Files
rippled/src/test/basics/Number_test.cpp
Ed Hennis 9a30e3e098 Add unit tests for normalizeToRange
- Steal changes from @pratik's #6150 to avoid UB
2026-01-28 17:28:27 -05:00

2141 lines
84 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2022 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <xrpl/basics/Number.h>
#include <xrpl/beast/unit_test.h>
#include <xrpl/protocol/IOUAmount.h>
#include <xrpl/protocol/STAmount.h>
#include <xrpl/protocol/SystemParameters.h>
#include <sstream>
#include <tuple>
namespace ripple {
class Number_test : public beast::unit_test::suite
{
public:
void
testZero()
{
testcase << "zero " << to_string(Number::getMantissaScale());
for (Number const& z : {Number{0, 0}, Number{0}})
{
BEAST_EXPECT(z.mantissa() == 0);
BEAST_EXPECT(z.exponent() == Number{}.exponent());
BEAST_EXPECT((z + z) == z);
BEAST_EXPECT((z - z) == z);
BEAST_EXPECT(z == -z);
}
}
void
test_limits()
{
auto const scale = Number::getMantissaScale();
auto const minMantissa = Number::minMantissa();
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
bool caught = false;
try
{
Number x =
Number{false, minMantissa * 10, 32768, Number::normalized{}};
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
auto test = [this](auto const& x, auto const& y, int line) {
auto const result = x == y;
std::stringstream ss;
ss << x << " == " << y << " -> " << (result ? "true" : "false");
expect(result, ss.str(), __FILE__, line);
};
test(
Number{false, minMantissa * 10, 32767, Number::normalized{}},
Number{false, minMantissa, 32768, Number::normalized{}},
__LINE__);
test(
Number{false, minMantissa, -32769, Number::normalized{}},
Number{},
__LINE__);
test(
// Use 1501 to force rounding up
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
Number{false, 1'501, 32000, Number::normalized{}},
Number{false, minMantissa + 2, 32003, Number::normalized{}},
__LINE__);
// 9,223,372,036,854,775,808
test(
Number{std::numeric_limits<std::int64_t>::min()},
scale == MantissaRange::small
? Number{-9'223'372'036'854'776, 3}
: Number{true, 9'223'372'036'854'775'808ULL, 0, Number::normalized{}},
__LINE__);
test(
Number{std::numeric_limits<std::int64_t>::min() + 1},
scale == MantissaRange::small ? Number{-9'223'372'036'854'776, 3}
: Number{-9'223'372'036'854'775'807},
__LINE__);
test(
Number{std::numeric_limits<std::int64_t>::max()},
Number{
scale == MantissaRange::small
? 9'223'372'036'854'776
: std::numeric_limits<std::int64_t>::max(),
18 - Number::mantissaLog()},
__LINE__);
caught = false;
try
{
[[maybe_unused]]
Number q =
Number{false, minMantissa, 32767, Number::normalized{}} * 100;
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
void
test_add()
{
auto const scale = Number::getMantissaScale();
testcase << "test_add " << to_string(scale);
using Case = std::tuple<Number, Number, Number>;
auto const cSmall = std::to_array<Case>(
{{Number{1'000'000'000'000'000, -15},
Number{6'555'555'555'555'555, -29},
Number{1'000'000'000'000'066, -15}},
{Number{-1'000'000'000'000'000, -15},
Number{-6'555'555'555'555'555, -29},
Number{-1'000'000'000'000'066, -15}},
{Number{-1'000'000'000'000'000, -15},
Number{6'555'555'555'555'555, -29},
Number{-9'999'999'999'999'344, -16}},
{Number{-6'555'555'555'555'555, -29},
Number{1'000'000'000'000'000, -15},
Number{9'999'999'999'999'344, -16}},
{Number{}, Number{5}, Number{5}},
{Number{5}, Number{}, Number{5}},
{Number{5'555'555'555'555'555, -32768},
Number{-5'555'555'555'555'554, -32768},
Number{0}},
{Number{-9'999'999'999'999'999, -31},
Number{1'000'000'000'000'000, -15},
Number{9'999'999'999'999'990, -16}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items from C
// with larger mantissa
{
{Number{1'000'000'000'000'000, -15},
Number{6'555'555'555'555'555, -29},
Number{1'000'000'000'000'065'556, -18}},
{Number{-1'000'000'000'000'000, -15},
Number{-6'555'555'555'555'555, -29},
Number{-1'000'000'000'000'065'556, -18}},
{Number{-1'000'000'000'000'000, -15},
Number{6'555'555'555'555'555, -29},
Number{
true,
9'999'999'999'999'344'444ULL,
-19,
Number::normalized{}}},
{Number{-6'555'555'555'555'555, -29},
Number{1'000'000'000'000'000, -15},
Number{
false,
9'999'999'999'999'344'444ULL,
-19,
Number::normalized{}}},
{Number{}, Number{5}, Number{5}},
{Number{5}, Number{}, Number{5}},
{Number{5'555'555'555'555'555'000, -32768},
Number{-5'555'555'555'555'554'000, -32768},
Number{0}},
{Number{-9'999'999'999'999'999, -31},
Number{1'000'000'000'000'000, -15},
Number{9'999'999'999'999'990, -16}},
// Items from cSmall expanded for the larger mantissa
{Number{1'000'000'000'000'000'000, -18},
Number{6'555'555'555'555'555'555, -35},
Number{1'000'000'000'000'000'066, -18}},
{Number{-1'000'000'000'000'000'000, -18},
Number{-6'555'555'555'555'555'555, -35},
Number{-1'000'000'000'000'000'066, -18}},
{Number{-1'000'000'000'000'000'000, -18},
Number{6'555'555'555'555'555'555, -35},
Number{
true,
9'999'999'999'999'999'344ULL,
-19,
Number::normalized{}}},
{Number{-6'555'555'555'555'555'555, -35},
Number{1'000'000'000'000'000'000, -18},
Number{
false,
9'999'999'999'999'999'344ULL,
-19,
Number::normalized{}}},
{Number{}, Number{5}, Number{5}},
{Number{5'555'555'555'555'555'555, -32768},
Number{-5'555'555'555'555'555'554, -32768},
Number{0}},
{Number{
true,
9'999'999'999'999'999'999ULL,
-37,
Number::normalized{}},
Number{1'000'000'000'000'000'000, -18},
Number{
false,
9'999'999'999'999'999'990ULL,
-19,
Number::normalized{}}},
{Number{Number::largestMantissa},
Number{6, -1},
Number{Number::largestMantissa / 10, 1}},
{Number{Number::largestMantissa - 1},
Number{1, 0},
Number{Number::largestMantissa}},
// Test extremes
{
// Each Number operand rounds up, so the actual mantissa is
// minMantissa
Number{
false,
9'999'999'999'999'999'999ULL,
0,
Number::normalized{}},
Number{
false,
9'999'999'999'999'999'999ULL,
0,
Number::normalized{}},
Number{2, 19},
},
{
// Does not round. Mantissas are going to be >
// largestMantissa, so if added together as uint64_t's, the
// result will overflow. With addition using uint128_t,
// there's no problem. After normalizing, the resulting
// mantissa ends up less than largestMantissa.
Number{
false,
Number::largestMantissa,
0,
Number::normalized{}},
Number{
false,
Number::largestMantissa,
0,
Number::normalized{}},
Number{
false,
Number::largestMantissa * 2,
0,
Number::normalized{}},
},
{
// These mantissas round down, so adding them together won't
// have any consequences.
Number{
false,
9'999'999'999'999'999'990ULL,
0,
Number::normalized{}},
Number{
false,
9'999'999'999'999'999'990ULL,
0,
Number::normalized{}},
Number{
false,
1'999'999'999'999'999'998ULL,
1,
Number::normalized{}},
},
});
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
{
auto const result = x + y;
std::stringstream ss;
ss << x << " + " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str());
}
};
if (scale == MantissaRange::small)
test(cSmall);
else
test(cLarge);
{
bool caught = false;
try
{
Number{
false, Number::maxMantissa(), 32768, Number::normalized{}} +
Number{
false,
Number::minMantissa(),
32767,
Number::normalized{}} *
5;
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
}
void
test_sub()
{
auto const scale = Number::getMantissaScale();
testcase << "test_sub " << to_string(scale);
using Case = std::tuple<Number, Number, Number>;
auto const cSmall = std::to_array<Case>(
{{Number{1'000'000'000'000'000, -15},
Number{6'555'555'555'555'555, -29},
Number{9'999'999'999'999'344, -16}},
{Number{6'555'555'555'555'555, -29},
Number{1'000'000'000'000'000, -15},
Number{-9'999'999'999'999'344, -16}},
{Number{1'000'000'000'000'000, -15},
Number{1'000'000'000'000'000, -15},
Number{0}},
{Number{1'000'000'000'000'000, -15},
Number{1'000'000'000'000'001, -15},
Number{-1'000'000'000'000'000, -30}},
{Number{1'000'000'000'000'001, -15},
Number{1'000'000'000'000'000, -15},
Number{1'000'000'000'000'000, -30}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items from C
// with larger mantissa
{
{Number{1'000'000'000'000'000, -15},
Number{6'555'555'555'555'555, -29},
Number{
false,
9'999'999'999'999'344'444ULL,
-19,
Number::normalized{}}},
{Number{6'555'555'555'555'555, -29},
Number{1'000'000'000'000'000, -15},
Number{
true,
9'999'999'999'999'344'444ULL,
-19,
Number::normalized{}}},
{Number{1'000'000'000'000'000, -15},
Number{1'000'000'000'000'000, -15},
Number{0}},
{Number{1'000'000'000'000'000, -15},
Number{1'000'000'000'000'001, -15},
Number{-1'000'000'000'000'000, -30}},
{Number{1'000'000'000'000'001, -15},
Number{1'000'000'000'000'000, -15},
Number{1'000'000'000'000'000, -30}},
// Items from cSmall expanded for the larger mantissa
{Number{1'000'000'000'000'000'000, -18},
Number{6'555'555'555'555'555'555, -32},
Number{
false,
9'999'999'999'999'344'444ULL,
-19,
Number::normalized{}}},
{Number{6'555'555'555'555'555'555, -32},
Number{1'000'000'000'000'000'000, -18},
Number{
true,
9'999'999'999'999'344'444ULL,
-19,
Number::normalized{}}},
{Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'000, -18},
Number{0}},
{Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'001, -18},
Number{-1'000'000'000'000'000'000, -36}},
{Number{1'000'000'000'000'000'001, -18},
Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'000, -36}},
{Number{Number::largestMantissa},
Number{6, -1},
Number{Number::largestMantissa - 1}},
{Number{
false,
Number::largestMantissa + 1,
0,
Number::normalized{}},
Number{1, 0},
Number{Number::largestMantissa / 10 + 1, 1}},
{Number{
false,
Number::largestMantissa + 1,
0,
Number::normalized{}},
Number{3, 0},
Number{Number::largestMantissa}},
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
});
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
{
auto const result = x - y;
std::stringstream ss;
ss << x << " - " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str());
}
};
if (scale == MantissaRange::small)
test(cSmall);
else
test(cLarge);
}
void
test_mul()
{
auto const scale = Number::getMantissaScale();
testcase << "test_mul " << to_string(scale);
// Case: Factor 1, Factor 2, Expected product, Line number
using Case = std::tuple<Number, Number, Number, int>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z, line] : c)
{
auto const result = x * y;
std::stringstream ss;
ss << x << " * " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(
result == z, ss.str() + " line: " + std::to_string(line));
}
};
auto tests = [&](auto const& cSmall, auto const& cLarge) {
if (scale == MantissaRange::small)
test(cSmall);
else
test(cLarge);
};
auto const maxMantissa = Number::maxMantissa();
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
auto const cSmall = std::to_array<Case>({
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__},
// Maximum mantissa range
{Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'998, 16},
__LINE__},
});
auto const cLarge = std::to_array<Case>({
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9'999'999'999'999'999'579ULL,
-18,
Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds up to 1e19
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum actual mantissa range - same as int64 range
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
// Maximum int64 range
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
Number::setround(Number::towards_zero);
testcase << "test_mul " << to_string(Number::getMantissaScale())
<< " towards_zero";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9999999999999999579ULL,
-18,
Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}},
__LINE__},
// Maximum actual mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
Number::setround(Number::downward);
testcase << "test_mul " << to_string(Number::getMantissaScale())
<< " downward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9'999'999'999'999'999'579ULL,
-18,
Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10-1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
Number::setround(Number::upward);
testcase << "test_mul " << to_string(Number::getMantissaScale())
<< " upward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{999999999999999958, -17},
__LINE__},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{2, 0},
__LINE__},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{1000000000000000001, -17},
__LINE__},
// Maximum internal mantissa range - rounds up to
// minMantissa*10 1e19*1e19=1e38
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
});
tests(cSmall, cLarge);
}
testcase << "test_mul " << to_string(Number::getMantissaScale())
<< " overflow";
{
bool caught = false;
try
{
Number{false, maxMantissa, 32768, Number::normalized{}} *
Number{
false,
Number::minMantissa() * 5,
32767,
Number::normalized{}};
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
}
void
test_div()
{
auto const scale = Number::getMantissaScale();
testcase << "test_div " << to_string(scale);
using Case = std::tuple<Number, Number, Number>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
{
auto const result = x / y;
std::stringstream ss;
ss << x << " / " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str());
}
};
auto const maxMantissa = Number::maxMantissa();
auto tests = [&](auto const& cSmall, auto const& cLarge) {
if (scale == MantissaRange::small)
test(cSmall);
else
test(cLarge);
};
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
auto const cSmall = std::to_array<Case>(
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'667, -16}},
{Number{-2}, Number{3}, Number{-6'666'666'666'666'667, -16}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428, -16}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'666'667, -19}},
{Number{-2},
Number{3},
Number{-6'666'666'666'666'666'667, -19}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428'571, -19}},
// Items from cSmall expanded for the larger mantissa, except
// duplicates.
{Number{1414213562373095049, -13},
Number{1414213562373095049, -13},
Number{1}},
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{1'000'000'000'000'000'000},
Number{false, maxMantissa, -18, Number::normalized{}}}});
tests(cSmall, cLarge);
}
testcase << "test_div " << to_string(Number::getMantissaScale())
<< " towards_zero";
Number::setround(Number::towards_zero);
{
auto const cSmall = std::to_array<Case>(
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'666, -16}},
{Number{-2}, Number{3}, Number{-6'666'666'666'666'666, -16}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428, -16}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'666'666, -19}},
{Number{-2},
Number{3},
Number{-6'666'666'666'666'666'666, -19}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428'571, -19}},
// Items from cSmall expanded for the larger mantissa, except
// duplicates.
{Number{1414213562373095049, -13},
Number{1414213562373095049, -13},
Number{1}},
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{1'000'000'000'000'000'000},
Number{false, maxMantissa, -18, Number::normalized{}}}});
tests(cSmall, cLarge);
}
testcase << "test_div " << to_string(Number::getMantissaScale())
<< " downward";
Number::setround(Number::downward);
{
auto const cSmall = std::to_array<Case>(
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'666, -16}},
{Number{-2}, Number{3}, Number{-6'666'666'666'666'667, -16}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428, -16}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'666'666, -19}},
{Number{-2},
Number{3},
Number{-6'666'666'666'666'666'667, -19}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428'571, -19}},
// Items from cSmall expanded for the larger mantissa, except
// duplicates.
{Number{1414213562373095049, -13},
Number{1414213562373095049, -13},
Number{1}},
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{1'000'000'000'000'000'000},
Number{false, maxMantissa, -18, Number::normalized{}}}});
tests(cSmall, cLarge);
}
testcase << "test_div " << to_string(Number::getMantissaScale())
<< " upward";
Number::setround(Number::upward);
{
auto const cSmall = std::to_array<Case>(
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'667, -16}},
{Number{-2}, Number{3}, Number{-6'666'666'666'666'666, -16}},
{Number{1}, Number{7}, Number{1'428'571'428'571'429, -16}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{{Number{1}, Number{2}, Number{5, -1}},
{Number{1}, Number{10}, Number{1, -1}},
{Number{1}, Number{-10}, Number{-1, -1}},
{Number{0}, Number{100}, Number{0}},
{Number{1414213562373095, -10},
Number{1414213562373095, -10},
Number{1}},
{Number{9'999'999'999'999'999},
Number{1'000'000'000'000'000},
Number{9'999'999'999'999'999, -15}},
{Number{2}, Number{3}, Number{6'666'666'666'666'666'667, -19}},
{Number{-2},
Number{3},
Number{-6'666'666'666'666'666'666, -19}},
{Number{1}, Number{7}, Number{1'428'571'428'571'428'572, -19}},
// Items from cSmall expanded for the larger mantissa, except
// duplicates.
{Number{1414213562373095049, -13},
Number{1414213562373095049, -13},
Number{1}},
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{1'000'000'000'000'000'000},
Number{false, maxMantissa, -18, Number::normalized{}}}});
tests(cSmall, cLarge);
}
testcase << "test_div " << to_string(Number::getMantissaScale())
<< " overflow";
bool caught = false;
try
{
Number{1000000000000000, -15} / Number{0};
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
void
test_root()
{
auto const scale = Number::getMantissaScale();
testcase << "test_root " << to_string(scale);
using Case = std::tuple<Number, unsigned, Number>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
{
auto const result = root(x, y);
std::stringstream ss;
ss << "root(" << x << ", " << y << ") = " << result
<< ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str());
}
};
/*
auto tests = [&](auto const& cSmall, auto const& cLarge) {
test(cSmall);
if (scale != MantissaRange::small)
test(cLarge);
};
*/
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
auto const cSmall = std::to_array<Case>(
{{Number{2}, 2, Number{1414213562373095049, -18}},
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
{Number{2, -30}, 2, Number{1414213562373095049, -33}},
{Number{-27}, 3, Number{-3}},
{Number{1}, 5, Number{1}},
{Number{-1}, 0, Number{1}},
{Number{5, -1}, 0, Number{0}},
{Number{0}, 5, Number{0}},
{Number{5625, -4}, 2, Number{75, -2}}});
auto const cLarge = std::to_array<Case>({
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
2,
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
2,
Number{
false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
{Number{Number::largestMantissa},
2,
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
{Number{Number::largestMantissa},
4,
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
});
test(cSmall);
if (Number::getMantissaScale() != MantissaRange::small)
{
NumberRoundModeGuard mg(Number::towards_zero);
test(cLarge);
}
bool caught = false;
try
{
(void)root(Number{-2}, 0);
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
caught = false;
try
{
(void)root(Number{-2}, 4);
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
void
test_root2()
{
auto const scale = Number::getMantissaScale();
testcase << "test_root2 " << to_string(scale);
auto test = [this](auto const& c) {
for (auto const& x : c)
{
auto const expected = root(x, 2);
auto const result = root2(x);
std::stringstream ss;
ss << "root2(" << x << ") = " << result
<< ". Expected: " << expected;
BEAST_EXPECTS(result == expected, ss.str());
}
};
auto const maxInternalMantissa =
power(10, Number::mantissaLog()) * 10 - 1;
auto const cSmall = std::to_array<Number>({
Number{2},
Number{2'000'000},
Number{2, -30},
Number{27},
Number{1},
Number{5, -1},
Number{0},
Number{5625, -4},
Number{Number::largestMantissa},
maxInternalMantissa,
Number{Number::minMantissa(), 0, Number::unchecked{}},
Number{Number::maxMantissa(), 0, Number::unchecked{}},
});
test(cSmall);
bool caught = false;
try
{
(void)root2(Number{-2});
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
void
test_power1()
{
testcase << "test_power1 " << to_string(Number::getMantissaScale());
using Case = std::tuple<Number, unsigned, Number>;
Case c[]{
{Number{64}, 0, Number{1}},
{Number{64}, 1, Number{64}},
{Number{64}, 2, Number{4096}},
{Number{-64}, 2, Number{4096}},
{Number{64}, 3, Number{262144}},
{Number{-64}, 3, Number{-262144}},
{Number{64},
11,
Number{false, 7378697629483820646ULL, 1, Number::normalized{}}},
{Number{-64},
11,
Number{true, 7378697629483820646ULL, 1, Number::normalized{}}}};
for (auto const& [x, y, z] : c)
BEAST_EXPECT((power(x, y) == z));
}
void
test_power2()
{
testcase << "test_power2 " << to_string(Number::getMantissaScale());
using Case = std::tuple<Number, unsigned, unsigned, Number>;
Case c[]{
{Number{1}, 3, 7, Number{1}},
{Number{-1}, 1, 0, Number{1}},
{Number{-1, -1}, 1, 0, Number{0}},
{Number{16}, 0, 5, Number{1}},
{Number{34}, 3, 3, Number{34}},
{Number{4}, 3, 2, Number{8}}};
for (auto const& [x, n, d, z] : c)
BEAST_EXPECT((power(x, n, d) == z));
bool caught = false;
try
{
(void)power(Number{7}, 0, 0);
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
caught = false;
try
{
(void)power(Number{7}, 1, 0);
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
caught = false;
try
{
(void)power(Number{-1, -1}, 3, 2);
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
void
testConversions()
{
testcase << "testConversions " << to_string(Number::getMantissaScale());
IOUAmount x{5, 6};
Number y = x;
BEAST_EXPECT((y == Number{5, 6}));
IOUAmount z{y};
BEAST_EXPECT(x == z);
XRPAmount xrp{500};
STAmount st = xrp;
Number n = st;
BEAST_EXPECT(XRPAmount{n} == xrp);
IOUAmount x0{0, 0};
Number y0 = x0;
BEAST_EXPECT((y0 == Number{0}));
IOUAmount z0{y0};
BEAST_EXPECT(x0 == z0);
XRPAmount xrp0{0};
Number n0 = xrp0;
BEAST_EXPECT(n0 == Number{0});
XRPAmount xrp1{n0};
BEAST_EXPECT(xrp1 == xrp0);
}
void
test_to_integer()
{
testcase << "test_to_integer " << to_string(Number::getMantissaScale());
using Case = std::tuple<Number, std::int64_t>;
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
Case c[]{
{Number{0}, 0},
{Number{1}, 1},
{Number{2}, 2},
{Number{3}, 3},
{Number{-1}, -1},
{Number{-2}, -2},
{Number{-3}, -3},
{Number{10}, 10},
{Number{99}, 99},
{Number{1155}, 1155},
{Number{9'999'999'999'999'999, 0}, 9'999'999'999'999'999},
{Number{9'999'999'999'999'999, 1}, 99'999'999'999'999'990},
{Number{9'999'999'999'999'999, 2}, 999'999'999'999'999'900},
{Number{-9'999'999'999'999'999, 2}, -999'999'999'999'999'900},
{Number{15, -1}, 2},
{Number{14, -1}, 1},
{Number{16, -1}, 2},
{Number{25, -1}, 2},
{Number{6, -1}, 1},
{Number{5, -1}, 0},
{Number{4, -1}, 0},
{Number{-15, -1}, -2},
{Number{-14, -1}, -1},
{Number{-16, -1}, -2},
{Number{-25, -1}, -2},
{Number{-6, -1}, -1},
{Number{-5, -1}, 0},
{Number{-4, -1}, 0}};
for (auto const& [x, y] : c)
{
auto j = static_cast<std::int64_t>(x);
BEAST_EXPECT(j == y);
}
}
auto prev_mode = Number::setround(Number::towards_zero);
BEAST_EXPECT(prev_mode == Number::to_nearest);
{
Case c[]{
{Number{0}, 0},
{Number{1}, 1},
{Number{2}, 2},
{Number{3}, 3},
{Number{-1}, -1},
{Number{-2}, -2},
{Number{-3}, -3},
{Number{10}, 10},
{Number{99}, 99},
{Number{1155}, 1155},
{Number{9'999'999'999'999'999, 0}, 9'999'999'999'999'999},
{Number{9'999'999'999'999'999, 1}, 99'999'999'999'999'990},
{Number{9'999'999'999'999'999, 2}, 999'999'999'999'999'900},
{Number{-9'999'999'999'999'999, 2}, -999'999'999'999'999'900},
{Number{15, -1}, 1},
{Number{14, -1}, 1},
{Number{16, -1}, 1},
{Number{25, -1}, 2},
{Number{6, -1}, 0},
{Number{5, -1}, 0},
{Number{4, -1}, 0},
{Number{-15, -1}, -1},
{Number{-14, -1}, -1},
{Number{-16, -1}, -1},
{Number{-25, -1}, -2},
{Number{-6, -1}, 0},
{Number{-5, -1}, 0},
{Number{-4, -1}, 0}};
for (auto const& [x, y] : c)
{
auto j = static_cast<std::int64_t>(x);
BEAST_EXPECT(j == y);
}
}
prev_mode = Number::setround(Number::downward);
BEAST_EXPECT(prev_mode == Number::towards_zero);
{
Case c[]{
{Number{0}, 0},
{Number{1}, 1},
{Number{2}, 2},
{Number{3}, 3},
{Number{-1}, -1},
{Number{-2}, -2},
{Number{-3}, -3},
{Number{10}, 10},
{Number{99}, 99},
{Number{1155}, 1155},
{Number{9'999'999'999'999'999, 0}, 9'999'999'999'999'999},
{Number{9'999'999'999'999'999, 1}, 99'999'999'999'999'990},
{Number{9'999'999'999'999'999, 2}, 999'999'999'999'999'900},
{Number{-9'999'999'999'999'999, 2}, -999'999'999'999'999'900},
{Number{15, -1}, 1},
{Number{14, -1}, 1},
{Number{16, -1}, 1},
{Number{25, -1}, 2},
{Number{6, -1}, 0},
{Number{5, -1}, 0},
{Number{4, -1}, 0},
{Number{-15, -1}, -2},
{Number{-14, -1}, -2},
{Number{-16, -1}, -2},
{Number{-25, -1}, -3},
{Number{-6, -1}, -1},
{Number{-5, -1}, -1},
{Number{-4, -1}, -1}};
for (auto const& [x, y] : c)
{
auto j = static_cast<std::int64_t>(x);
BEAST_EXPECT(j == y);
}
}
prev_mode = Number::setround(Number::upward);
BEAST_EXPECT(prev_mode == Number::downward);
{
Case c[]{
{Number{0}, 0},
{Number{1}, 1},
{Number{2}, 2},
{Number{3}, 3},
{Number{-1}, -1},
{Number{-2}, -2},
{Number{-3}, -3},
{Number{10}, 10},
{Number{99}, 99},
{Number{1155}, 1155},
{Number{9'999'999'999'999'999, 0}, 9'999'999'999'999'999},
{Number{9'999'999'999'999'999, 1}, 99'999'999'999'999'990},
{Number{9'999'999'999'999'999, 2}, 999'999'999'999'999'900},
{Number{-9'999'999'999'999'999, 2}, -999'999'999'999'999'900},
{Number{15, -1}, 2},
{Number{14, -1}, 2},
{Number{16, -1}, 2},
{Number{25, -1}, 3},
{Number{6, -1}, 1},
{Number{5, -1}, 1},
{Number{4, -1}, 1},
{Number{-15, -1}, -1},
{Number{-14, -1}, -1},
{Number{-16, -1}, -1},
{Number{-25, -1}, -2},
{Number{-6, -1}, 0},
{Number{-5, -1}, 0},
{Number{-4, -1}, 0}};
for (auto const& [x, y] : c)
{
auto j = static_cast<std::int64_t>(x);
BEAST_EXPECT(j == y);
}
}
bool caught = false;
try
{
(void)static_cast<std::int64_t>(Number{9223372036854776, 3});
}
catch (std::overflow_error const&)
{
caught = true;
}
BEAST_EXPECT(caught);
}
void
test_squelch()
{
testcase << "test_squelch " << to_string(Number::getMantissaScale());
Number limit{1, -6};
BEAST_EXPECT((squelch(Number{2, -6}, limit) == Number{2, -6}));
BEAST_EXPECT((squelch(Number{1, -6}, limit) == Number{1, -6}));
BEAST_EXPECT((squelch(Number{9, -7}, limit) == Number{0}));
BEAST_EXPECT((squelch(Number{-2, -6}, limit) == Number{-2, -6}));
BEAST_EXPECT((squelch(Number{-1, -6}, limit) == Number{-1, -6}));
BEAST_EXPECT((squelch(Number{-9, -7}, limit) == Number{0}));
}
void
testToString()
{
auto const scale = Number::getMantissaScale();
testcase << "testToString " << to_string(scale);
auto test = [this](Number const& n, std::string const& expected) {
auto const result = to_string(n);
std::stringstream ss;
ss << "to_string(" << result << "). Expected: " << expected;
BEAST_EXPECTS(result == expected, ss.str());
};
test(Number(-2, 0), "-2");
test(Number(0, 0), "0");
test(Number(2, 0), "2");
test(Number(25, -3), "0.025");
test(Number(-25, -3), "-0.025");
test(Number(25, 1), "250");
test(Number(-25, 1), "-250");
test(Number(2, 20), "2e20");
test(Number(-2, -20), "-2e-20");
// Test the edges
// ((exponent < -(25)) || (exponent > -(5)))))
// or ((exponent < -(28)) || (exponent > -(8)))))
test(Number(2, -10), "0.0000000002");
test(Number(2, -11), "2e-11");
test(Number(-2, 10), "-20000000000");
test(Number(-2, 11), "-2e11");
switch (scale)
{
case MantissaRange::small:
test(Number::min(), "1e-32753");
test(Number::max(), "9999999999999999e32768");
test(Number::lowest(), "-9999999999999999e32768");
{
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999);
test(
Number{
false,
maxMantissa * 1000 + 999,
-3,
Number::normalized()},
"9999999999999999");
test(
Number{
true,
maxMantissa * 1000 + 999,
-3,
Number::normalized()},
"-9999999999999999");
test(
Number{std::numeric_limits<std::int64_t>::max(), -3},
"9223372036854775");
test(
-(Number{std::numeric_limits<std::int64_t>::max(), -3}),
"-9223372036854775");
test(
Number{std::numeric_limits<std::int64_t>::min(), 0},
"-9223372036854775e3");
test(
-(Number{std::numeric_limits<std::int64_t>::min(), 0}),
"9223372036854775e3");
}
break;
case MantissaRange::large:
// Test the edges
// ((exponent < -(28)) || (exponent > -(8)))))
test(Number::min(), "922337203685477581e-32768");
test(Number::max(), "9223372036854775807e32768");
test(Number::lowest(), "-9223372036854775807e32768");
{
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
test(
Number{false, maxMantissa, 0, Number::normalized{}},
"9223372036854775807");
test(
Number{true, maxMantissa, 0, Number::normalized{}},
"-9223372036854775807");
test(
Number{std::numeric_limits<std::int64_t>::max(), 0},
"9223372036854775807");
test(
-(Number{std::numeric_limits<std::int64_t>::max(), 0}),
"-9223372036854775807");
// Because the absolute value of min is larger than max, it
// will be scaled down to fit under max. Since we're
// rounding towards zero, the 8 at the end is dropped.
test(
Number{std::numeric_limits<std::int64_t>::min(), 0},
"-9223372036854775800");
test(
-(Number{std::numeric_limits<std::int64_t>::min(), 0}),
"9223372036854775800");
}
test(
Number{std::numeric_limits<std::int64_t>::max(), 0} + 1,
"9223372036854775810");
test(
-(Number{std::numeric_limits<std::int64_t>::max(), 0} + 1),
"-9223372036854775810");
break;
default:
BEAST_EXPECT(false);
}
}
void
test_relationals()
{
testcase << "test_relationals "
<< to_string(Number::getMantissaScale());
BEAST_EXPECT(!(Number{100} < Number{10}));
BEAST_EXPECT(Number{100} > Number{10});
BEAST_EXPECT(Number{100} >= Number{10});
BEAST_EXPECT(!(Number{100} <= Number{10}));
}
void
test_stream()
{
testcase << "test_stream " << to_string(Number::getMantissaScale());
Number x{100};
std::ostringstream os;
os << x;
BEAST_EXPECT(os.str() == to_string(x));
}
void
test_inc_dec()
{
testcase << "test_inc_dec " << to_string(Number::getMantissaScale());
Number x{100};
Number y = +x;
BEAST_EXPECT(x == y);
BEAST_EXPECT(x++ == y);
BEAST_EXPECT(x == Number{101});
BEAST_EXPECT(x-- == Number{101});
BEAST_EXPECT(x == y);
}
void
test_toSTAmount()
{
NumberSO stNumberSO{true};
Issue const issue;
Number const n{7'518'783'80596, -5};
saveNumberRoundMode const save{Number::setround(Number::to_nearest)};
auto res2 = STAmount{issue, n};
BEAST_EXPECT(res2 == STAmount{7518784});
Number::setround(Number::towards_zero);
res2 = STAmount{issue, n};
BEAST_EXPECT(res2 == STAmount{7518783});
Number::setround(Number::downward);
res2 = STAmount{issue, n};
BEAST_EXPECT(res2 == STAmount{7518783});
Number::setround(Number::upward);
res2 = STAmount{issue, n};
BEAST_EXPECT(res2 == STAmount{7518784});
}
void
test_truncate()
{
BEAST_EXPECT(Number(25, +1).truncate() == Number(250, 0));
BEAST_EXPECT(Number(25, 0).truncate() == Number(25, 0));
BEAST_EXPECT(Number(25, -1).truncate() == Number(2, 0));
BEAST_EXPECT(Number(25, -2).truncate() == Number(0, 0));
BEAST_EXPECT(Number(99, -2).truncate() == Number(0, 0));
BEAST_EXPECT(Number(-25, +1).truncate() == Number(-250, 0));
BEAST_EXPECT(Number(-25, 0).truncate() == Number(-25, 0));
BEAST_EXPECT(Number(-25, -1).truncate() == Number(-2, 0));
BEAST_EXPECT(Number(-25, -2).truncate() == Number(0, 0));
BEAST_EXPECT(Number(-99, -2).truncate() == Number(0, 0));
BEAST_EXPECT(Number(0, 0).truncate() == Number(0, 0));
BEAST_EXPECT(Number(0, 30000).truncate() == Number(0, 0));
BEAST_EXPECT(Number(0, -30000).truncate() == Number(0, 0));
BEAST_EXPECT(Number(100, -30000).truncate() == Number(0, 0));
BEAST_EXPECT(Number(100, -30000).truncate() == Number(0, 0));
BEAST_EXPECT(Number(-100, -30000).truncate() == Number(0, 0));
BEAST_EXPECT(Number(-100, -30000).truncate() == Number(0, 0));
}
void
testRounding()
{
// Test that rounding works as expected.
testcase("Rounding");
using NumberRoundings = std::map<Number::rounding_mode, std::int64_t>;
std::map<Number, NumberRoundings> const expected{
// Positive numbers
{Number{13, -1},
{{Number::to_nearest, 1},
{Number::towards_zero, 1},
{Number::downward, 1},
{Number::upward, 2}}},
{Number{23, -1},
{{Number::to_nearest, 2},
{Number::towards_zero, 2},
{Number::downward, 2},
{Number::upward, 3}}},
{Number{15, -1},
{{Number::to_nearest, 2},
{Number::towards_zero, 1},
{Number::downward, 1},
{Number::upward, 2}}},
{Number{25, -1},
{{Number::to_nearest, 2},
{Number::towards_zero, 2},
{Number::downward, 2},
{Number::upward, 3}}},
{Number{152, -2},
{{Number::to_nearest, 2},
{Number::towards_zero, 1},
{Number::downward, 1},
{Number::upward, 2}}},
{Number{252, -2},
{{Number::to_nearest, 3},
{Number::towards_zero, 2},
{Number::downward, 2},
{Number::upward, 3}}},
{Number{17, -1},
{{Number::to_nearest, 2},
{Number::towards_zero, 1},
{Number::downward, 1},
{Number::upward, 2}}},
{Number{27, -1},
{{Number::to_nearest, 3},
{Number::towards_zero, 2},
{Number::downward, 2},
{Number::upward, 3}}},
// Negative numbers
{Number{-13, -1},
{{Number::to_nearest, -1},
{Number::towards_zero, -1},
{Number::downward, -2},
{Number::upward, -1}}},
{Number{-23, -1},
{{Number::to_nearest, -2},
{Number::towards_zero, -2},
{Number::downward, -3},
{Number::upward, -2}}},
{Number{-15, -1},
{{Number::to_nearest, -2},
{Number::towards_zero, -1},
{Number::downward, -2},
{Number::upward, -1}}},
{Number{-25, -1},
{{Number::to_nearest, -2},
{Number::towards_zero, -2},
{Number::downward, -3},
{Number::upward, -2}}},
{Number{-152, -2},
{{Number::to_nearest, -2},
{Number::towards_zero, -1},
{Number::downward, -2},
{Number::upward, -1}}},
{Number{-252, -2},
{{Number::to_nearest, -3},
{Number::towards_zero, -2},
{Number::downward, -3},
{Number::upward, -2}}},
{Number{-17, -1},
{{Number::to_nearest, -2},
{Number::towards_zero, -1},
{Number::downward, -2},
{Number::upward, -1}}},
{Number{-27, -1},
{{Number::to_nearest, -3},
{Number::towards_zero, -2},
{Number::downward, -3},
{Number::upward, -2}}},
};
for (auto const& [num, roundings] : expected)
{
for (auto const& [mode, val] : roundings)
{
NumberRoundModeGuard g{mode};
auto const res = static_cast<std::int64_t>(num);
BEAST_EXPECTS(
res == val,
to_string(num) + " with mode " + std::to_string(mode) +
" expected " + std::to_string(val) + " got " +
std::to_string(res));
}
}
}
void
testInt64()
{
auto const scale = Number::getMantissaScale();
testcase << "std::int64_t " << to_string(scale);
// Control case
BEAST_EXPECT(Number::maxMantissa() > 10);
Number ten{10};
BEAST_EXPECT(ten.exponent() <= 0);
if (scale == MantissaRange::small)
{
BEAST_EXPECT(
std::numeric_limits<std::int64_t>::max() > INITIAL_XRP.drops());
BEAST_EXPECT(Number::maxMantissa() < INITIAL_XRP.drops());
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() > 0);
Number const maxInt64{Number::largestMantissa};
BEAST_EXPECT(maxInt64.exponent() > 0);
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
BEAST_EXPECT(
(power(maxInt64, 2) == Number{85'070'591'730'234'62, 22}));
Number const max =
Number{false, Number::maxMantissa(), 0, Number::normalized{}};
BEAST_EXPECT(max.exponent() <= 0);
// 99'999'999'999'999'980'000'000'000'000'001 - 32 digits
BEAST_EXPECT((power(max, 2) == Number{99'999'999'999'999'98, 16}));
}
else
{
BEAST_EXPECT(
std::numeric_limits<std::int64_t>::max() > INITIAL_XRP.drops());
BEAST_EXPECT(Number::maxMantissa() > INITIAL_XRP.drops());
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() <= 0);
Number const maxInt64{Number::largestMantissa};
BEAST_EXPECT(maxInt64.exponent() <= 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
BEAST_EXPECT(
(power(maxInt64, 2) == Number{85'070'591'730'234'615'85, 19}));
NumberRoundModeGuard mg(Number::towards_zero);
{
auto const maxInternalMantissa =
static_cast<std::uint64_t>(static_cast<std::int64_t>(
power(10, Number::mantissaLog()))) *
10 -
1;
// Rounds down to fit under 2^63
Number const max =
Number{false, maxInternalMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}}));
}
{
auto const maxMantissa = Number::maxMantissa();
Number const max =
Number{false, maxMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxMantissa);
BEAST_EXPECT(max.exponent() == 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{
false,
85'070'591'730'234'615'84,
19,
Number::normalized{}}));
}
}
}
void
testNormalizeToRange()
{
// Test edge-cases of normalizeToRange
auto const scale = Number::getMantissaScale();
testcase << "normalizeToRange " << to_string(scale);
auto test = [this](
Number const& n,
auto const rangeMin,
auto const rangeMax,
auto const expectedMantissa,
auto const expectedExponent,
auto const line) {
auto const normalized = n.normalizeToRange(rangeMin, rangeMax);
BEAST_EXPECTS(
normalized.first == expectedMantissa,
"Number " + to_string(n) + " scaled to " +
std::to_string(rangeMax) +
". Expected mantissa:" + std::to_string(expectedMantissa) +
", got: " + std::to_string(normalized.first) + " @ " +
std::to_string(line));
BEAST_EXPECTS(
normalized.second == expectedExponent,
"Number " + to_string(n) + " scaled to " +
std::to_string(rangeMax) +
". Expected exponent:" + std::to_string(expectedExponent) +
", got: " + std::to_string(normalized.second) + " @ " +
std::to_string(line));
};
std::int64_t constexpr iRangeMin = 100;
std::int64_t constexpr iRangeMax = 999;
std::uint64_t constexpr uRangeMin = 100;
std::uint64_t constexpr uRangeMax = 999;
constexpr static MantissaRange largeRange{MantissaRange::large};
std::int64_t constexpr iBigMin = largeRange.min;
std::int64_t constexpr iBigMax = largeRange.max;
auto const testSuite = [&](Number const& n,
auto const expectedSmallMantissa,
auto const expectedSmallExponent,
auto const expectedLargeMantissa,
auto const expectedLargeExponent,
auto const line) {
test(
n,
iRangeMin,
iRangeMax,
expectedSmallMantissa,
expectedSmallExponent,
line);
test(
n,
iBigMin,
iBigMax,
expectedLargeMantissa,
expectedLargeExponent,
line);
// Only test non-negative. testing a negative number with an
// unsigned range will assert, and asserts can't be tested.
if (n.signum() >= 0)
{
test(
n,
uRangeMin,
uRangeMax,
expectedSmallMantissa,
expectedSmallExponent,
line);
test(
n,
largeRange.min,
largeRange.max,
expectedLargeMantissa,
expectedLargeExponent,
line);
}
};
{
// zero
Number const n{0};
testSuite(
n,
0,
std::numeric_limits<int>::lowest(),
0,
std::numeric_limits<int>::lowest(),
__LINE__);
}
{
// Small positive number
Number const n{2};
testSuite(n, 200, -2, 2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Negative number
Number const n{-2};
testSuite(n, -200, -2, -2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Biggest valid mantissa
Number const n{Number::largestMantissa, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, Number::largestMantissa, 0, __LINE__);
}
{
// Biggest valid mantissa + 1
Number const n{
Number::largestMantissa + 1, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 2
Number const n{
Number::largestMantissa + 2, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 3
Number const n{
Number::largestMantissa + 3, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min
Number const n{std::numeric_limits<std::int64_t>::min(), 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min + 1
Number const n{std::numeric_limits<std::int64_t>::min() + 1, 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -9'223'372'036'854'775'807, 0, __LINE__);
}
{
// int64 min - 1
// Need to cast to uint, even though we're dealing with a negative
// number to avoid overflow and UB
Number const n{
true,
-static_cast<std::uint64_t>(
std::numeric_limits<std::int64_t>::min()) +
1,
0,
Number::normalized{}};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
}
void
run() override
{
for (auto const scale : {MantissaRange::small, MantissaRange::large})
{
NumberMantissaScaleGuard sg(scale);
testZero();
test_limits();
testToString();
test_add();
test_sub();
test_mul();
test_div();
test_root();
test_root2();
test_power1();
test_power2();
testConversions();
test_to_integer();
test_squelch();
test_relationals();
test_stream();
test_inc_dec();
test_toSTAmount();
test_truncate();
testRounding();
testInt64();
testNormalizeToRange();
}
}
};
BEAST_DEFINE_TESTSUITE(Number, basics, ripple);
} // namespace ripple