mirror of
https://github.com/XRPLF/rippled.git
synced 2026-02-02 21:15:25 +00:00
Reduce expensive(?) accesses to thread_local MantissaRange
This commit is contained in:
@@ -494,6 +494,9 @@ public:
|
||||
friend Number
|
||||
root2(Number f);
|
||||
|
||||
friend Number
|
||||
power(Number const& f, unsigned n, unsigned d);
|
||||
|
||||
// Thread local rounding control. Default is to_nearest
|
||||
enum rounding_mode { to_nearest, towards_zero, downward, upward };
|
||||
static rounding_mode
|
||||
@@ -589,6 +592,17 @@ private:
|
||||
// changing the values inside the range.
|
||||
static thread_local std::reference_wrapper<MantissaRange const> range_;
|
||||
|
||||
// And one is needed because it needs to choose between oneSmall and
|
||||
// oneLarge based on the current range
|
||||
static Number
|
||||
one(MantissaRange const& range);
|
||||
|
||||
static Number
|
||||
root(MantissaRange const& range, Number f, unsigned d);
|
||||
|
||||
void
|
||||
normalize(MantissaRange const& range);
|
||||
|
||||
void
|
||||
normalize();
|
||||
|
||||
@@ -616,6 +630,9 @@ private:
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa);
|
||||
|
||||
bool
|
||||
isnormal(MantissaRange const& range) const noexcept;
|
||||
|
||||
bool
|
||||
isnormal() const noexcept;
|
||||
|
||||
@@ -632,6 +649,15 @@ private:
|
||||
static internalrep
|
||||
externalToInternal(rep mantissa);
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal(MantissaRange const& range) const;
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
@@ -641,6 +667,26 @@ private:
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal() const;
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <
|
||||
bool expectNormal = true,
|
||||
detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(
|
||||
bool negative,
|
||||
Rep mantissa,
|
||||
int exponent,
|
||||
MantissaRange const* pRange);
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
@@ -822,9 +868,8 @@ Number::lowest() noexcept
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal() const noexcept
|
||||
Number::isnormal(MantissaRange const& range) const noexcept
|
||||
{
|
||||
MantissaRange const& range = range_;
|
||||
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
|
||||
|
||||
return *this == Number{} ||
|
||||
@@ -832,6 +877,12 @@ Number::isnormal() const noexcept
|
||||
minExponent <= exponent_ && exponent_ <= maxExponent);
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal() const noexcept
|
||||
{
|
||||
return isnormal(range_);
|
||||
}
|
||||
|
||||
template <Integral64 T>
|
||||
std::pair<T, int>
|
||||
Number::normalizeToRange(T minMantissa, T maxMantissa) const
|
||||
|
||||
@@ -360,14 +360,13 @@ Number::externalToInternal(rep mantissa)
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal() const
|
||||
Number::toInternal(MantissaRange const& range) const
|
||||
{
|
||||
auto exponent = exponent_;
|
||||
bool const negative = mantissa_ < 0;
|
||||
auto const sign = negative ? -1 : 1;
|
||||
Rep mantissa = static_cast<Rep>(sign * mantissa_);
|
||||
|
||||
auto const& range = Number::range_.get();
|
||||
auto const referenceMin = range.referenceMin;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
@@ -385,25 +384,43 @@ Number::toInternal() const
|
||||
return {negative, mantissa, exponent};
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal() const
|
||||
{
|
||||
return toInternal(range_);
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all in
|
||||
* their valid ranges.
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near normalized",
|
||||
* meaning that the mantissa has to be modified at most once to bring it back
|
||||
* into range.
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(bool negative, Rep mantissa, int exponent)
|
||||
Number::fromInternal(
|
||||
bool negative,
|
||||
Rep mantissa,
|
||||
int exponent,
|
||||
MantissaRange const* pRange)
|
||||
{
|
||||
if constexpr (std::is_same_v<
|
||||
std::bool_constant<expectNormal>,
|
||||
std::false_type>)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
if (!pRange)
|
||||
throw std::runtime_error("Missing range to Number::fromInternal!");
|
||||
auto const& range = *pRange;
|
||||
|
||||
auto const maxMantissa = range.max;
|
||||
auto const minMantissa = range.min;
|
||||
@@ -430,7 +447,34 @@ Number::fromInternal(bool negative, Rep mantissa, int exponent)
|
||||
exponent_ = exponent;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
isnormal(), "ripple::Number::fromInternal", "Number is normalized");
|
||||
(pRange && isnormal(*pRange)) || isnormal(),
|
||||
"ripple::Number::fromInternal",
|
||||
"Number is normalized");
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all in
|
||||
* their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near normalized",
|
||||
* meaning that the mantissa has to be modified at most once to bring it back
|
||||
* into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(bool negative, Rep mantissa, int exponent)
|
||||
{
|
||||
MantissaRange const* pRange = nullptr;
|
||||
if constexpr (std::is_same_v<
|
||||
std::bool_constant<expectNormal>,
|
||||
std::false_type>)
|
||||
{
|
||||
pRange = &Number::range_.get();
|
||||
}
|
||||
|
||||
fromInternal(negative, mantissa, exponent, pRange);
|
||||
}
|
||||
|
||||
constexpr Number
|
||||
@@ -457,13 +501,19 @@ Number::oneLarge()
|
||||
|
||||
constexpr Number oneLrg = Number::oneLarge();
|
||||
|
||||
Number
|
||||
Number::one(MantissaRange const& range)
|
||||
{
|
||||
if (&range == &smallRange)
|
||||
return oneSml;
|
||||
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
|
||||
return oneLrg;
|
||||
}
|
||||
|
||||
Number
|
||||
Number::one()
|
||||
{
|
||||
if (&range_.get() == &smallRange)
|
||||
return oneSml;
|
||||
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
|
||||
return oneLrg;
|
||||
return one(range_);
|
||||
}
|
||||
|
||||
// Use the member names in this static function for now so the diff is cleaner
|
||||
@@ -576,15 +626,19 @@ Number::normalize<unsigned long>(
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize()
|
||||
Number::normalize(MantissaRange const& range)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
auto [negative, mantissa, exponent] = toInternal();
|
||||
auto [negative, mantissa, exponent] = toInternal(range);
|
||||
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
|
||||
fromInternal(negative, mantissa, exponent);
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize()
|
||||
{
|
||||
normalize(range_);
|
||||
}
|
||||
|
||||
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
|
||||
@@ -613,12 +667,14 @@ Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
fromInternal(negative, mantissa, exponent);
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator+=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
return *this;
|
||||
@@ -634,7 +690,7 @@ Number::operator+=(Number const& y)
|
||||
}
|
||||
|
||||
XRPL_ASSERT(
|
||||
isnormal() && y.isnormal(),
|
||||
isnormal(range) && y.isnormal(range),
|
||||
"xrpl::Number::operator+=(Number) : is normal");
|
||||
// *n = negative
|
||||
// *m = mantissa
|
||||
@@ -642,9 +698,9 @@ Number::operator+=(Number const& y)
|
||||
|
||||
// Need to use uint128_t, because large mantissas can overflow when added
|
||||
// together.
|
||||
auto [xn, xm, xe] = toInternal<uint128_t>();
|
||||
auto [xn, xm, xe] = toInternal<uint128_t>(range);
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal<uint128_t>();
|
||||
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
|
||||
|
||||
Guard g;
|
||||
if (xe < ye)
|
||||
@@ -670,7 +726,6 @@ Number::operator+=(Number const& y)
|
||||
} while (xe > ye);
|
||||
}
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
@@ -708,7 +763,7 @@ Number::operator+=(Number const& y)
|
||||
}
|
||||
|
||||
normalize(xn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(xn, xm, xe);
|
||||
fromInternal(xn, xm, xe, &range);
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -743,6 +798,8 @@ divu10(uint128_t& u)
|
||||
Number&
|
||||
Number::operator*=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (*this == zero)
|
||||
return *this;
|
||||
@@ -756,10 +813,10 @@ Number::operator*=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
auto [xn, xm, xe] = toInternal();
|
||||
auto [xn, xm, xe] = toInternal(range);
|
||||
int xs = xn ? -1 : 1;
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal();
|
||||
auto [yn, ym, ye] = y.toInternal(range);
|
||||
int ys = yn ? -1 : 1;
|
||||
|
||||
auto zm = uint128_t(xm) * uint128_t(ym);
|
||||
@@ -770,7 +827,6 @@ Number::operator*=(Number const& y)
|
||||
if (zn)
|
||||
g.set_negative();
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
@@ -793,13 +849,15 @@ Number::operator*=(Number const& y)
|
||||
"Number::multiplication overflow : exponent is " + std::to_string(xe));
|
||||
|
||||
normalize(zn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(zn, xm, xe);
|
||||
fromInternal(zn, xm, xe, &range);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator/=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
throw std::overflow_error("Number: divide by 0");
|
||||
@@ -812,13 +870,12 @@ Number::operator/=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
auto [np, nm, ne] = toInternal();
|
||||
auto [np, nm, ne] = toInternal(range);
|
||||
int ns = (np ? -1 : 1);
|
||||
|
||||
auto [dp, dm, de] = y.toInternal();
|
||||
auto [dp, dm, de] = y.toInternal(range);
|
||||
int ds = (dp ? -1 : 1);
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
@@ -830,7 +887,7 @@ Number::operator/=(Number const& y)
|
||||
// f can be up to 10^(38-19) = 10^19 safely
|
||||
static_assert(smallRange.log == 15);
|
||||
static_assert(largeRange.log == 18);
|
||||
bool small = Number::getMantissaScale() == MantissaRange::small;
|
||||
bool small = range.scale == MantissaRange::small;
|
||||
uint128_t const f =
|
||||
small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
|
||||
XRPL_ASSERT_PARTS(
|
||||
@@ -882,9 +939,9 @@ Number::operator/=(Number const& y)
|
||||
}
|
||||
}
|
||||
normalize(zn, zm, ze, minMantissa, maxMantissa);
|
||||
fromInternal(zn, zm, ze);
|
||||
fromInternal(zn, zm, ze, &range);
|
||||
XRPL_ASSERT_PARTS(
|
||||
isnormal(), "xrpl::Number::operator/=", "result is normalized");
|
||||
isnormal(range), "xrpl::Number::operator/=", "result is normalized");
|
||||
|
||||
return *this;
|
||||
}
|
||||
@@ -938,16 +995,18 @@ Number::truncate() const noexcept
|
||||
std::string
|
||||
to_string(Number const& amount)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
// keep full internal accuracy, but make more human friendly if possible
|
||||
constexpr Number zero = Number{};
|
||||
if (amount == zero)
|
||||
return "0";
|
||||
|
||||
// The mantissa must have a set number of decimal places for this to work
|
||||
auto [negative, mantissa, exponent] = amount.toInternal();
|
||||
auto [negative, mantissa, exponent] = amount.toInternal(range);
|
||||
|
||||
// Use scientific notation for exponents that are too small or too large
|
||||
auto const rangeLog = Number::mantissaLog();
|
||||
auto const rangeLog = range.log;
|
||||
if (((exponent != 0 && amount.exponent() != 0) &&
|
||||
((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
|
||||
{
|
||||
@@ -1053,20 +1112,11 @@ power(Number const& f, unsigned n)
|
||||
return r;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
root(Number f, unsigned d)
|
||||
Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one();
|
||||
auto const one = Number::one(range);
|
||||
|
||||
if (f == one || d == 1)
|
||||
return f;
|
||||
@@ -1084,7 +1134,7 @@ root(Number f, unsigned d)
|
||||
return f;
|
||||
|
||||
auto const [e, di] = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal();
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that the scale change (e) is a
|
||||
// multiple of the root (d)
|
||||
@@ -1106,7 +1156,7 @@ root(Number f, unsigned d)
|
||||
XRPL_ASSERT_PARTS(
|
||||
e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
bool neg = false;
|
||||
if (f < zero)
|
||||
{
|
||||
@@ -1140,17 +1190,34 @@ root(Number f, unsigned d)
|
||||
// return r * 10^(e/d) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / di);
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(),
|
||||
result.isnormal(range),
|
||||
"xrpl::root(Number, unsigned)",
|
||||
"result is normalized");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
root(Number f, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
return Number::root(range, f, d);
|
||||
}
|
||||
|
||||
Number
|
||||
root2(Number f)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one();
|
||||
auto const one = Number::one(range);
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1160,7 +1227,7 @@ root2(Number f)
|
||||
return f;
|
||||
|
||||
auto const e = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal();
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that f's exponent is a
|
||||
// multiple of d
|
||||
@@ -1170,7 +1237,8 @@ root2(Number f)
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return e;
|
||||
}();
|
||||
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
|
||||
|
||||
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
|
||||
auto const D = 105;
|
||||
@@ -1193,7 +1261,7 @@ root2(Number f)
|
||||
// return r * 10^(e/2) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / 2);
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(), "xrpl::root2(Number)", "result is normalized");
|
||||
result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1203,8 +1271,10 @@ root2(Number f)
|
||||
Number
|
||||
power(Number const& f, unsigned n, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one();
|
||||
auto const one = Number::one(range);
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1226,7 +1296,7 @@ power(Number const& f, unsigned n, unsigned d)
|
||||
d /= g;
|
||||
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
|
||||
throw std::overflow_error("Number::power nan");
|
||||
return root(power(f, n), d);
|
||||
return Number::root(range, power(f, n), d);
|
||||
}
|
||||
|
||||
} // namespace ripple
|
||||
|
||||
Reference in New Issue
Block a user