Compare commits

..

29 Commits

Author SHA1 Message Date
Mayukha Vadari
2ec4a1114e Merge branch 'develop' into ripple/wasmi 2026-02-04 18:13:00 -05:00
Mayukha Vadari
b2627039f6 Merge branch 'develop' into ripple/wasmi 2026-02-03 14:51:59 -05:00
Mayukha Vadari
e85e7b1b1a Merge branch 'develop' into ripple/wasmi 2026-01-29 13:53:55 -05:00
Mayukha Vadari
72fffb6e51 Merge branch 'develop' into ripple/wasmi 2026-01-28 15:56:18 -05:00
Mayukha Vadari
f7ee580f01 Merge commit '5f638f55536def0d88b970d1018a465a238e55f4' into ripple/wasmi 2026-01-28 15:56:11 -05:00
Mayukha Vadari
122d405750 Merge commit '92046785d1fea5f9efe5a770d636792ea6cab78b' into ripple/wasmi 2026-01-28 15:56:04 -05:00
Mayukha Vadari
d7ed6d6512 Merge branch 'develop' into ripple/wasmi 2026-01-27 13:26:39 -05:00
Mayukha Vadari
8bc6f9cd70 Merge branch 'develop' into ripple/wasmi 2026-01-23 13:13:11 -05:00
Mayukha Vadari
ed5139d4e3 Merge branch 'develop' into ripple/wasmi 2026-01-21 12:57:29 -05:00
Mayukha Vadari
7a9d245950 Merge branch 'develop' into ripple/wasmi 2026-01-14 13:01:35 -05:00
Olek
d83ec96848 Switch to wasmi v1.0.6 (#6204) 2026-01-12 13:36:02 -05:00
Mayukha Vadari
419d53ec4c Merge branch 'develop' into ripple/wasmi 2026-01-12 13:10:58 -05:00
Mayukha Vadari
d4d70d5675 Merge branch 'develop' into ripple/wasmi 2026-01-12 12:27:48 -05:00
Mayukha Vadari
bbc28b3b1c Merge branch 'develop' into ripple/wasmi 2026-01-08 11:42:28 -05:00
Mayukha Vadari
5aab274b7a Merge branch 'develop' into ripple/wasmi 2026-01-07 16:52:10 -05:00
Mayukha Vadari
2c30e41191 use the develop hashes 2026-01-07 16:50:45 -05:00
Mayukha Vadari
8ea5106b0b Merge branch 'develop' into ripple/wasmi 2026-01-07 14:34:49 -05:00
Mayukha Vadari
1977df9c2e Merge remote-tracking branch 'upstream/develop' into ripple/wasmi 2026-01-05 18:43:49 -05:00
Mayukha Vadari
6c95548df5 Merge remote-tracking branch 'upstream/develop' into ripple/wasmi 2025-12-22 15:51:19 -08:00
Mayukha Vadari
90e0bbd0fc Merge branch 'develop' into ripple/wasmi 2025-12-08 14:28:41 -05:00
Olek
b57df290de Use conan repo for wasmi lib (#6109)
* Use conan repo for wasmi lib
* Generate lockfile
2025-12-08 13:02:01 -05:00
Mayukha Vadari
8a403f1241 Merge branch 'develop' into ripple/wasmi 2025-12-05 14:32:48 -05:00
Mayukha Vadari
6d2640871d Merge branch 'develop' into ripple/wasmi 2025-12-02 18:40:54 -05:00
Olek
500bb68831 Fix win build (#6076) 2025-11-24 16:56:23 -05:00
Mayukha Vadari
16087c9680 fix merge issue 2025-11-25 02:57:47 +05:30
Mayukha Vadari
25c3060fef remove conan.lock (temporary) 2025-11-25 02:40:57 +05:30
Mayukha Vadari
ce9f0b38a4 Merge branch 'develop' into ripple/wasmi 2025-11-25 02:33:47 +05:30
Mayukha Vadari
35f7cbf772 update 2025-11-25 02:31:51 +05:30
Mayukha Vadari
0db564d261 WASMI data 2025-11-04 15:57:07 -05:00
14 changed files with 468 additions and 1059 deletions

View File

@@ -272,6 +272,7 @@ words:
- venv
- vfalco
- vinnie
- wasmi
- wextra
- wptr
- writeme

View File

@@ -103,6 +103,7 @@ find_package(OpenSSL REQUIRED)
find_package(secp256k1 REQUIRED)
find_package(SOCI REQUIRED)
find_package(SQLite3 REQUIRED)
find_package(wasmi REQUIRED)
find_package(xxHash REQUIRED)
target_link_libraries(

View File

@@ -40,6 +40,7 @@ target_link_libraries(
Xrpl::opts
Xrpl::syslibs
secp256k1::secp256k1
wasmi::wasmi
xrpl.libpb
xxHash::xxhash
$<$<BOOL:${voidstar}>:antithesis-sdk-cpp>)

View File

@@ -3,10 +3,11 @@
"requires": [
"zlib/1.3.1#b8bc2603263cf7eccbd6e17e66b0ed76%1765850150.075",
"xxhash/0.8.3#681d36a0a6111fc56e5e45ea182c19cc%1765850149.987",
"wasmi/1.0.6#407c9db14601a8af1c7dd3b388f3e4cd%1768164779.349",
"sqlite3/3.49.1#8631739a4c9b93bd3d6b753bac548a63%1765850149.926",
"soci/4.0.3#a9f8d773cd33e356b5879a4b0564f287%1765850149.46",
"snappy/1.1.10#968fef506ff261592ec30c574d4a7809%1765850147.878",
"secp256k1/0.7.1#3a61e95e220062ef32c48d019e9c81f7%1770306721.686",
"secp256k1/0.7.0#0fda78daa3b864deb8a2fbc083398356%1770226294.524",
"rocksdb/10.5.1#4a197eca381a3e5ae8adf8cffa5aacd0%1765850186.86",
"re2/20230301#ca3b241baec15bd31ea9187150e0b333%1765850148.103",
"protobuf/6.32.1#f481fd276fc23a33b85a3ed1e898b693%1765850161.038",

View File

@@ -32,8 +32,9 @@ class Xrpl(ConanFile):
"libarchive/3.8.1",
"nudb/2.0.9",
"openssl/3.5.5",
"secp256k1/0.7.1",
"secp256k1/0.7.0",
"soci/4.0.3",
"wasmi/1.0.6",
"zlib/1.3.1",
]
@@ -212,6 +213,7 @@ class Xrpl(ConanFile):
"soci::soci",
"secp256k1::secp256k1",
"sqlite3::sqlite",
"wasmi::wasmi",
"xxhash::xxhash",
"zlib::zlib",
]

View File

@@ -9,10 +9,6 @@
#include <ostream>
#include <string>
#ifdef _MSC_VER
#include <boost/multiprecision/cpp_int.hpp>
#endif // !defined(_MSC_VER)
namespace xrpl {
class Number;
@@ -20,37 +16,18 @@ class Number;
std::string
to_string(Number const& amount);
/** Returns a rough estimate of log10(value).
*
* The return value is a pair (log, rem), where log is the estimated log10,
* and rem is value divided by 10^log. If rem is 1, then value is an exact
* power of ten, and log is the exact log10(value).
*
* This function only works for positive values.
*/
template <typename T>
constexpr std::pair<int, T>
logTenEstimate(T value)
{
int log = 0;
T remainder = value;
while (value >= 10)
{
if (value % 10 == 0)
remainder = remainder / 10;
value /= 10;
++log;
}
return {log, remainder};
}
template <typename T>
constexpr std::optional<int>
logTen(T value)
{
auto const est = logTenEstimate(value);
if (est.second == 1)
return est.first;
int log = 0;
while (value >= 10 && value % 10 == 0)
{
value /= 10;
++log;
}
if (value == 1)
return log;
return std::nullopt;
}
@@ -64,10 +41,12 @@ isPowerOfTen(T value)
/** MantissaRange defines a range for the mantissa of a normalized Number.
*
* The mantissa is in the range [min, max], where
* * min is a power of 10, and
* * max = min * 10 - 1.
*
* The mantissa_scale enum indicates whether the range is "small" or "large".
* This intentionally restricts the number of MantissaRanges that can be
* used to two: one for each scale.
* instantiated to two: one for each scale.
*
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
* value of 10^15, and a max value of 10^16-1. This was sufficient for
@@ -81,8 +60,8 @@ isPowerOfTen(T value)
* "large" scale.
*
* The "large" scale is intended to represent all values that can be represented
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
* (truncated), and a max value of 2^63-1.
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
* value of 10^19-1.
*
* Note that if the mentioned amendments are eventually retired, this class
* should be left in place, but the "small" scale option should be removed. This
@@ -94,50 +73,25 @@ struct MantissaRange
enum mantissa_scale { small, large };
explicit constexpr MantissaRange(mantissa_scale scale_)
: max(getMax(scale_))
, min(computeMin(max))
, referenceMin(getReferenceMin(scale_, min))
, log(computeLog(min))
, scale(scale_)
: min(getMin(scale_)), max(min * 10 - 1), log(logTen(min).value_or(-1)), scale(scale_)
{
// Since this is constexpr, if any of these throw, it won't compile
if (min * 10 <= max)
throw std::out_of_range("min * 10 <= max");
if (max / 10 >= min)
throw std::out_of_range("max / 10 >= min");
if ((min - 1) * 10 > max)
throw std::out_of_range("(min - 1) * 10 > max");
// This is a little hacky
if ((max + 10) / 10 < min)
throw std::out_of_range("(max + 10) / 10 < min");
}
// Explicitly delete copy and move operations
MantissaRange(MantissaRange const&) = delete;
MantissaRange(MantissaRange&&) = delete;
MantissaRange&
operator=(MantissaRange const&) = delete;
MantissaRange&
operator=(MantissaRange&&) = delete;
rep max;
rep min;
// This is not a great name. Used to determine if mantissas are in range,
// but have fewer digits than max
rep referenceMin;
rep max;
int log;
mantissa_scale scale;
private:
static constexpr rep
getMax(mantissa_scale scale)
getMin(mantissa_scale scale_)
{
switch (scale)
switch (scale_)
{
case small:
return 9'999'999'999'999'999ULL;
return 1'000'000'000'000'000ULL;
case large:
return std::numeric_limits<std::int64_t>::max();
return 1'000'000'000'000'000'000ULL;
default:
// Since this can never be called outside a non-constexpr
// context, this throw assures that the build fails if an
@@ -145,59 +99,19 @@ private:
throw std::runtime_error("Unknown mantissa scale");
}
}
static constexpr rep
computeMin(rep max)
{
return max / 10 + 1;
}
static constexpr rep
getReferenceMin(mantissa_scale scale, rep min)
{
switch (scale)
{
case large:
return 1'000'000'000'000'000'000ULL;
default:
if (isPowerOfTen(min))
return min;
throw std::runtime_error("Unknown/bad mantissa scale");
}
}
static constexpr rep
computeLog(rep min)
{
auto const estimate = logTenEstimate(min);
return estimate.first + (estimate.second == 1 ? 0 : 1);
}
};
// Like std::integral, but only 64-bit integral types.
template <class T>
concept Integral64 = std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
namespace detail {
#ifdef _MSC_VER
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
template <class T>
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
} // namespace detail
/** Number is a floating point type that can represent a wide range of values.
*
* It can represent all values that can be represented by an STAmount -
* regardless of asset type - XRPAmount, MPTAmount, and IOUAmount, with at least
* as much precision as those types require.
*
* ---- Internal Operational Representation ----
* ---- Internal Representation ----
*
* Internally, Number is represented with three values:
* 1. a bool sign flag,
@@ -212,21 +126,15 @@ concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>
*
* A non-zero mantissa is (almost) always normalized, meaning it and the
* exponent are grown or shrunk until the mantissa is in the range
* [MantissaRange.referenceMin, MantissaRange.referenceMin * 10 - 1].
*
* This internal representation is only used during some operations to ensure
* that the mantissa is a known, predictable size. The class itself stores the
* values using the external representation described below.
* [MantissaRange.min, MantissaRange.max].
*
* Note:
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
* should only be used at specific conversion points, some constexpr
* values, and in unit tests.
* 2. Unlike MantissaRange.min, referenceMin is always an exact power of 10,
* so a mantissa in the internal representation will always have a
* consistent number of digits.
* 3. The functions toInternal() and fromInternal() are used to convert
* between the two representations.
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
* 10^20-1 > 2^64-1). This avoids under- and overflows.
*
* ---- External Interface ----
*
@@ -239,12 +147,13 @@ concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>
* represent the full range of valid XRP and MPT integer values accurately.
*
* Note:
* 1. The "large" mantissa range is (2^63/10+1) to 2^63-1. 2^63-1 is between
* 10^18 and 10^19-1, and (2^63/10+1) is between 10^17 and 10^18-1. Thus,
* the mantissa may have 18 or 19 digits. This value will be modified to
* always have 19 digits before some operations to ensure consistency.
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
* mantissa range.
* 2. The functions mantissa() and exponent() return the external view of the
* Number value, specifically using a signed 63-bit mantissa.
* Number value, specifically using a signed 63-bit mantissa. This may
* require altering the internal representation to fit into that range
* before the value is returned. The interface guarantees consistency of
* the two values.
* 3. Number cannot represent -2^63 (std::numeric_limits<std::int64_t>::min())
* as an exact integer, but it doesn't need to, because all asset values
* on-ledger are non-negative. This is due to implementation details of
@@ -299,7 +208,8 @@ class Number
using rep = std::int64_t;
using internalrep = MantissaRange::rep;
rep mantissa_{0};
bool negative_{false};
internalrep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
@@ -307,6 +217,10 @@ public:
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
static_assert(maxRep == 9'223'372'036'854'775'807);
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
// May need to make unchecked private
struct unchecked
{
@@ -380,7 +294,7 @@ public:
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
@@ -394,8 +308,8 @@ public:
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
bool const lneg = x.negative_;
bool const rneg = y.negative_;
if (lneg != rneg)
return lneg;
@@ -423,7 +337,7 @@ public:
constexpr int
signum() const noexcept
{
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
return negative_ ? -1 : (mantissa_ ? 1 : 0);
}
Number
@@ -462,9 +376,6 @@ public:
friend Number
root2(Number f);
friend Number
power(Number const& f, unsigned n, unsigned d);
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
@@ -529,39 +440,22 @@ private:
static_assert(isPowerOfTen(smallRange.min));
static_assert(smallRange.min == 1'000'000'000'000'000LL);
static_assert(smallRange.max == 9'999'999'999'999'999LL);
static_assert(smallRange.referenceMin == smallRange.min);
static_assert(smallRange.log == 15);
static_assert(smallRange.min < maxRep);
static_assert(smallRange.max < maxRep);
constexpr static MantissaRange largeRange{MantissaRange::large};
static_assert(!isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
static_assert(largeRange.max == std::numeric_limits<rep>::max());
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
static_assert(isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
static_assert(largeRange.log == 18);
// There are 2 values that will not fit in largeRange without some extra
// work
// * 9223372036854775808
// * 9223372036854775809
// They both end up < min, but with a leftover. If they round up, everything
// will be fine. If they don't, we'll need to bring them up into range.
// Guard::bringIntoRange handles this situation.
static_assert(largeRange.min < maxRep);
static_assert(largeRange.max > maxRep);
// The range for the mantissa when normalized.
// Use reference_wrapper to avoid making copies, and prevent accidentally
// changing the values inside the range.
static thread_local std::reference_wrapper<MantissaRange const> range_;
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one(MantissaRange const& range);
static Number
root(MantissaRange const& range, Number f, unsigned d);
void
normalize(MantissaRange const& range);
void
normalize();
@@ -584,14 +478,11 @@ private:
friend void
doNormalize(
bool& negative,
T& mantissa,
int& exponent,
T& mantissa_,
int& exponent_,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa);
bool
isnormal(MantissaRange const& range) const noexcept;
bool
isnormal() const noexcept;
@@ -601,64 +492,18 @@ private:
Number
shiftExponent(int exponentDelta) const;
// Safely return the absolute value of a rep (int64) mantissa as an internalrep (uint64).
// Safely convert rep (int64) mantissa to internalrep (uint64). If the rep
// is negative, returns the positive value. This takes a little extra work
// because converting std::numeric_limits<std::int64_t>::min() flirts with
// UB, and can vary across compilers.
static internalrep
externalToInternal(rep mantissa);
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal(MantissaRange const& range) const;
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal() const;
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange);
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent);
class Guard;
public:
constexpr static internalrep largestMantissa = largeRange.max;
};
inline constexpr Number::Number(bool negative, internalrep mantissa, int exponent, unchecked) noexcept
: mantissa_{negative ? -static_cast<rep>(mantissa) : static_cast<rep>(mantissa)}, exponent_{exponent}
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
{
}
@@ -669,6 +514,12 @@ inline constexpr Number::Number(internalrep mantissa, int exponent, unchecked) n
constexpr static Number numZero{};
inline Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
: Number(negative, mantissa, exponent, unchecked{})
{
normalize();
}
inline Number::Number(internalrep mantissa, int exponent, normalized) : Number(false, mantissa, exponent, normalized{})
{
}
@@ -690,7 +541,17 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
inline constexpr Number::rep
Number::mantissa() const noexcept
{
return mantissa_;
auto m = mantissa_;
if (m > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
"xrpl::Number::mantissa",
"large normalized mantissa has no remainder");
m /= 10;
}
auto const sign = negative_ ? -1 : 1;
return sign * static_cast<Number::rep>(m);
}
/** Returns the exponent of the external view of the Number.
@@ -701,7 +562,16 @@ Number::mantissa() const noexcept
inline constexpr int
Number::exponent() const noexcept
{
return exponent_;
auto e = exponent_;
if (mantissa_ > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
"xrpl::Number::exponent",
"large normalized mantissa has no remainder");
++e;
}
return e;
}
inline constexpr Number
@@ -716,7 +586,7 @@ Number::operator-() const noexcept
if (mantissa_ == 0)
return Number{};
auto x = *this;
x.mantissa_ = -x.mantissa_;
x.negative_ = !x.negative_;
return x;
}
@@ -797,55 +667,39 @@ Number::min() noexcept
inline Number
Number::max() noexcept
{
return Number{false, range_.get().max, maxExponent, unchecked{}};
return Number{false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
}
inline Number
Number::lowest() noexcept
{
return Number{true, range_.get().max, maxExponent, unchecked{}};
}
inline bool
Number::isnormal(MantissaRange const& range) const noexcept
{
auto const abs_m = externalToInternal(mantissa_);
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && //
minExponent <= exponent_ && exponent_ <= maxExponent);
return Number{true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
}
inline bool
Number::isnormal() const noexcept
{
return isnormal(range_);
MantissaRange const& range = range_;
auto const abs_m = mantissa_;
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && (abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
exponent_ <= maxExponent);
}
template <Integral64 T>
std::pair<T, int>
Number::normalizeToRange(T minMantissa, T maxMantissa) const
{
bool negative = mantissa_ < 0;
internalrep mantissa = externalToInternal(mantissa_);
bool negative = negative_;
internalrep mantissa = mantissa_;
int exponent = exponent_;
if constexpr (std::is_unsigned_v<T>)
{
XRPL_ASSERT_PARTS(!negative, "xrpl::Number::normalizeToRange", "Number is non-negative for unsigned range.");
// To avoid logical errors in release builds, throw if the Number is
// negative for an unsigned range.
if (negative)
throw std::runtime_error(
"Number::normalizeToRange: Number is negative for "
"unsigned range.");
}
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
// Cast mantissa to signed type first (if T is a signed type) to avoid
// unsigned integer overflow when multiplying by negative sign
T signedMantissa = negative ? -static_cast<T>(mantissa) : static_cast<T>(mantissa);
return std::make_pair(signedMantissa, exponent);
auto const sign = negative ? -1 : 1;
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
}
inline constexpr Number

View File

@@ -231,7 +231,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
/** The maximum amount of MPTokenIssuance */
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
static_assert(Number::largestMantissa >= maxMPTokenAmount);
static_assert(Number::maxRep >= maxMPTokenAmount);
/** The maximum length of Data payload */
std::size_t constexpr maxDataPayloadLength = 256;

View File

@@ -521,7 +521,6 @@ STAmount::fromNumber(A const& a, Number const& number)
return STAmount{asset, intValue, 0, negative};
}
XRPL_ASSERT_PARTS(working.signum() >= 0, "xrpl::STAmount::fromNumber", "non-negative Number to normalize");
auto const [mantissa, exponent] = working.normalizeToRange(cMinValue, cMaxValue);
return STAmount{asset, mantissa, exponent, negative};

View File

@@ -23,7 +23,7 @@ systemName()
/** Number of drops in the genesis account. */
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
static_assert(Number::maxRep >= INITIAL_XRP.drops());
/** Returns true if the amount does not exceed the initial XRP in existence. */
inline bool

View File

@@ -11,16 +11,18 @@
#include <numeric>
#include <stdexcept>
#include <string>
#include <string_view>
#include <type_traits>
#include <utility>
#ifdef _MSC_VER
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
#endif
using uint128_t = xrpl::detail::uint128_t;
using int128_t = xrpl::detail::int128_t;
#include <boost/multiprecision/cpp_int.hpp>
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
namespace xrpl {
@@ -59,6 +61,9 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
// precision to an operation. This enables the final result
// to be correctly rounded to the internal precision of Number.
template <class T>
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
class Number::Guard
{
std::uint64_t digits_; // 16 decimal guard digits
@@ -94,7 +99,7 @@ public:
round() noexcept;
// Modify the result to the correctly rounded value
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
doRoundUp(
bool& negative,
@@ -102,22 +107,22 @@ public:
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa,
std::string_view location);
std::string location);
// Modify the result to the correctly rounded value
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
doRoundDown(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa);
// Modify the result to the correctly rounded value
void
doRound(rep& drops, std::string_view location);
doRound(rep& drops, std::string location);
private:
void
doPush(unsigned d) noexcept;
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
bringIntoRange(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa);
};
@@ -204,7 +209,7 @@ Number::Guard::round() noexcept
return 0;
}
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
Number::Guard::bringIntoRange(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa)
{
@@ -219,13 +224,13 @@ Number::Guard::bringIntoRange(bool& negative, T& mantissa, int& exponent, intern
{
constexpr Number zero = Number{};
negative = false;
negative = zero.negative_;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
}
}
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
Number::Guard::doRoundUp(
bool& negative,
@@ -233,7 +238,7 @@ Number::Guard::doRoundUp(
int& exponent,
internalrep const& minMantissa,
internalrep const& maxMantissa,
std::string_view location)
std::string location)
{
auto r = round();
if (r == 1 || (r == 0 && (mantissa & 1) == 1))
@@ -241,7 +246,7 @@ Number::Guard::doRoundUp(
++mantissa;
// Ensure mantissa after incrementing fits within both the
// min/maxMantissa range and is a valid "rep".
if (mantissa > maxMantissa)
if (mantissa > maxMantissa || mantissa > maxRep)
{
mantissa /= 10;
++exponent;
@@ -249,10 +254,10 @@ Number::Guard::doRoundUp(
}
bringIntoRange(negative, mantissa, exponent, minMantissa);
if (exponent > maxExponent)
throw std::overflow_error(std::string{location});
throw std::overflow_error(location);
}
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
Number::Guard::doRoundDown(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa)
{
@@ -271,22 +276,21 @@ Number::Guard::doRoundDown(bool& negative, T& mantissa, int& exponent, internalr
// Modify the result to the correctly rounded value
void
Number::Guard::doRound(rep& drops, std::string_view location)
Number::Guard::doRound(rep& drops, std::string location)
{
auto r = round();
if (r == 1 || (r == 0 && (drops & 1) == 1))
{
auto const& range = range_.get();
if (drops >= range.max)
if (drops >= maxRep)
{
static_assert(sizeof(internalrep) == sizeof(rep));
// This should be impossible, because it's impossible to represent
// "largestMantissa + 0.6" in Number, regardless of the scale. There aren't
// enough digits available. You'd either get a mantissa of "largestMantissa "
// or "largestMantissa / 10 + 1", neither of which will round up when
// "maxRep + 0.6" in Number, regardless of the scale. There aren't
// enough digits available. You'd either get a mantissa of "maxRep"
// or "(maxRep + 1) / 10", neither of which will round up when
// converting to rep, though the latter might overflow _before_
// rounding.
throw std::overflow_error(std::string{location}); // LCOV_EXCL_LINE
throw std::overflow_error(location); // LCOV_EXCL_LINE
}
++drops;
}
@@ -306,126 +310,23 @@ Number::externalToInternal(rep mantissa)
// If the mantissa is already positive, just return it
if (mantissa >= 0)
return mantissa;
// If the mantissa is negative, but fits within the positive range of rep,
// return it negated
if (mantissa >= -std::numeric_limits<rep>::max())
return -mantissa;
// Cast to unsigned before negating to avoid undefined behavior
// when v == INT64_MIN (negating INT64_MIN in signed is UB)
return -static_cast<internalrep>(mantissa);
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal(MantissaRange const& range) const
{
auto exponent = exponent_;
bool const negative = mantissa_ < 0;
// It should be impossible for mantissa_ to be INT64_MIN, but use externalToInternal just in case.
Rep mantissa = static_cast<Rep>(externalToInternal(mantissa_));
auto const referenceMin = range.referenceMin;
auto const minMantissa = range.min;
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
{
// Ensure the mantissa has the correct number of digits
mantissa *= 10;
--exponent;
XRPL_ASSERT_PARTS(
mantissa >= referenceMin && mantissa < referenceMin * 10,
"xrpl::Number::toInternal()",
"Number is within reference range and has 'log' digits");
}
return {negative, mantissa, exponent};
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has exactly range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal() const
{
return toInternal(range_);
}
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange)
{
if constexpr (std::is_same_v<std::bool_constant<expectNormal>, std::false_type>)
{
if (!pRange)
throw std::runtime_error("Missing range to Number::fromInternal!");
auto const& range = *pRange;
auto const maxMantissa = range.max;
auto const minMantissa = range.min;
XRPL_ASSERT_PARTS(mantissa >= minMantissa, "xrpl::Number::fromInternal", "mantissa large enough");
if (mantissa > maxMantissa || mantissa < minMantissa)
{
normalize(negative, mantissa, exponent, range.min, maxMantissa);
}
XRPL_ASSERT_PARTS(
mantissa >= minMantissa && mantissa <= maxMantissa, "xrpl::Number::fromInternal", "mantissa in range");
}
// mantissa is unsigned, but it might not be uint64
mantissa_ = static_cast<rep>(static_cast<internalrep>(mantissa));
if (negative)
mantissa_ = -mantissa_;
exponent_ = exponent;
XRPL_ASSERT_PARTS(
(pRange && isnormal(*pRange)) || isnormal(), "xrpl::Number::fromInternal", "Number is normalized");
}
/** Rebuilds the number from components.
*
* If "expectNormal" is true, the values are expected to be normalized - all in
* their valid ranges.
*
* If "expectNormal" is false, the values are expected to be "near normalized",
* meaning that the mantissa has to be modified at most once to bring it back
* into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(bool negative, Rep mantissa, int exponent)
{
MantissaRange const* pRange = nullptr;
if constexpr (std::is_same_v<std::bool_constant<expectNormal>, std::false_type>)
{
pRange = &Number::range_.get();
}
fromInternal(negative, mantissa, exponent, pRange);
// If the mantissa doesn't fit within the positive range, convert to
// int128_t, negate that, and cast it back down to the internalrep
// In practice, this is only going to cover the case of
// std::numeric_limits<rep>::min().
int128_t temp = mantissa;
return static_cast<internalrep>(-temp);
}
constexpr Number
Number::oneSmall()
{
return Number{false, Number::smallRange.referenceMin, -Number::smallRange.log, Number::unchecked{}};
return Number{false, Number::smallRange.min, -Number::smallRange.log, Number::unchecked{}};
};
constexpr Number oneSml = Number::oneSmall();
@@ -433,84 +334,101 @@ constexpr Number oneSml = Number::oneSmall();
constexpr Number
Number::oneLarge()
{
return Number{false, Number::largeRange.referenceMin, -Number::largeRange.log, Number::unchecked{}};
return Number{false, Number::largeRange.min, -Number::largeRange.log, Number::unchecked{}};
};
constexpr Number oneLrg = Number::oneLarge();
Number
Number::one(MantissaRange const& range)
Number::one()
{
if (&range == &smallRange)
if (&range_.get() == &smallRange)
return oneSml;
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
return oneLrg;
}
Number
Number::one()
{
return one(range_);
}
// Use the member names in this static function for now so the diff is cleaner
// TODO: Rename the function parameters to get rid of the "_" suffix
template <class T>
void
doNormalize(
bool& negative,
T& mantissa,
int& exponent,
T& mantissa_,
int& exponent_,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa)
{
auto constexpr minExponent = Number::minExponent;
auto constexpr maxExponent = Number::maxExponent;
auto constexpr maxRep = Number::maxRep;
using Guard = Number::Guard;
constexpr Number zero = Number{};
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
if (mantissa_ == 0)
{
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
return;
}
auto m = mantissa;
while ((m < minMantissa) && (exponent > minExponent))
auto m = mantissa_;
while ((m < minMantissa) && (exponent_ > minExponent))
{
m *= 10;
--exponent;
--exponent_;
}
Guard g;
if (negative)
g.set_negative();
while (m > maxMantissa)
{
if (exponent >= maxExponent)
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1");
g.push(m % 10);
m /= 10;
++exponent;
++exponent_;
}
if ((exponent < minExponent) || (m == 0))
if ((exponent_ < minExponent) || (m < minMantissa))
{
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
return;
}
XRPL_ASSERT_PARTS(m <= maxMantissa, "xrpl::doNormalize", "intermediate mantissa fits in int64");
mantissa = m;
g.doRoundUp(negative, mantissa, exponent, minMantissa, maxMantissa, "Number::normalize 2");
// When using the largeRange, "m" needs fit within an int64, even if
// the final mantissa_ is going to end up larger to fit within the
// MantissaRange. Cut it down here so that the rounding will be done while
// it's smaller.
//
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
// so "m" will be modified to 990,000,000,000,012,345. Then that value
// will be rounded to 990,000,000,000,012,345 or
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
// mantissa_ will be "m*10" so it fits within the range, and end up as
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
// mantissa() will return mantissa_ / 10, and exponent() will return
// exponent_ + 1.
if (m > maxRep)
{
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1.5");
g.push(m % 10);
m /= 10;
++exponent_;
}
// Before modification, m should be within the min/max range. After
// modification, it must be less than maxRep. In other words, the original
// value should have been no more than maxRep * 10.
// (maxRep * 10 > maxMantissa)
XRPL_ASSERT_PARTS(m <= maxRep, "xrpl::doNormalize", "intermediate mantissa fits in int64");
mantissa_ = m;
g.doRoundUp(negative, mantissa_, exponent_, minMantissa, maxMantissa, "Number::normalize 2");
XRPL_ASSERT_PARTS(
mantissa >= minMantissa && mantissa <= maxMantissa, "xrpl::doNormalize", "final mantissa fits in range");
XRPL_ASSERT_PARTS(
exponent >= minExponent && exponent <= maxExponent, "xrpl::doNormalize", "final exponent fits in range");
mantissa_ >= minMantissa && mantissa_ <= maxMantissa, "xrpl::doNormalize", "final mantissa fits in range");
}
template <>
@@ -549,20 +467,11 @@ Number::normalize<unsigned long>(
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
}
void
Number::normalize(MantissaRange const& range)
{
auto [negative, mantissa, exponent] = toInternal(range);
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
void
Number::normalize()
{
normalize(range_);
auto const& range = range_.get();
normalize(negative_, mantissa_, exponent_, range.min, range.max);
}
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
@@ -572,33 +481,21 @@ Number
Number::shiftExponent(int exponentDelta) const
{
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
Number result = *this;
result.exponent_ += exponentDelta;
if (result.exponent_ >= maxExponent)
auto const newExponent = exponent_ + exponentDelta;
if (newExponent >= maxExponent)
throw std::overflow_error("Number::shiftExponent");
if (result.exponent_ < minExponent)
if (newExponent < minExponent)
{
return Number{};
}
Number const result{negative_, mantissa_, newExponent, unchecked{}};
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::Number::shiftExponent", "result is normalized");
return result;
}
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
{
auto const& range = range_.get();
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
Number&
Number::operator+=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
return *this;
@@ -613,7 +510,7 @@ Number::operator+=(Number const& y)
return *this;
}
XRPL_ASSERT(isnormal(range) && y.isnormal(range), "xrpl::Number::operator+=(Number) : is normal");
XRPL_ASSERT(isnormal() && y.isnormal(), "xrpl::Number::operator+=(Number) : is normal");
// *n = negative
// *s = sign
// *m = mantissa
@@ -621,10 +518,13 @@ Number::operator+=(Number const& y)
// Need to use uint128_t, because large mantissas can overflow when added
// together.
auto [xn, xm, xe] = toInternal<uint128_t>(range);
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
bool xn = negative_;
uint128_t xm = mantissa_;
auto xe = exponent_;
bool yn = y.negative_;
uint128_t ym = y.mantissa_;
auto ye = y.exponent_;
Guard g;
if (xe < ye)
{
@@ -649,13 +549,14 @@ Number::operator+=(Number const& y)
} while (xe > ye);
}
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
if (xn == yn)
{
xm += ym;
if (xm > maxMantissa)
if (xm > maxMantissa || xm > maxRep)
{
g.push(xm % 10);
xm /= 10;
@@ -675,7 +576,7 @@ Number::operator+=(Number const& y)
xe = ye;
xn = yn;
}
while (xm < minMantissa)
while (xm < minMantissa && xm * 10 <= maxRep)
{
xm *= 10;
xm -= g.pop();
@@ -684,8 +585,10 @@ Number::operator+=(Number const& y)
g.doRoundDown(xn, xm, xe, minMantissa);
}
normalize(xn, xm, xe, minMantissa, maxMantissa);
fromInternal(xn, xm, xe, &range);
negative_ = xn;
mantissa_ = static_cast<internalrep>(xm);
exponent_ = xe;
normalize();
return *this;
}
@@ -720,8 +623,6 @@ divu10(uint128_t& u)
Number&
Number::operator*=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (*this == zero)
return *this;
@@ -735,11 +636,15 @@ Number::operator*=(Number const& y)
// *m = mantissa
// *e = exponent
auto [xn, xm, xe] = toInternal(range);
bool xn = negative_;
int xs = xn ? -1 : 1;
internalrep xm = mantissa_;
auto xe = exponent_;
auto [yn, ym, ye] = y.toInternal(range);
bool yn = y.negative_;
int ys = yn ? -1 : 1;
internalrep ym = y.mantissa_;
auto ye = y.exponent_;
auto zm = uint128_t(xm) * uint128_t(ym);
auto ze = xe + ye;
@@ -749,10 +654,11 @@ Number::operator*=(Number const& y)
if (zn)
g.set_negative();
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
while (zm > maxMantissa)
while (zm > maxMantissa || zm > maxRep)
{
// The following is optimization for:
// g.push(static_cast<unsigned>(zm % 10));
@@ -764,17 +670,17 @@ Number::operator*=(Number const& y)
xe = ze;
g.doRoundUp(
zn, xm, xe, minMantissa, maxMantissa, "Number::multiplication overflow : exponent is " + std::to_string(xe));
negative_ = zn;
mantissa_ = xm;
exponent_ = xe;
normalize(zn, xm, xe, minMantissa, maxMantissa);
fromInternal(zn, xm, xe, &range);
normalize();
return *this;
}
Number&
Number::operator/=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
throw std::overflow_error("Number: divide by 0");
@@ -787,12 +693,17 @@ Number::operator/=(Number const& y)
// *m = mantissa
// *e = exponent
auto [np, nm, ne] = toInternal(range);
bool np = negative_;
int ns = (np ? -1 : 1);
auto nm = mantissa_;
auto ne = exponent_;
auto [dp, dm, de] = y.toInternal(range);
bool dp = y.negative_;
int ds = (dp ? -1 : 1);
auto dm = y.mantissa_;
auto de = y.exponent_;
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
@@ -804,7 +715,7 @@ Number::operator/=(Number const& y)
// f can be up to 10^(38-19) = 10^19 safely
static_assert(smallRange.log == 15);
static_assert(largeRange.log == 18);
bool small = range.scale == MantissaRange::small;
bool small = Number::getMantissaScale() == MantissaRange::small;
uint128_t const f = small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
XRPL_ASSERT_PARTS(f >= minMantissa * 10, "Number::operator/=", "factor expected size");
@@ -854,8 +765,10 @@ Number::operator/=(Number const& y)
}
}
normalize(zn, zm, ze, minMantissa, maxMantissa);
fromInternal(zn, zm, ze, &range);
XRPL_ASSERT_PARTS(isnormal(range), "xrpl::Number::operator/=", "result is normalized");
negative_ = zn;
mantissa_ = static_cast<internalrep>(zm);
exponent_ = ze;
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::operator/=", "result is normalized");
return *this;
}
@@ -867,10 +780,10 @@ Number::operator rep() const
Guard g;
if (drops != 0)
{
if (drops < 0)
if (negative_)
{
g.set_negative();
drops = externalToInternal(drops);
drops = -drops;
}
for (; offset < 0; ++offset)
{
@@ -879,7 +792,7 @@ Number::operator rep() const
}
for (; offset > 0; --offset)
{
if (drops >= largeRange.min)
if (drops > maxRep / 10)
throw std::overflow_error("Number::operator rep() overflow");
drops *= 10;
}
@@ -909,21 +822,19 @@ Number::truncate() const noexcept
std::string
to_string(Number const& amount)
{
auto const& range = Number::range_.get();
// keep full internal accuracy, but make more human friendly if possible
constexpr Number zero = Number{};
if (amount == zero)
return "0";
// The mantissa must have a set number of decimal places for this to work
auto [negative, mantissa, exponent] = amount.toInternal(range);
auto exponent = amount.exponent_;
auto mantissa = amount.mantissa_;
bool const negative = amount.negative_;
// Use scientific notation for exponents that are too small or too large
auto const rangeLog = range.log;
if (((exponent != 0 && amount.exponent() != 0) && ((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
auto const rangeLog = Number::mantissaLog();
if (((exponent != 0) && ((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
{
// Remove trailing zeroes from the mantissa.
while (mantissa != 0 && mantissa % 10 == 0 && exponent < Number::maxExponent)
{
mantissa /= 10;
@@ -931,11 +842,8 @@ to_string(Number const& amount)
}
std::string ret = negative ? "-" : "";
ret.append(std::to_string(mantissa));
if (exponent != 0)
{
ret.append(1, 'e');
ret.append(std::to_string(exponent));
}
ret.append(1, 'e');
ret.append(std::to_string(exponent));
return ret;
}
@@ -1017,11 +925,20 @@ power(Number const& f, unsigned n)
return r;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
Number::root(MantissaRange const& range, Number f, unsigned d)
root(Number f, unsigned d)
{
constexpr Number zero = Number{};
auto const one = Number::one(range);
auto const one = Number::one();
if (f == one || d == 1)
return f;
@@ -1038,28 +955,21 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
if (f == zero)
return f;
auto const [e, di] = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that the scale change (e) is a
// multiple of the root (d)
auto e = exponent + range.log + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
return std::make_tuple(e, di);
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
XRPL_ASSERT_PARTS(f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
bool neg = false;
if (f < zero)
{
@@ -1092,32 +1002,15 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
// return r * 10^(e/d) to reverse scaling
auto const result = r.shiftExponent(e / di);
XRPL_ASSERT_PARTS(result.isnormal(range), "xrpl::root(Number, unsigned)", "result is normalized");
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::root(Number, unsigned)", "result is normalized");
return result;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
{
auto const& range = Number::range_.get();
return Number::root(range, f, d);
}
Number
root2(Number f)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one(range);
auto const one = Number::one();
if (f == one)
return f;
@@ -1126,18 +1019,12 @@ root2(Number f)
if (f == zero)
return f;
auto const e = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that f's exponent is a
// multiple of d
auto e = exponent + range.log + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
return e;
}();
XRPL_ASSERT_PARTS(f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
auto const D = 105;
@@ -1159,7 +1046,7 @@ root2(Number f)
// return r * 10^(e/2) to reverse scaling
auto const result = r.shiftExponent(e / 2);
XRPL_ASSERT_PARTS(result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::root2(Number)", "result is normalized");
return result;
}
@@ -1169,10 +1056,8 @@ root2(Number f)
Number
power(Number const& f, unsigned n, unsigned d)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one(range);
auto const one = Number::one();
if (f == one)
return f;
@@ -1194,7 +1079,7 @@ power(Number const& f, unsigned n, unsigned d)
d /= g;
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
throw std::overflow_error("Number::power nan");
return Number::root(range, power(f, n), d);
return root(power(f, n), d);
}
} // namespace xrpl

View File

@@ -592,18 +592,20 @@ class LendingHelpers_test : public beast::unit_test::suite
auto const periodicRate = loanPeriodicRate(loanInterestRate, paymentInterval);
Number const overpaymentAmount{50};
auto const overpaymentComponents = computeOverpaymentComponents(
ExtendedPaymentComponents const overpaymentComponents = computeOverpaymentComponents(
asset, loanScale, overpaymentAmount, TenthBips32(0), TenthBips32(0), managementFeeRate);
auto const loanProperties = computeLoanProperties(
auto const loanProperites = computeLoanProperties(
asset, loanPrincipal, loanInterestRate, paymentInterval, paymentsRemaining, managementFeeRate, loanScale);
Number const periodicPayment = loanProperites.periodicPayment;
auto const ret = tryOverpayment(
asset,
loanScale,
overpaymentComponents,
loanProperties.loanState,
loanProperties.periodicPayment,
loanProperites.loanState,
periodicPayment,
periodicRate,
paymentsRemaining,
managementFeeRate,
@@ -634,20 +636,20 @@ class LendingHelpers_test : public beast::unit_test::suite
// =========== VALIDATE STATE CHANGES ===========
BEAST_EXPECTS(
loanProperties.loanState.interestDue - newState.interestDue == 0,
loanProperites.loanState.interestDue - newState.interestDue == 0,
" interest change mismatch: expected 0, got " +
to_string(loanProperties.loanState.interestDue - newState.interestDue));
to_string(loanProperites.loanState.interestDue - newState.interestDue));
BEAST_EXPECTS(
loanProperties.loanState.managementFeeDue - newState.managementFeeDue == 0,
loanProperites.loanState.managementFeeDue - newState.managementFeeDue == 0,
" management fee change mismatch: expected 0, got " +
to_string(loanProperties.loanState.managementFeeDue - newState.managementFeeDue));
to_string(loanProperites.loanState.managementFeeDue - newState.managementFeeDue));
BEAST_EXPECTS(
actualPaymentParts.principalPaid ==
loanProperties.loanState.principalOutstanding - newState.principalOutstanding,
loanProperites.loanState.principalOutstanding - newState.principalOutstanding,
" principalPaid mismatch: expected " +
to_string(loanProperties.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(loanProperites.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(actualPaymentParts.principalPaid));
}
@@ -670,7 +672,7 @@ class LendingHelpers_test : public beast::unit_test::suite
std::uint32_t const paymentsRemaining = 10;
auto const periodicRate = loanPeriodicRate(loanInterestRate, paymentInterval);
auto const overpaymentComponents = computeOverpaymentComponents(
ExtendedPaymentComponents const overpaymentComponents = computeOverpaymentComponents(
asset,
loanScale,
Number{50, 0},
@@ -678,15 +680,17 @@ class LendingHelpers_test : public beast::unit_test::suite
TenthBips32(10'000), // 10% overpayment fee
managementFeeRate);
auto const loanProperties = computeLoanProperties(
auto const loanProperites = computeLoanProperties(
asset, loanPrincipal, loanInterestRate, paymentInterval, paymentsRemaining, managementFeeRate, loanScale);
Number const periodicPayment = loanProperites.periodicPayment;
auto const ret = tryOverpayment(
asset,
loanScale,
overpaymentComponents,
loanProperties.loanState,
loanProperties.periodicPayment,
loanProperites.loanState,
periodicPayment,
periodicRate,
paymentsRemaining,
managementFeeRate,
@@ -717,21 +721,21 @@ class LendingHelpers_test : public beast::unit_test::suite
// =========== VALIDATE STATE CHANGES ===========
// With no Loan interest, interest outstanding should not change
BEAST_EXPECTS(
loanProperties.loanState.interestDue - newState.interestDue == 0,
loanProperites.loanState.interestDue - newState.interestDue == 0,
" interest change mismatch: expected 0, got " +
to_string(loanProperties.loanState.interestDue - newState.interestDue));
to_string(loanProperites.loanState.interestDue - newState.interestDue));
// With no Loan management fee, management fee due should not change
BEAST_EXPECTS(
loanProperties.loanState.managementFeeDue - newState.managementFeeDue == 0,
loanProperites.loanState.managementFeeDue - newState.managementFeeDue == 0,
" management fee change mismatch: expected 0, got " +
to_string(loanProperties.loanState.managementFeeDue - newState.managementFeeDue));
to_string(loanProperites.loanState.managementFeeDue - newState.managementFeeDue));
BEAST_EXPECTS(
actualPaymentParts.principalPaid ==
loanProperties.loanState.principalOutstanding - newState.principalOutstanding,
loanProperites.loanState.principalOutstanding - newState.principalOutstanding,
" principalPaid mismatch: expected " +
to_string(loanProperties.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(loanProperites.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(actualPaymentParts.principalPaid));
}
@@ -754,7 +758,7 @@ class LendingHelpers_test : public beast::unit_test::suite
std::uint32_t const paymentsRemaining = 10;
auto const periodicRate = loanPeriodicRate(loanInterestRate, paymentInterval);
auto const overpaymentComponents = computeOverpaymentComponents(
ExtendedPaymentComponents const overpaymentComponents = computeOverpaymentComponents(
asset,
loanScale,
Number{50, 0},
@@ -762,15 +766,17 @@ class LendingHelpers_test : public beast::unit_test::suite
TenthBips32(0), // 0% overpayment fee
managementFeeRate);
auto const loanProperties = computeLoanProperties(
auto const loanProperites = computeLoanProperties(
asset, loanPrincipal, loanInterestRate, paymentInterval, paymentsRemaining, managementFeeRate, loanScale);
Number const periodicPayment = loanProperites.periodicPayment;
auto const ret = tryOverpayment(
asset,
loanScale,
overpaymentComponents,
loanProperties.loanState,
loanProperties.periodicPayment,
loanProperites.loanState,
periodicPayment,
periodicRate,
paymentsRemaining,
managementFeeRate,
@@ -806,22 +812,22 @@ class LendingHelpers_test : public beast::unit_test::suite
// =========== VALIDATE STATE CHANGES ===========
BEAST_EXPECTS(
actualPaymentParts.principalPaid ==
loanProperties.loanState.principalOutstanding - newState.principalOutstanding,
loanProperites.loanState.principalOutstanding - newState.principalOutstanding,
" principalPaid mismatch: expected " +
to_string(loanProperties.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(loanProperites.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(actualPaymentParts.principalPaid));
BEAST_EXPECTS(
actualPaymentParts.valueChange == newState.interestDue - loanProperties.loanState.interestDue,
actualPaymentParts.valueChange == newState.interestDue - loanProperites.loanState.interestDue,
" valueChange mismatch: expected " +
to_string(newState.interestDue - loanProperties.loanState.interestDue) + ", got " +
to_string(newState.interestDue - loanProperites.loanState.interestDue) + ", got " +
to_string(actualPaymentParts.valueChange));
// With no Loan management fee, management fee due should not change
BEAST_EXPECTS(
loanProperties.loanState.managementFeeDue - newState.managementFeeDue == 0,
loanProperites.loanState.managementFeeDue - newState.managementFeeDue == 0,
" management fee change mismatch: expected 0, got " +
to_string(loanProperties.loanState.managementFeeDue - newState.managementFeeDue));
to_string(loanProperites.loanState.managementFeeDue - newState.managementFeeDue));
}
void
@@ -843,7 +849,7 @@ class LendingHelpers_test : public beast::unit_test::suite
std::uint32_t const paymentsRemaining = 10;
auto const periodicRate = loanPeriodicRate(loanInterestRate, paymentInterval);
auto const overpaymentComponents = computeOverpaymentComponents(
ExtendedPaymentComponents const overpaymentComponents = computeOverpaymentComponents(
asset,
loanScale,
Number{50, 0},
@@ -851,15 +857,17 @@ class LendingHelpers_test : public beast::unit_test::suite
TenthBips32(0), // 0% overpayment fee
managementFeeRate);
auto const loanProperties = computeLoanProperties(
auto const loanProperites = computeLoanProperties(
asset, loanPrincipal, loanInterestRate, paymentInterval, paymentsRemaining, managementFeeRate, loanScale);
Number const periodicPayment = loanProperites.periodicPayment;
auto const ret = tryOverpayment(
asset,
loanScale,
overpaymentComponents,
loanProperties.loanState,
loanProperties.periodicPayment,
loanProperites.loanState,
periodicPayment,
periodicRate,
paymentsRemaining,
managementFeeRate,
@@ -896,26 +904,26 @@ class LendingHelpers_test : public beast::unit_test::suite
// =========== VALIDATE STATE CHANGES ===========
BEAST_EXPECTS(
actualPaymentParts.principalPaid ==
loanProperties.loanState.principalOutstanding - newState.principalOutstanding,
loanProperites.loanState.principalOutstanding - newState.principalOutstanding,
" principalPaid mismatch: expected " +
to_string(loanProperties.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(loanProperites.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(actualPaymentParts.principalPaid));
// The change in interest is equal to the value change sans the
// overpayment interest
BEAST_EXPECTS(
actualPaymentParts.valueChange - actualPaymentParts.interestPaid ==
newState.interestDue - loanProperties.loanState.interestDue,
newState.interestDue - loanProperites.loanState.interestDue,
" valueChange mismatch: expected " +
to_string(
newState.interestDue - loanProperties.loanState.interestDue + actualPaymentParts.interestPaid) +
newState.interestDue - loanProperites.loanState.interestDue + actualPaymentParts.interestPaid) +
", got " + to_string(actualPaymentParts.valueChange));
// With no Loan management fee, management fee due should not change
BEAST_EXPECTS(
loanProperties.loanState.managementFeeDue - newState.managementFeeDue == 0,
loanProperites.loanState.managementFeeDue - newState.managementFeeDue == 0,
" management fee change mismatch: expected 0, got " +
to_string(loanProperties.loanState.managementFeeDue - newState.managementFeeDue));
to_string(loanProperites.loanState.managementFeeDue - newState.managementFeeDue));
}
void
@@ -939,7 +947,7 @@ class LendingHelpers_test : public beast::unit_test::suite
std::uint32_t const paymentsRemaining = 10;
auto const periodicRate = loanPeriodicRate(loanInterestRate, paymentInterval);
auto const overpaymentComponents = computeOverpaymentComponents(
ExtendedPaymentComponents const overpaymentComponents = computeOverpaymentComponents(
asset,
loanScale,
Number{50, 0},
@@ -947,15 +955,17 @@ class LendingHelpers_test : public beast::unit_test::suite
TenthBips32(0), // 0% overpayment fee
managementFeeRate);
auto const loanProperties = computeLoanProperties(
auto const loanProperites = computeLoanProperties(
asset, loanPrincipal, loanInterestRate, paymentInterval, paymentsRemaining, managementFeeRate, loanScale);
Number const periodicPayment = loanProperites.periodicPayment;
auto const ret = tryOverpayment(
asset,
loanScale,
overpaymentComponents,
loanProperties.loanState,
loanProperties.periodicPayment,
loanProperites.loanState,
periodicPayment,
periodicRate,
paymentsRemaining,
managementFeeRate,
@@ -994,23 +1004,23 @@ class LendingHelpers_test : public beast::unit_test::suite
// =========== VALIDATE STATE CHANGES ===========
BEAST_EXPECTS(
actualPaymentParts.principalPaid ==
loanProperties.loanState.principalOutstanding - newState.principalOutstanding,
loanProperites.loanState.principalOutstanding - newState.principalOutstanding,
" principalPaid mismatch: expected " +
to_string(loanProperties.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(loanProperites.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(actualPaymentParts.principalPaid));
// Note that the management fee value change is not captured, as this
// value is not needed to correctly update the Vault state.
BEAST_EXPECTS(
(newState.managementFeeDue - loanProperties.loanState.managementFeeDue == Number{-20592, -5}),
(newState.managementFeeDue - loanProperites.loanState.managementFeeDue == Number{-20592, -5}),
" management fee change mismatch: expected " + to_string(Number{-20592, -5}) + ", got " +
to_string(newState.managementFeeDue - loanProperties.loanState.managementFeeDue));
to_string(newState.managementFeeDue - loanProperites.loanState.managementFeeDue));
BEAST_EXPECTS(
actualPaymentParts.valueChange - actualPaymentParts.interestPaid ==
newState.interestDue - loanProperties.loanState.interestDue,
newState.interestDue - loanProperites.loanState.interestDue,
" valueChange mismatch: expected " +
to_string(newState.interestDue - loanProperties.loanState.interestDue) + ", got " +
to_string(newState.interestDue - loanProperites.loanState.interestDue) + ", got " +
to_string(actualPaymentParts.valueChange - actualPaymentParts.interestPaid));
}
@@ -1033,7 +1043,7 @@ class LendingHelpers_test : public beast::unit_test::suite
std::uint32_t const paymentsRemaining = 10;
auto const periodicRate = loanPeriodicRate(loanInterestRate, paymentInterval);
auto const overpaymentComponents = computeOverpaymentComponents(
ExtendedPaymentComponents const overpaymentComponents = computeOverpaymentComponents(
asset,
loanScale,
Number{50, 0},
@@ -1041,15 +1051,17 @@ class LendingHelpers_test : public beast::unit_test::suite
TenthBips32(10'000), // 10% overpayment fee
managementFeeRate);
auto const loanProperties = computeLoanProperties(
auto const loanProperites = computeLoanProperties(
asset, loanPrincipal, loanInterestRate, paymentInterval, paymentsRemaining, managementFeeRate, loanScale);
Number const periodicPayment = loanProperites.periodicPayment;
auto const ret = tryOverpayment(
asset,
loanScale,
overpaymentComponents,
loanProperties.loanState,
loanProperties.periodicPayment,
loanProperites.loanState,
periodicPayment,
periodicRate,
paymentsRemaining,
managementFeeRate,
@@ -1089,23 +1101,23 @@ class LendingHelpers_test : public beast::unit_test::suite
BEAST_EXPECTS(
actualPaymentParts.principalPaid ==
loanProperties.loanState.principalOutstanding - newState.principalOutstanding,
loanProperites.loanState.principalOutstanding - newState.principalOutstanding,
" principalPaid mismatch: expected " +
to_string(loanProperties.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(loanProperites.loanState.principalOutstanding - newState.principalOutstanding) + ", got " +
to_string(actualPaymentParts.principalPaid));
// Note that the management fee value change is not captured, as this
// value is not needed to correctly update the Vault state.
BEAST_EXPECTS(
(newState.managementFeeDue - loanProperties.loanState.managementFeeDue == Number{-18304, -5}),
(newState.managementFeeDue - loanProperites.loanState.managementFeeDue == Number{-18304, -5}),
" management fee change mismatch: expected " + to_string(Number{-18304, -5}) + ", got " +
to_string(newState.managementFeeDue - loanProperties.loanState.managementFeeDue));
to_string(newState.managementFeeDue - loanProperites.loanState.managementFeeDue));
BEAST_EXPECTS(
actualPaymentParts.valueChange - actualPaymentParts.interestPaid ==
newState.interestDue - loanProperties.loanState.interestDue,
newState.interestDue - loanProperites.loanState.interestDue,
" valueChange mismatch: expected " +
to_string(newState.interestDue - loanProperties.loanState.interestDue) + ", got " +
to_string(newState.interestDue - loanProperites.loanState.interestDue) + ", got " +
to_string(actualPaymentParts.valueChange - actualPaymentParts.interestPaid));
}

View File

@@ -827,13 +827,8 @@ public:
// applyManifest should accept new manifests with
// higher sequence numbers
auto const seq0 = cache.sequence();
BEAST_EXPECT(cache.applyManifest(clone(s_a0)) == ManifestDisposition::accepted);
BEAST_EXPECT(cache.sequence() > seq0);
auto const seq1 = cache.sequence();
BEAST_EXPECT(cache.applyManifest(clone(s_a0)) == ManifestDisposition::stale);
BEAST_EXPECT(cache.sequence() == seq1);
BEAST_EXPECT(cache.applyManifest(clone(s_a1)) == ManifestDisposition::accepted);
BEAST_EXPECT(cache.applyManifest(clone(s_a1)) == ManifestDisposition::stale);

View File

@@ -32,10 +32,9 @@ public:
test_limits()
{
auto const scale = Number::getMantissaScale();
auto const minMantissa = Number::minMantissa();
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
testcase << "test_limits " << to_string(scale);
bool caught = false;
auto const minMantissa = Number::minMantissa();
try
{
Number x = Number{false, minMantissa * 10, 32768, Number::normalized{}};
@@ -59,9 +58,8 @@ public:
__LINE__);
test(Number{false, minMantissa, -32769, Number::normalized{}}, Number{}, __LINE__);
test(
// Use 1501 to force rounding up
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
Number{false, 1'501, 32000, Number::normalized{}},
Number{false, 1'500, 32000, Number::normalized{}},
Number{false, minMantissa + 2, 32003, Number::normalized{}},
__LINE__);
// 9,223,372,036,854,775,808
@@ -161,8 +159,8 @@ public:
{Number{true, 9'999'999'999'999'999'999ULL, -37, Number::normalized{}},
Number{1'000'000'000'000'000'000, -18},
Number{false, 9'999'999'999'999'999'990ULL, -19, Number::normalized{}}},
{Number{Number::largestMantissa}, Number{6, -1}, Number{Number::largestMantissa / 10, 1}},
{Number{Number::largestMantissa - 1}, Number{1, 0}, Number{Number::largestMantissa}},
{Number{Number::maxRep}, Number{6, -1}, Number{Number::maxRep / 10, 1}},
{Number{Number::maxRep - 1}, Number{1, 0}, Number{Number::maxRep}},
// Test extremes
{
// Each Number operand rounds up, so the actual mantissa is
@@ -172,18 +170,11 @@ public:
Number{2, 19},
},
{
// Does not round. Mantissas are going to be >
// largestMantissa, so if added together as uint64_t's, the
// result will overflow. With addition using uint128_t,
// there's no problem. After normalizing, the resulting
// mantissa ends up less than largestMantissa.
Number{false, Number::largestMantissa, 0, Number::normalized{}},
Number{false, Number::largestMantissa, 0, Number::normalized{}},
Number{false, Number::largestMantissa * 2, 0, Number::normalized{}},
},
{
// These mantissas round down, so adding them together won't
// have any consequences.
// Does not round. Mantissas are going to be > maxRep, so if
// added together as uint64_t's, the result will overflow.
// With addition using uint128_t, there's no problem. After
// normalizing, the resulting mantissa ends up less than
// maxRep.
Number{false, 9'999'999'999'999'999'990ULL, 0, Number::normalized{}},
Number{false, 9'999'999'999'999'999'990ULL, 0, Number::normalized{}},
Number{false, 1'999'999'999'999'999'998ULL, 1, Number::normalized{}},
@@ -270,14 +261,12 @@ public:
{Number{1'000'000'000'000'000'001, -18},
Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'000, -36}},
{Number{Number::largestMantissa}, Number{6, -1}, Number{Number::largestMantissa - 1}},
{Number{false, Number::largestMantissa + 1, 0, Number::normalized{}},
{Number{Number::maxRep}, Number{6, -1}, Number{Number::maxRep - 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
Number{1, 0},
Number{Number::largestMantissa / 10 + 1, 1}},
{Number{false, Number::largestMantissa + 1, 0, Number::normalized{}},
Number{3, 0},
Number{Number::largestMantissa}},
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
Number{Number::maxRep / 10 + 1, 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}}, Number{3, 0}, Number{Number::maxRep}},
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
});
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
@@ -300,15 +289,14 @@ public:
auto const scale = Number::getMantissaScale();
testcase << "test_mul " << to_string(scale);
// Case: Factor 1, Factor 2, Expected product, Line number
using Case = std::tuple<Number, Number, Number, int>;
using Case = std::tuple<Number, Number, Number>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z, line] : c)
for (auto const& [x, y, z] : c)
{
auto const result = x * y;
std::stringstream ss;
ss << x << " * " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(result == z, ss.str() + " line: " + std::to_string(line));
BEAST_EXPECTS(result == z, ss.str());
}
};
auto tests = [&](auto const& cSmall, auto const& cLarge) {
@@ -318,83 +306,48 @@ public:
test(cLarge);
};
auto const maxMantissa = Number::maxMantissa();
auto const maxInternalMantissa =
static_cast<std::uint64_t>(static_cast<std::int64_t>(power(10, Number::mantissaLog()))) * 10 - 1;
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
auto const cSmall = std::to_array<Case>({
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{2000000000000000, -15}, __LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{1000000000000000, -14}, __LINE__},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{2000000000000000, -15}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-2000000000000000, -15}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{2000000000000000, -15}},
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{1000000000000000, -14}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}},
// Maximum mantissa range
{Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'998, 16},
__LINE__},
{Number{9'999'999'999'999'999, 0}, Number{9'999'999'999'999'999, 0}, Number{9'999'999'999'999'998, 16}},
});
auto const cLarge = std::to_array<Case>({
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999862, -18}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999862, -18}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999862, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}}},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18},
__LINE__},
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2000000000000000001, -18}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18},
__LINE__},
Number{-1999999999999999998, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}, __LINE__},
// Maximum internal mantissa range - rounds up to 1e19
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum actual mantissa range - same as int64 range
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
// Maximum mantissa range - rounds up to 1e19
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
Number{1, 38}},
// Maximum int64 range
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'85, 19}},
});
tests(cSmall, cLarge);
}
@@ -402,78 +355,44 @@ public:
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " towards_zero";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__}});
{{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999, -15}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999, -15}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999, -15}},
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{9999999999999999, -15}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999861, -18}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999861, -18}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999861, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{false, 9999999999999999579ULL, -18, Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
Number{false, 9999999999999999579ULL, -18, Number::normalized{}}},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}, __LINE__},
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18},
__LINE__},
Number{-1999999999999999997, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}, __LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10e1
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}},
__LINE__},
// Maximum actual mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'84, 19}},
});
tests(cSmall, cLarge);
}
@@ -481,78 +400,44 @@ public:
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " downward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15},
__LINE__},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__}});
{{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999, -15}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-2000000000000000, -15}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999, -15}},
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{9999999999999999, -15}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999861, -18}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999862, -18}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999861, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}},
__LINE__},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}}},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}, __LINE__},
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18},
__LINE__},
Number{-1999999999999999998, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}, __LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10-1
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'84, 19}},
});
tests(cSmall, cLarge);
}
@@ -560,80 +445,44 @@ public:
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " upward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14},
__LINE__},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__}});
{{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{2000000000000000, -15}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999, -15}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{2000000000000000, -15}},
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{1000000000000000, -14}},
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18},
__LINE__},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{999999999999999958, -17},
__LINE__},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999862, -18}},
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999861, -18}},
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999862, -18}},
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{999999999999999958, -17}},
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18},
__LINE__},
Number{2000000000000000001, -18}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18},
__LINE__},
{Number{-1414213562373095048, -18}, Number{-1414213562373095049, -18}, Number{2, 0}, __LINE__},
Number{-1999999999999999997, -18}},
{Number{-1414213562373095048, -18}, Number{-1414213562373095049, -18}, Number{2, 0}},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{1000000000000000001, -17},
__LINE__},
// Maximum internal mantissa range - rounds up to
// minMantissa*10 1e19*1e19=1e38
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum mantissa range - same as int64
Number{1000000000000000001, -17}},
// Maximum mantissa range - rounds up to minMantissa*10
// 1e19*1e19=1e38
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
Number{1, 38}},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'85, 19}},
});
tests(cSmall, cLarge);
}
@@ -848,9 +697,6 @@ public:
};
*/
auto const maxInternalMantissa =
static_cast<std::uint64_t>(static_cast<std::int64_t>(power(10, Number::mantissaLog()))) * 10 - 1;
auto const cSmall = std::to_array<Case>(
{{Number{2}, 2, Number{1414213562373095049, -18}},
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
@@ -862,14 +708,14 @@ public:
{Number{0}, 5, Number{0}},
{Number{5625, -4}, 2, Number{75, -2}}});
auto const cLarge = std::to_array<Case>({
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
2,
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
2,
Number{false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
{Number{Number::largestMantissa}, 2, Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
{Number{Number::largestMantissa}, 4, Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
{Number{Number::maxRep}, 2, Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
{Number{Number::maxRep}, 4, Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
});
test(cSmall);
if (Number::getMantissaScale() != MantissaRange::small)
@@ -916,8 +762,6 @@ public:
}
};
auto const maxInternalMantissa = power(10, Number::mantissaLog()) * 10 - 1;
auto const cSmall = std::to_array<Number>({
Number{2},
Number{2'000'000},
@@ -927,10 +771,7 @@ public:
Number{5, -1},
Number{0},
Number{5625, -4},
Number{Number::largestMantissa},
maxInternalMantissa,
Number{Number::minMantissa(), 0, Number::unchecked{}},
Number{Number::maxMantissa(), 0, Number::unchecked{}},
Number{Number::maxRep},
});
test(cSmall);
bool caught = false;
@@ -1272,16 +1113,16 @@ public:
case MantissaRange::large:
// Test the edges
// ((exponent < -(28)) || (exponent > -(8)))))
test(Number::min(), "922337203685477581e-32768");
test(Number::min(), "1e-32750");
test(Number::max(), "9223372036854775807e32768");
test(Number::lowest(), "-9223372036854775807e32768");
{
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
test(Number{false, maxMantissa, 0, Number::normalized{}}, "9223372036854775807");
test(Number{true, maxMantissa, 0, Number::normalized{}}, "-9223372036854775807");
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
test(Number{false, maxMantissa, 0, Number::normalized{}}, "9999999999999999990");
test(Number{true, maxMantissa, 0, Number::normalized{}}, "-9999999999999999990");
test(Number{std::numeric_limits<std::int64_t>::max(), 0}, "9223372036854775807");
test(-(Number{std::numeric_limits<std::int64_t>::max(), 0}), "-9223372036854775807");
@@ -1459,7 +1300,7 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() > 0);
Number const maxInt64{Number::largestMantissa};
Number const maxInt64{Number::maxRep};
BEAST_EXPECT(maxInt64.exponent() > 0);
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
BEAST_EXPECT((power(maxInt64, 2) == Number{85'070'591'730'234'62, 22}));
@@ -1476,198 +1317,20 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() <= 0);
Number const maxInt64{Number::largestMantissa};
Number const maxInt64{Number::maxRep};
BEAST_EXPECT(maxInt64.exponent() <= 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
BEAST_EXPECT((power(maxInt64, 2) == Number{85'070'591'730'234'615'85, 19}));
NumberRoundModeGuard mg(Number::towards_zero);
{
auto const maxInternalMantissa =
static_cast<std::uint64_t>(static_cast<std::int64_t>(power(10, Number::mantissaLog()))) * 10 - 1;
// Rounds down to fit under 2^63
Number const max = Number{false, maxInternalMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT((power(max, 2) == Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}}));
}
{
auto const maxMantissa = Number::maxMantissa();
Number const max = Number{false, maxMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxMantissa);
BEAST_EXPECT(max.exponent() == 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
// digits
BEAST_EXPECT((power(max, 2) == Number{false, 85'070'591'730'234'615'84, 19, Number::normalized{}}));
}
}
}
void
testNormalizeToRange()
{
// Test edge-cases of normalizeToRange
auto const scale = Number::getMantissaScale();
testcase << "normalizeToRange " << to_string(scale);
auto test = [this](
Number const& n,
auto const rangeMin,
auto const rangeMax,
auto const expectedMantissa,
auto const expectedExponent,
auto const line) {
auto const normalized = n.normalizeToRange(rangeMin, rangeMax);
BEAST_EXPECTS(
normalized.first == expectedMantissa,
"Number " + to_string(n) + " scaled to " + std::to_string(rangeMax) +
". Expected mantissa:" + std::to_string(expectedMantissa) +
", got: " + std::to_string(normalized.first) + " @ " + std::to_string(line));
BEAST_EXPECTS(
normalized.second == expectedExponent,
"Number " + to_string(n) + " scaled to " + std::to_string(rangeMax) +
". Expected exponent:" + std::to_string(expectedExponent) +
", got: " + std::to_string(normalized.second) + " @ " + std::to_string(line));
};
std::int64_t constexpr iRangeMin = 100;
std::int64_t constexpr iRangeMax = 999;
std::uint64_t constexpr uRangeMin = 100;
std::uint64_t constexpr uRangeMax = 999;
constexpr static MantissaRange largeRange{MantissaRange::large};
std::int64_t constexpr iBigMin = largeRange.min;
std::int64_t constexpr iBigMax = largeRange.max;
auto const testSuite = [&](Number const& n,
auto const expectedSmallMantissa,
auto const expectedSmallExponent,
auto const expectedLargeMantissa,
auto const expectedLargeExponent,
auto const line) {
test(n, iRangeMin, iRangeMax, expectedSmallMantissa, expectedSmallExponent, line);
test(n, iBigMin, iBigMax, expectedLargeMantissa, expectedLargeExponent, line);
// Only test non-negative. testing a negative number with an
// unsigned range will assert, and asserts can't be tested.
if (n.signum() >= 0)
{
test(n, uRangeMin, uRangeMax, expectedSmallMantissa, expectedSmallExponent, line);
test(n, largeRange.min, largeRange.max, expectedLargeMantissa, expectedLargeExponent, line);
}
};
{
// zero
Number const n{0};
testSuite(n, 0, std::numeric_limits<int>::lowest(), 0, std::numeric_limits<int>::lowest(), __LINE__);
}
{
// Small positive number
Number const n{2};
testSuite(n, 200, -2, 2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Negative number
Number const n{-2};
testSuite(n, -200, -2, -2'000'000'000'000'000'000, -18, __LINE__);
}
{
// Biggest valid mantissa
Number const n{Number::largestMantissa, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, Number::largestMantissa, 0, __LINE__);
}
{
// Biggest valid mantissa + 1
Number const n{Number::largestMantissa + 1, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 2
Number const n{Number::largestMantissa + 2, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// Biggest valid mantissa + 3
Number const n{Number::largestMantissa + 3, 0, Number::normalized{}};
if (scale == MantissaRange::small)
// With the small mantissa range, the value rounds up. Because
// it rounds up, when scaling up to the full int64 range, it
// can't go over the max, so it is one digit smaller than the
// full value.
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min
Number const n{std::numeric_limits<std::int64_t>::min(), 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
}
{
// int64 min + 1
Number const n{std::numeric_limits<std::int64_t>::min() + 1, 0};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -9'223'372'036'854'775'807, 0, __LINE__);
}
{
// int64 min - 1
// Need to cast to uint, even though we're dealing with a negative
// number to avoid overflow and UB
Number const n{
true,
-static_cast<std::uint64_t>(std::numeric_limits<std::int64_t>::min()) + 1,
0,
Number::normalized{}};
if (scale == MantissaRange::small)
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
else
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
auto const maxMantissa = Number::maxMantissa();
Number const max = Number{false, maxMantissa, 0, Number::normalized{}};
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT((power(max, 2) == Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
}
}
@@ -1698,7 +1361,6 @@ public:
test_truncate();
testRounding();
testInt64();
testNormalizeToRange();
}
}
};

View File

@@ -459,10 +459,6 @@ ManifestCache::applyManifest(Manifest m)
auto masterKey = m.masterKey;
map_.emplace(std::move(masterKey), std::move(m));
// Something has changed. Keep track of it.
seq_++;
return ManifestDisposition::accepted;
}