mirror of
https://github.com/XRPLF/rippled.git
synced 2026-01-24 16:45:38 +00:00
Compare commits
1 Commits
3.1.0-rc2
...
ximinez/nu
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c01bfb2b60 |
@@ -36,18 +36,37 @@ class Number;
|
||||
std::string
|
||||
to_string(Number const& amount);
|
||||
|
||||
/** Returns a rough estimate of log10(value).
|
||||
*
|
||||
* The return value is a pair (log, rem), where log is the estimated log10,
|
||||
* and rem is value divided by 10^log. If rem is 1, then value is an exact
|
||||
* power of ten, and log is the exact log10(value).
|
||||
*
|
||||
* This function only works for positive values.
|
||||
*/
|
||||
template <typename T>
|
||||
constexpr std::pair<int, T>
|
||||
logTenEstimate(T value)
|
||||
{
|
||||
int log = 0;
|
||||
T remainder = value;
|
||||
while (value >= 10)
|
||||
{
|
||||
if (value % 10 == 0)
|
||||
remainder = remainder / 10;
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
return {log, remainder};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr std::optional<int>
|
||||
logTen(T value)
|
||||
{
|
||||
int log = 0;
|
||||
while (value >= 10 && value % 10 == 0)
|
||||
{
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
if (value == 1)
|
||||
return log;
|
||||
auto const est = logTenEstimate(value);
|
||||
if (est.second == 1)
|
||||
return est.first;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
@@ -61,8 +80,6 @@ isPowerOfTen(T value)
|
||||
/** MantissaRange defines a range for the mantissa of a normalized Number.
|
||||
*
|
||||
* The mantissa is in the range [min, max], where
|
||||
* * min is a power of 10, and
|
||||
* * max = min * 10 - 1.
|
||||
*
|
||||
* The mantissa_scale enum indicates whether the range is "small" or "large".
|
||||
* This intentionally restricts the number of MantissaRanges that can be
|
||||
@@ -80,8 +97,8 @@ isPowerOfTen(T value)
|
||||
* "large" scale.
|
||||
*
|
||||
* The "large" scale is intended to represent all values that can be represented
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
|
||||
* value of 10^19-1.
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
|
||||
* (truncated), and a max value of 2^63-1.
|
||||
*
|
||||
* Note that if the mentioned amendments are eventually retired, this class
|
||||
* should be left in place, but the "small" scale option should be removed. This
|
||||
@@ -93,28 +110,38 @@ struct MantissaRange
|
||||
enum mantissa_scale { small, large };
|
||||
|
||||
explicit constexpr MantissaRange(mantissa_scale scale_)
|
||||
: min(getMin(scale_))
|
||||
, max(min * 10 - 1)
|
||||
, log(logTen(min).value_or(-1))
|
||||
: max(getMax(scale_))
|
||||
, min(computeMin(max))
|
||||
, log(computeLog(min))
|
||||
, scale(scale_)
|
||||
{
|
||||
// Since this is constexpr, if any of these throw, it won't compile
|
||||
if (min * 10 <= max)
|
||||
throw std::out_of_range("min * 10 <= max");
|
||||
if (max / 10 >= min)
|
||||
throw std::out_of_range("max / 10 >= min");
|
||||
if ((min - 1) * 10 > max)
|
||||
throw std::out_of_range("(min - 1) * 10 > max");
|
||||
// This is a little hacky
|
||||
if ((max + 10) / 10 < min)
|
||||
throw std::out_of_range("(max + 10) / 10 < min");
|
||||
}
|
||||
|
||||
rep min;
|
||||
rep max;
|
||||
rep min;
|
||||
int log;
|
||||
mantissa_scale scale;
|
||||
|
||||
private:
|
||||
static constexpr rep
|
||||
getMin(mantissa_scale scale_)
|
||||
getMax(mantissa_scale scale_)
|
||||
{
|
||||
switch (scale_)
|
||||
{
|
||||
case small:
|
||||
return 1'000'000'000'000'000ULL;
|
||||
return 9'999'999'999'999'999ULL;
|
||||
case large:
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
return std::numeric_limits<std::int64_t>::max();
|
||||
default:
|
||||
// Since this can never be called outside a non-constexpr
|
||||
// context, this throw assures that the build fails if an
|
||||
@@ -122,6 +149,24 @@ private:
|
||||
throw std::runtime_error("Unknown mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeMin(rep max)
|
||||
{
|
||||
auto min = max + 1;
|
||||
auto const r = min % 10;
|
||||
min /= 10;
|
||||
if (r != 0)
|
||||
++min;
|
||||
return min;
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeLog(rep min)
|
||||
{
|
||||
auto const estimate = logTenEstimate(min);
|
||||
return estimate.first + (estimate.second == 1 ? 0 : 1);
|
||||
}
|
||||
};
|
||||
|
||||
// Like std::integral, but only 64-bit integral types.
|
||||
@@ -156,9 +201,7 @@ concept Integral64 =
|
||||
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
|
||||
* should only be used at specific conversion points, some constexpr
|
||||
* values, and in unit tests.
|
||||
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
|
||||
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
|
||||
* 10^20-1 > 2^64-1). This avoids under- and overflows.
|
||||
* 2. The max of the "large" range, 2^63-1, TODO: explain the large range.
|
||||
*
|
||||
* ---- External Interface ----
|
||||
*
|
||||
@@ -172,7 +215,7 @@ concept Integral64 =
|
||||
*
|
||||
* Note:
|
||||
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
|
||||
* mantissa range.
|
||||
* mantissa range. TODO: update this explanation.
|
||||
* 2. The functions mantissa() and exponent() return the external view of the
|
||||
* Number value, specifically using a signed 63-bit mantissa. This may
|
||||
* require altering the internal representation to fit into that range
|
||||
@@ -232,6 +275,7 @@ class Number
|
||||
using rep = std::int64_t;
|
||||
using internalrep = MantissaRange::rep;
|
||||
|
||||
// TODO: Get rid of negative_ and convert mantissa back to rep
|
||||
bool negative_{false};
|
||||
internalrep mantissa_{0};
|
||||
int exponent_{std::numeric_limits<int>::lowest()};
|
||||
@@ -241,9 +285,11 @@ public:
|
||||
constexpr static int minExponent = -32768;
|
||||
constexpr static int maxExponent = 32768;
|
||||
|
||||
#if MAXREP
|
||||
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
|
||||
static_assert(maxRep == 9'223'372'036'854'775'807);
|
||||
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
|
||||
#endif
|
||||
|
||||
// May need to make unchecked private
|
||||
struct unchecked
|
||||
@@ -477,15 +523,27 @@ private:
|
||||
static_assert(smallRange.min == 1'000'000'000'000'000LL);
|
||||
static_assert(smallRange.max == 9'999'999'999'999'999LL);
|
||||
static_assert(smallRange.log == 15);
|
||||
#if MAXREP
|
||||
static_assert(smallRange.min < maxRep);
|
||||
static_assert(smallRange.max < maxRep);
|
||||
#endif
|
||||
constexpr static MantissaRange largeRange{MantissaRange::large};
|
||||
static_assert(isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
|
||||
static_assert(!isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 922337203685477581ULL);
|
||||
static_assert(largeRange.max == internalrep(9223372036854775807ULL));
|
||||
static_assert(largeRange.max == std::numeric_limits<rep>::max());
|
||||
static_assert(largeRange.log == 18);
|
||||
// There are 2 values that will not fit in largeRange without some extra
|
||||
// work
|
||||
// * 9223372036854775808
|
||||
// * 9223372036854775809
|
||||
// They both end up < min, but with a leftover. If they round up, everything
|
||||
// will be fine. If they don't, well need to bring them up into range.
|
||||
|
||||
#if MAXREP
|
||||
static_assert(largeRange.min < maxRep);
|
||||
static_assert(largeRange.max > maxRep);
|
||||
#endif
|
||||
|
||||
// The range for the mantissa when normalized.
|
||||
// Use reference_wrapper to avoid making copies, and prevent accidentally
|
||||
@@ -536,6 +594,9 @@ private:
|
||||
externalToInternal(rep mantissa);
|
||||
|
||||
class Guard;
|
||||
|
||||
public:
|
||||
constexpr static internalrep largestMantissa = largeRange.max;
|
||||
};
|
||||
|
||||
inline constexpr Number::Number(
|
||||
@@ -589,17 +650,8 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
|
||||
inline constexpr Number::rep
|
||||
Number::mantissa() const noexcept
|
||||
{
|
||||
auto m = mantissa_;
|
||||
if (m > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
|
||||
"xrpl::Number::mantissa",
|
||||
"large normalized mantissa has no remainder");
|
||||
m /= 10;
|
||||
}
|
||||
auto const sign = negative_ ? -1 : 1;
|
||||
return sign * static_cast<Number::rep>(m);
|
||||
return sign * static_cast<Number::rep>(mantissa_);
|
||||
}
|
||||
|
||||
/** Returns the exponent of the external view of the Number.
|
||||
@@ -610,16 +662,7 @@ Number::mantissa() const noexcept
|
||||
inline constexpr int
|
||||
Number::exponent() const noexcept
|
||||
{
|
||||
auto e = exponent_;
|
||||
if (mantissa_ > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
|
||||
"xrpl::Number::exponent",
|
||||
"large normalized mantissa has no remainder");
|
||||
++e;
|
||||
}
|
||||
return e;
|
||||
return exponent_;
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
@@ -715,15 +758,13 @@ Number::min() noexcept
|
||||
inline Number
|
||||
Number::max() noexcept
|
||||
{
|
||||
return Number{
|
||||
false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
return Number{false, range_.get().max, maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline Number
|
||||
Number::lowest() noexcept
|
||||
{
|
||||
return Number{
|
||||
true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
return Number{true, range_.get().max, maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline bool
|
||||
@@ -732,9 +773,8 @@ Number::isnormal() const noexcept
|
||||
MantissaRange const& range = range_;
|
||||
auto const abs_m = mantissa_;
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max &&
|
||||
(abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
|
||||
exponent_ <= maxExponent);
|
||||
(range.min <= abs_m && abs_m <= range.max && //
|
||||
minExponent <= exponent_ && exponent_ <= maxExponent);
|
||||
}
|
||||
|
||||
template <Integral64 T>
|
||||
|
||||
@@ -252,7 +252,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
|
||||
|
||||
/** The maximum amount of MPTokenIssuance */
|
||||
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
|
||||
static_assert(Number::maxRep >= maxMPTokenAmount);
|
||||
static_assert(Number::largestMantissa >= maxMPTokenAmount);
|
||||
|
||||
/** The maximum length of Data payload */
|
||||
std::size_t constexpr maxDataPayloadLength = 256;
|
||||
|
||||
@@ -43,7 +43,7 @@ systemName()
|
||||
/** Number of drops in the genesis account. */
|
||||
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
|
||||
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
|
||||
static_assert(Number::maxRep >= INITIAL_XRP.drops());
|
||||
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
|
||||
|
||||
/** Returns true if the amount does not exceed the initial XRP in existence. */
|
||||
inline bool
|
||||
|
||||
@@ -279,7 +279,7 @@ Number::Guard::doRoundUp(
|
||||
++mantissa;
|
||||
// Ensure mantissa after incrementing fits within both the
|
||||
// min/maxMantissa range and is a valid "rep".
|
||||
if (mantissa > maxMantissa || mantissa > maxRep)
|
||||
if (mantissa > maxMantissa)
|
||||
{
|
||||
mantissa /= 10;
|
||||
++exponent;
|
||||
@@ -318,7 +318,7 @@ Number::Guard::doRound(rep& drops, std::string location)
|
||||
auto r = round();
|
||||
if (r == 1 || (r == 0 && (drops & 1) == 1))
|
||||
{
|
||||
if (drops >= maxRep)
|
||||
if (drops >= maxMantissa())
|
||||
{
|
||||
static_assert(sizeof(internalrep) == sizeof(rep));
|
||||
// This should be impossible, because it's impossible to represent
|
||||
@@ -406,7 +406,6 @@ doNormalize(
|
||||
{
|
||||
auto constexpr minExponent = Number::minExponent;
|
||||
auto constexpr maxExponent = Number::maxExponent;
|
||||
auto constexpr maxRep = Number::maxRep;
|
||||
|
||||
using Guard = Number::Guard;
|
||||
|
||||
@@ -443,33 +442,8 @@ doNormalize(
|
||||
return;
|
||||
}
|
||||
|
||||
// When using the largeRange, "m" needs fit within an int64, even if
|
||||
// the final mantissa_ is going to end up larger to fit within the
|
||||
// MantissaRange. Cut it down here so that the rounding will be done while
|
||||
// it's smaller.
|
||||
//
|
||||
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
|
||||
// so "m" will be modified to 990,000,000,000,012,345. Then that value
|
||||
// will be rounded to 990,000,000,000,012,345 or
|
||||
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
|
||||
// mantissa_ will be "m*10" so it fits within the range, and end up as
|
||||
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
|
||||
// mantissa() will return mantissa_ / 10, and exponent() will return
|
||||
// exponent_ + 1.
|
||||
if (m > maxRep)
|
||||
{
|
||||
if (exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1.5");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent_;
|
||||
}
|
||||
// Before modification, m should be within the min/max range. After
|
||||
// modification, it must be less than maxRep. In other words, the original
|
||||
// value should have been no more than maxRep * 10.
|
||||
// (maxRep * 10 > maxMantissa)
|
||||
XRPL_ASSERT_PARTS(
|
||||
m <= maxRep,
|
||||
m <= maxMantissa,
|
||||
"xrpl::doNormalize",
|
||||
"intermediate mantissa fits in int64");
|
||||
mantissa_ = m;
|
||||
@@ -616,7 +590,7 @@ Number::operator+=(Number const& y)
|
||||
if (xn == yn)
|
||||
{
|
||||
xm += ym;
|
||||
if (xm > maxMantissa || xm > maxRep)
|
||||
if (xm > maxMantissa)
|
||||
{
|
||||
g.push(xm % 10);
|
||||
xm /= 10;
|
||||
@@ -637,7 +611,7 @@ Number::operator+=(Number const& y)
|
||||
xe = ye;
|
||||
xn = yn;
|
||||
}
|
||||
while (xm < minMantissa && xm * 10 <= maxRep)
|
||||
while (xm < minMantissa)
|
||||
{
|
||||
xm *= 10;
|
||||
xm -= g.pop();
|
||||
@@ -719,7 +693,7 @@ Number::operator*=(Number const& y)
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
while (zm > maxMantissa || zm > maxRep)
|
||||
while (zm > maxMantissa)
|
||||
{
|
||||
// The following is optimization for:
|
||||
// g.push(static_cast<unsigned>(zm % 10));
|
||||
@@ -861,7 +835,7 @@ Number::operator rep() const
|
||||
}
|
||||
for (; offset > 0; --offset)
|
||||
{
|
||||
if (drops > maxRep / 10)
|
||||
if (drops > largeRange.max / 10)
|
||||
throw std::overflow_error("Number::operator rep() overflow");
|
||||
drops *= 10;
|
||||
}
|
||||
|
||||
@@ -217,12 +217,12 @@ public:
|
||||
9'999'999'999'999'999'990ULL,
|
||||
-19,
|
||||
Number::normalized{}}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
Number{6, -1},
|
||||
Number{Number::maxRep / 10, 1}},
|
||||
{Number{Number::maxRep - 1},
|
||||
Number{Number::largestMantissa / 10, 1}},
|
||||
{Number{Number::largestMantissa - 1},
|
||||
Number{1, 0},
|
||||
Number{Number::maxRep}},
|
||||
Number{Number::largestMantissa}},
|
||||
// Test extremes
|
||||
{
|
||||
// Each Number operand rounds up, so the actual mantissa is
|
||||
@@ -240,11 +240,11 @@ public:
|
||||
Number{2, 19},
|
||||
},
|
||||
{
|
||||
// Does not round. Mantissas are going to be > maxRep, so if
|
||||
// added together as uint64_t's, the result will overflow.
|
||||
// With addition using uint128_t, there's no problem. After
|
||||
// normalizing, the resulting mantissa ends up less than
|
||||
// maxRep.
|
||||
// Does not round. Mantissas are going to be >
|
||||
// largestMantissa, so if added together as uint64_t's, the
|
||||
// result will overflow. With addition using uint128_t,
|
||||
// there's no problem. After normalizing, the resulting
|
||||
// mantissa ends up less than largestMantissa.
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'990ULL,
|
||||
@@ -371,16 +371,24 @@ public:
|
||||
{Number{1'000'000'000'000'000'001, -18},
|
||||
Number{1'000'000'000'000'000'000, -18},
|
||||
Number{1'000'000'000'000'000'000, -36}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
Number{6, -1},
|
||||
Number{Number::maxRep - 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{Number::largestMantissa - 1}},
|
||||
{Number{
|
||||
false,
|
||||
Number::largestMantissa + 1,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{1, 0},
|
||||
Number{Number::maxRep / 10 + 1, 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{Number::largestMantissa / 10 + 1, 1}},
|
||||
{Number{
|
||||
false,
|
||||
Number::largestMantissa + 1,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{3, 0},
|
||||
Number{Number::maxRep}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
|
||||
Number{Number::largestMantissa}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
|
||||
});
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z] : c)
|
||||
@@ -489,8 +497,8 @@ public:
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38}},
|
||||
// Maximum int64 range
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
@@ -567,8 +575,8 @@ public:
|
||||
Number::normalized{}}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
@@ -645,8 +653,8 @@ public:
|
||||
Number::normalized{}}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
@@ -715,8 +723,8 @@ public:
|
||||
Number{1, 38}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
@@ -1008,10 +1016,10 @@ public:
|
||||
2,
|
||||
Number{
|
||||
false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
2,
|
||||
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
4,
|
||||
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
|
||||
});
|
||||
@@ -1070,7 +1078,7 @@ public:
|
||||
Number{5, -1},
|
||||
Number{0},
|
||||
Number{5625, -4},
|
||||
Number{Number::maxRep},
|
||||
Number{Number::largestMantissa},
|
||||
});
|
||||
test(cSmall);
|
||||
bool caught = false;
|
||||
@@ -1690,7 +1698,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() > 0);
|
||||
|
||||
Number const maxInt64{Number::maxRep};
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
BEAST_EXPECT(maxInt64.exponent() > 0);
|
||||
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
|
||||
BEAST_EXPECT(
|
||||
@@ -1710,7 +1718,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() <= 0);
|
||||
|
||||
Number const maxInt64{Number::maxRep};
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
BEAST_EXPECT(maxInt64.exponent() <= 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
|
||||
BEAST_EXPECT(
|
||||
|
||||
Reference in New Issue
Block a user