7 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() <= 0);
Number const maxInt64{Number::maxRep};
Number const maxInt64{Number::largestMantissa};
BEAST_EXPECT(maxInt64.exponent() <= 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
BEAST_EXPECT(
@@ -1718,16 +1859,247 @@ public:
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
Number const max =
Number{false, maxMantissa, 0, Number::normalized{}};
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT((
power(max, 2) ==
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
{
auto const maxInternalMantissa =
static_cast<std::uint64_t>(static_cast<std::int64_t>(
power(10, Number::mantissaLog()))) *
10 -
1;
// Rounds down to fit under 2^63
Number const max =
Number{false, maxInternalMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}}));
}
{
auto const maxMantissa = Number::maxMantissa();
Number const max =
Number{false, maxMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxMantissa);
BEAST_EXPECT(max.exponent() == 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{
false,
85'070'591'730'234'615'84,
19,
Number::normalized{}}));
}
}
}
void
testNormalizeToRange()
{
// Test edge-cases of normalizeToRange
auto const scale = Number::getMantissaScale();
testcase << "normalizeToRange " << to_string(scale);
auto test = [this](
Number const& n,
auto const rangeMin,
auto const rangeMax,
auto const expectedMantissa,
auto const expectedExponent,
auto const line) {
auto const normalized = n.normalizeToRange(rangeMin, rangeMax);
BEAST_EXPECTS(
normalized.first == expectedMantissa,
"Number " + to_string(n) + " scaled to " +
std::to_string(rangeMax) +
". Expected mantissa:" + std::to_string(expectedMantissa) +
", got: " + std::to_string(normalized.first) + " @ " +
std::to_string(line));
BEAST_EXPECTS(
normalized.second == expectedExponent,
"Number " + to_string(n) + " scaled to " +
std::to_string(rangeMax) +
". Expected exponent:" + std::to_string(expectedExponent) +
", got: " + std::to_string(normalized.second) + " @ " +
std::to_string(line));
};
std::int64_t constexpr iRangeMin = 100;
std::int64_t constexpr iRangeMax = 999;
std::uint64_t constexpr uRangeMin = 100;
std::uint64_t constexpr uRangeMax = 999;
constexpr static MantissaRange largeRange{MantissaRange::large};
std::int64_t constexpr iBigMin = largeRange.min;
std::int64_t constexpr iBigMax = largeRange.max;
auto const testSuite = [&](Number const& n,
auto const expectedSmallMantissa,
auto const expectedSmallExponent,
auto const expectedLargeMantissa,
auto const expectedLargeExponent,
auto const line) {
test(
n,
iRangeMin,
iRangeMax,
expectedSmallMantissa,
expectedSmallExponent,
line);
test(
n,
iBigMin,
iBigMax,
expectedLargeMantissa,
expectedLargeExponent,
line);
// Only test non-negative. testing a negative number with an
// unsigned range will assert, and asserts can't be tested.
if (n.signum() >= 0)
{
test(
n,
uRangeMin,
uRangeMax,
expectedSmallMantissa,
expectedSmallExponent,
line);
test(
n,
largeRange.min,
largeRange.max,
expectedLargeMantissa,
expectedLargeExponent,
line);
}
};
{
// zero
Number const n{0};
testSuite(
n,
0,
std::numeric_limits<int>::lowest(),
0,
std::numeric_limits<int>::lowest(),
__LINE__);
}
{
// Small positive number
Number const n{2};
testSuite(n, 200, -2, 2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Negative number
Number const n{-2};
testSuite(n, -200, -2, -2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Biggest valid mantissa
Number const n{Number::largestMantissa, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, Number::largestMantissa, 0, __LINE__);
}
{
// Biggest valid mantissa + 1
Number const n{
Number::largestMantissa + 1, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 2
Number const n{
Number::largestMantissa + 2, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 3
Number const n{
Number::largestMantissa + 3, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min
Number const n{std::numeric_limits<std::int64_t>::min(), 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min + 1
Number const n{std::numeric_limits<std::int64_t>::min() + 1, 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -9'223'372'036'854'775'807, 0, __LINE__);
}
{
// int64 min - 1
// Need to cast to uint, even though we're dealing with a negative
// number to avoid overflow and UB
Number const n{
true,
-static_cast<std::uint64_t>(
std::numeric_limits<std::int64_t>::min()) +
1,
0,
Number::normalized{}};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
}
@@ -1758,6 +2130,7 @@ public:
test_truncate();
testRounding();
testInt64();
testNormalizeToRange();
}
}
};