mirror of
https://github.com/XRPLF/rippled.git
synced 2026-02-06 23:15:32 +00:00
Compare commits
9 Commits
ximinez/nu
...
copilot/co
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
a2cee3b6ab | ||
|
|
2305bc98a4 | ||
|
|
677758b1cc | ||
|
|
25d7c2c4ec | ||
|
|
ae624ab894 | ||
|
|
21ac390a37 | ||
|
|
86aca89bc4 | ||
|
|
b26dd49fb6 | ||
|
|
0969281538 |
8
.github/CODEOWNERS
vendored
8
.github/CODEOWNERS
vendored
@@ -1,8 +0,0 @@
|
||||
# Allow anyone to review any change by default.
|
||||
*
|
||||
|
||||
# Require the rpc-reviewers team to review changes to the rpc code.
|
||||
include/xrpl/protocol/ @xrplf/rpc-reviewers
|
||||
src/libxrpl/protocol/ @xrplf/rpc-reviewers
|
||||
src/xrpld/rpc/ @xrplf/rpc-reviewers
|
||||
src/xrpld/app/misc/ @xrplf/rpc-reviewers
|
||||
17
.github/scripts/strategy-matrix/generate.py
vendored
17
.github/scripts/strategy-matrix/generate.py
vendored
@@ -196,11 +196,22 @@ def generate_strategy_matrix(all: bool, config: Config) -> list:
|
||||
# Enable code coverage for Debian Bookworm using GCC 15 in Debug on
|
||||
# linux/amd64
|
||||
if (
|
||||
f"{os['compiler_name']}-{os['compiler_version']}" == "gcc-15"
|
||||
f"{os['distro_name']}-{os['distro_version']}" == "debian-bookworm"
|
||||
and f"{os['compiler_name']}-{os['compiler_version']}" == "gcc-15"
|
||||
and build_type == "Debug"
|
||||
and architecture["platform"] == "linux/amd64"
|
||||
):
|
||||
cmake_args = f"-Dcoverage=ON -Dcoverage_format=xml -DCODE_COVERAGE_VERBOSE=ON -DCMAKE_C_FLAGS=-O0 -DCMAKE_CXX_FLAGS=-O0 {cmake_args}"
|
||||
cmake_args = f"{cmake_args} -Dcoverage=ON -Dcoverage_format=xml -DCODE_COVERAGE_VERBOSE=ON -DCMAKE_C_FLAGS=-O0 -DCMAKE_CXX_FLAGS=-O0"
|
||||
|
||||
# Enable unity build for Ubuntu Jammy using GCC 12 in Debug on
|
||||
# linux/amd64.
|
||||
if (
|
||||
f"{os['distro_name']}-{os['distro_version']}" == "ubuntu-jammy"
|
||||
and f"{os['compiler_name']}-{os['compiler_version']}" == "gcc-12"
|
||||
and build_type == "Debug"
|
||||
and architecture["platform"] == "linux/amd64"
|
||||
):
|
||||
cmake_args = f"{cmake_args} -Dunity=ON"
|
||||
|
||||
# Generate a unique name for the configuration, e.g. macos-arm64-debug
|
||||
# or debian-bookworm-gcc-12-amd64-release.
|
||||
@@ -217,6 +228,8 @@ def generate_strategy_matrix(all: bool, config: Config) -> list:
|
||||
config_name += f"-{build_type.lower()}"
|
||||
if "-Dcoverage=ON" in cmake_args:
|
||||
config_name += "-coverage"
|
||||
if "-Dunity=ON" in cmake_args:
|
||||
config_name += "-unity"
|
||||
|
||||
# Add the configuration to the list, with the most unique fields first,
|
||||
# so that they are easier to identify in the GitHub Actions UI, as long
|
||||
|
||||
7
BUILD.md
7
BUILD.md
@@ -575,10 +575,16 @@ See [Sanitizers docs](./docs/build/sanitizers.md) for more details.
|
||||
| `assert` | OFF | Enable assertions. |
|
||||
| `coverage` | OFF | Prepare the coverage report. |
|
||||
| `tests` | OFF | Build tests. |
|
||||
| `unity` | OFF | Configure a unity build. |
|
||||
| `xrpld` | OFF | Build the xrpld application, and not just the libxrpl library. |
|
||||
| `werr` | OFF | Treat compilation warnings as errors |
|
||||
| `wextra` | OFF | Enable additional compilation warnings |
|
||||
|
||||
[Unity builds][5] may be faster for the first build (at the cost of much more
|
||||
memory) since they concatenate sources into fewer translation units. Non-unity
|
||||
builds may be faster for incremental builds, and can be helpful for detecting
|
||||
`#include` omissions.
|
||||
|
||||
## Troubleshooting
|
||||
|
||||
### Conan
|
||||
@@ -645,6 +651,7 @@ If you want to experiment with a new package, follow these steps:
|
||||
[1]: https://github.com/conan-io/conan-center-index/issues/13168
|
||||
[2]: https://en.cppreference.com/w/cpp/compiler_support/20
|
||||
[3]: https://docs.conan.io/en/latest/getting_started.html
|
||||
[5]: https://en.wikipedia.org/wiki/Unity_build
|
||||
[6]: https://github.com/boostorg/beast/issues/2648
|
||||
[7]: https://github.com/boostorg/beast/issues/2661
|
||||
[gcovr]: https://gcovr.com/en/stable/getting-started.html
|
||||
|
||||
@@ -940,23 +940,7 @@
|
||||
#
|
||||
# path Location to store the database
|
||||
#
|
||||
# Optional keys
|
||||
#
|
||||
# cache_size Size of cache for database records. Default is 16384.
|
||||
# Setting this value to 0 will use the default value.
|
||||
#
|
||||
# cache_age Length of time in minutes to keep database records
|
||||
# cached. Default is 5 minutes. Setting this value to
|
||||
# 0 will use the default value.
|
||||
#
|
||||
# Note: if neither cache_size nor cache_age is
|
||||
# specified, the cache for database records will not
|
||||
# be created. If only one of cache_size or cache_age
|
||||
# is specified, the cache will be created using the
|
||||
# default value for the unspecified parameter.
|
||||
#
|
||||
# Note: the cache will not be created if online_delete
|
||||
# is specified.
|
||||
# Optional keys for NuDB and RocksDB:
|
||||
#
|
||||
# fast_load Boolean. If set, load the last persisted ledger
|
||||
# from disk upon process start before syncing to
|
||||
@@ -964,8 +948,6 @@
|
||||
# if sufficient IOPS capacity is available.
|
||||
# Default 0.
|
||||
#
|
||||
# Optional keys for NuDB or RocksDB:
|
||||
#
|
||||
# earliest_seq The default is 32570 to match the XRP ledger
|
||||
# network's earliest allowed sequence. Alternate
|
||||
# networks may set this value. Minimum value of 1.
|
||||
|
||||
@@ -4,7 +4,12 @@
|
||||
|
||||
include(target_protobuf_sources)
|
||||
|
||||
# Protocol buffers cannot participate in a unity build,
|
||||
# because all the generated sources
|
||||
# define a bunch of `static const` variables with the same names,
|
||||
# so we just build them as a separate library.
|
||||
add_library(xrpl.libpb)
|
||||
set_target_properties(xrpl.libpb PROPERTIES UNITY_BUILD OFF)
|
||||
target_protobuf_sources(xrpl.libpb xrpl/proto LANGUAGE cpp IMPORT_DIRS include/xrpl/proto
|
||||
PROTOS include/xrpl/proto/xrpl.proto)
|
||||
|
||||
|
||||
@@ -30,6 +30,14 @@ if (tests)
|
||||
endif ()
|
||||
endif ()
|
||||
|
||||
option(unity "Creates a build using UNITY support in cmake." OFF)
|
||||
if (unity)
|
||||
if (NOT is_ci)
|
||||
set(CMAKE_UNITY_BUILD_BATCH_SIZE 15 CACHE STRING "")
|
||||
endif ()
|
||||
set(CMAKE_UNITY_BUILD ON CACHE BOOL "Do a unity build")
|
||||
endif ()
|
||||
|
||||
if (is_clang AND is_linux)
|
||||
option(voidstar "Enable Antithesis instrumentation." OFF)
|
||||
endif ()
|
||||
|
||||
@@ -23,6 +23,7 @@ class Xrpl(ConanFile):
|
||||
"shared": [True, False],
|
||||
"static": [True, False],
|
||||
"tests": [True, False],
|
||||
"unity": [True, False],
|
||||
"xrpld": [True, False],
|
||||
}
|
||||
|
||||
@@ -54,6 +55,7 @@ class Xrpl(ConanFile):
|
||||
"shared": False,
|
||||
"static": True,
|
||||
"tests": False,
|
||||
"unity": False,
|
||||
"xrpld": False,
|
||||
"date/*:header_only": True,
|
||||
"ed25519/*:shared": False,
|
||||
@@ -166,6 +168,7 @@ class Xrpl(ConanFile):
|
||||
tc.variables["rocksdb"] = self.options.rocksdb
|
||||
tc.variables["BUILD_SHARED_LIBS"] = self.options.shared
|
||||
tc.variables["static"] = self.options.static
|
||||
tc.variables["unity"] = self.options.unity
|
||||
tc.variables["xrpld"] = self.options.xrpld
|
||||
tc.generate()
|
||||
|
||||
|
||||
@@ -9,10 +9,6 @@
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <boost/multiprecision/cpp_int.hpp>
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
namespace xrpl {
|
||||
|
||||
class Number;
|
||||
@@ -20,37 +16,18 @@ class Number;
|
||||
std::string
|
||||
to_string(Number const& amount);
|
||||
|
||||
/** Returns a rough estimate of log10(value).
|
||||
*
|
||||
* The return value is a pair (log, rem), where log is the estimated log10,
|
||||
* and rem is value divided by 10^log. If rem is 1, then value is an exact
|
||||
* power of ten, and log is the exact log10(value).
|
||||
*
|
||||
* This function only works for positive values.
|
||||
*/
|
||||
template <typename T>
|
||||
constexpr std::pair<int, T>
|
||||
logTenEstimate(T value)
|
||||
{
|
||||
int log = 0;
|
||||
T remainder = value;
|
||||
while (value >= 10)
|
||||
{
|
||||
if (value % 10 == 0)
|
||||
remainder = remainder / 10;
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
return {log, remainder};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr std::optional<int>
|
||||
logTen(T value)
|
||||
{
|
||||
auto const est = logTenEstimate(value);
|
||||
if (est.second == 1)
|
||||
return est.first;
|
||||
int log = 0;
|
||||
while (value >= 10 && value % 10 == 0)
|
||||
{
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
if (value == 1)
|
||||
return log;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
@@ -64,10 +41,12 @@ isPowerOfTen(T value)
|
||||
/** MantissaRange defines a range for the mantissa of a normalized Number.
|
||||
*
|
||||
* The mantissa is in the range [min, max], where
|
||||
* * min is a power of 10, and
|
||||
* * max = min * 10 - 1.
|
||||
*
|
||||
* The mantissa_scale enum indicates whether the range is "small" or "large".
|
||||
* This intentionally restricts the number of MantissaRanges that can be
|
||||
* used to two: one for each scale.
|
||||
* instantiated to two: one for each scale.
|
||||
*
|
||||
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
|
||||
* value of 10^15, and a max value of 10^16-1. This was sufficient for
|
||||
@@ -81,8 +60,8 @@ isPowerOfTen(T value)
|
||||
* "large" scale.
|
||||
*
|
||||
* The "large" scale is intended to represent all values that can be represented
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
|
||||
* (truncated), and a max value of 2^63-1.
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
|
||||
* value of 10^19-1.
|
||||
*
|
||||
* Note that if the mentioned amendments are eventually retired, this class
|
||||
* should be left in place, but the "small" scale option should be removed. This
|
||||
@@ -94,50 +73,25 @@ struct MantissaRange
|
||||
enum mantissa_scale { small, large };
|
||||
|
||||
explicit constexpr MantissaRange(mantissa_scale scale_)
|
||||
: max(getMax(scale_))
|
||||
, min(computeMin(max))
|
||||
, referenceMin(getReferenceMin(scale_, min))
|
||||
, log(computeLog(min))
|
||||
, scale(scale_)
|
||||
: min(getMin(scale_)), max(min * 10 - 1), log(logTen(min).value_or(-1)), scale(scale_)
|
||||
{
|
||||
// Since this is constexpr, if any of these throw, it won't compile
|
||||
if (min * 10 <= max)
|
||||
throw std::out_of_range("min * 10 <= max");
|
||||
if (max / 10 >= min)
|
||||
throw std::out_of_range("max / 10 >= min");
|
||||
if ((min - 1) * 10 > max)
|
||||
throw std::out_of_range("(min - 1) * 10 > max");
|
||||
// This is a little hacky
|
||||
if ((max + 10) / 10 < min)
|
||||
throw std::out_of_range("(max + 10) / 10 < min");
|
||||
}
|
||||
|
||||
// Explicitly delete copy and move operations
|
||||
MantissaRange(MantissaRange const&) = delete;
|
||||
MantissaRange(MantissaRange&&) = delete;
|
||||
MantissaRange&
|
||||
operator=(MantissaRange const&) = delete;
|
||||
MantissaRange&
|
||||
operator=(MantissaRange&&) = delete;
|
||||
|
||||
rep max;
|
||||
rep min;
|
||||
// This is not a great name. Used to determine if mantissas are in range,
|
||||
// but have fewer digits than max
|
||||
rep referenceMin;
|
||||
rep max;
|
||||
int log;
|
||||
mantissa_scale scale;
|
||||
|
||||
private:
|
||||
static constexpr rep
|
||||
getMax(mantissa_scale scale)
|
||||
getMin(mantissa_scale scale_)
|
||||
{
|
||||
switch (scale)
|
||||
switch (scale_)
|
||||
{
|
||||
case small:
|
||||
return 9'999'999'999'999'999ULL;
|
||||
return 1'000'000'000'000'000ULL;
|
||||
case large:
|
||||
return std::numeric_limits<std::int64_t>::max();
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
default:
|
||||
// Since this can never be called outside a non-constexpr
|
||||
// context, this throw assures that the build fails if an
|
||||
@@ -145,59 +99,19 @@ private:
|
||||
throw std::runtime_error("Unknown mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeMin(rep max)
|
||||
{
|
||||
return max / 10 + 1;
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
getReferenceMin(mantissa_scale scale, rep min)
|
||||
{
|
||||
switch (scale)
|
||||
{
|
||||
case large:
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
default:
|
||||
if (isPowerOfTen(min))
|
||||
return min;
|
||||
throw std::runtime_error("Unknown/bad mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeLog(rep min)
|
||||
{
|
||||
auto const estimate = logTenEstimate(min);
|
||||
return estimate.first + (estimate.second == 1 ? 0 : 1);
|
||||
}
|
||||
};
|
||||
|
||||
// Like std::integral, but only 64-bit integral types.
|
||||
template <class T>
|
||||
concept Integral64 = std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
|
||||
|
||||
namespace detail {
|
||||
#ifdef _MSC_VER
|
||||
using uint128_t = boost::multiprecision::uint128_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
#else // !defined(_MSC_VER)
|
||||
using uint128_t = __uint128_t;
|
||||
using int128_t = __int128_t;
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
template <class T>
|
||||
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
|
||||
} // namespace detail
|
||||
|
||||
/** Number is a floating point type that can represent a wide range of values.
|
||||
*
|
||||
* It can represent all values that can be represented by an STAmount -
|
||||
* regardless of asset type - XRPAmount, MPTAmount, and IOUAmount, with at least
|
||||
* as much precision as those types require.
|
||||
*
|
||||
* ---- Internal Operational Representation ----
|
||||
* ---- Internal Representation ----
|
||||
*
|
||||
* Internally, Number is represented with three values:
|
||||
* 1. a bool sign flag,
|
||||
@@ -212,21 +126,15 @@ concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>
|
||||
*
|
||||
* A non-zero mantissa is (almost) always normalized, meaning it and the
|
||||
* exponent are grown or shrunk until the mantissa is in the range
|
||||
* [MantissaRange.referenceMin, MantissaRange.referenceMin * 10 - 1].
|
||||
*
|
||||
* This internal representation is only used during some operations to ensure
|
||||
* that the mantissa is a known, predictable size. The class itself stores the
|
||||
* values using the external representation described below.
|
||||
* [MantissaRange.min, MantissaRange.max].
|
||||
*
|
||||
* Note:
|
||||
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
|
||||
* should only be used at specific conversion points, some constexpr
|
||||
* values, and in unit tests.
|
||||
* 2. Unlike MantissaRange.min, referenceMin is always an exact power of 10,
|
||||
* so a mantissa in the internal representation will always have a
|
||||
* consistent number of digits.
|
||||
* 3. The functions toInternal() and fromInternal() are used to convert
|
||||
* between the two representations.
|
||||
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
|
||||
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
|
||||
* 10^20-1 > 2^64-1). This avoids under- and overflows.
|
||||
*
|
||||
* ---- External Interface ----
|
||||
*
|
||||
@@ -239,12 +147,13 @@ concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>
|
||||
* represent the full range of valid XRP and MPT integer values accurately.
|
||||
*
|
||||
* Note:
|
||||
* 1. The "large" mantissa range is (2^63/10+1) to 2^63-1. 2^63-1 is between
|
||||
* 10^18 and 10^19-1, and (2^63/10+1) is between 10^17 and 10^18-1. Thus,
|
||||
* the mantissa may have 18 or 19 digits. This value will be modified to
|
||||
* always have 19 digits before some operations to ensure consistency.
|
||||
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
|
||||
* mantissa range.
|
||||
* 2. The functions mantissa() and exponent() return the external view of the
|
||||
* Number value, specifically using a signed 63-bit mantissa.
|
||||
* Number value, specifically using a signed 63-bit mantissa. This may
|
||||
* require altering the internal representation to fit into that range
|
||||
* before the value is returned. The interface guarantees consistency of
|
||||
* the two values.
|
||||
* 3. Number cannot represent -2^63 (std::numeric_limits<std::int64_t>::min())
|
||||
* as an exact integer, but it doesn't need to, because all asset values
|
||||
* on-ledger are non-negative. This is due to implementation details of
|
||||
@@ -299,7 +208,8 @@ class Number
|
||||
using rep = std::int64_t;
|
||||
using internalrep = MantissaRange::rep;
|
||||
|
||||
rep mantissa_{0};
|
||||
bool negative_{false};
|
||||
internalrep mantissa_{0};
|
||||
int exponent_{std::numeric_limits<int>::lowest()};
|
||||
|
||||
public:
|
||||
@@ -307,6 +217,10 @@ public:
|
||||
constexpr static int minExponent = -32768;
|
||||
constexpr static int maxExponent = 32768;
|
||||
|
||||
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
|
||||
static_assert(maxRep == 9'223'372'036'854'775'807);
|
||||
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
|
||||
|
||||
// May need to make unchecked private
|
||||
struct unchecked
|
||||
{
|
||||
@@ -380,7 +294,7 @@ public:
|
||||
friend constexpr bool
|
||||
operator==(Number const& x, Number const& y) noexcept
|
||||
{
|
||||
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
|
||||
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
|
||||
}
|
||||
|
||||
friend constexpr bool
|
||||
@@ -394,8 +308,8 @@ public:
|
||||
{
|
||||
// If the two amounts have different signs (zero is treated as positive)
|
||||
// then the comparison is true iff the left is negative.
|
||||
bool const lneg = x.mantissa_ < 0;
|
||||
bool const rneg = y.mantissa_ < 0;
|
||||
bool const lneg = x.negative_;
|
||||
bool const rneg = y.negative_;
|
||||
|
||||
if (lneg != rneg)
|
||||
return lneg;
|
||||
@@ -423,7 +337,7 @@ public:
|
||||
constexpr int
|
||||
signum() const noexcept
|
||||
{
|
||||
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
|
||||
return negative_ ? -1 : (mantissa_ ? 1 : 0);
|
||||
}
|
||||
|
||||
Number
|
||||
@@ -462,9 +376,6 @@ public:
|
||||
friend Number
|
||||
root2(Number f);
|
||||
|
||||
friend Number
|
||||
power(Number const& f, unsigned n, unsigned d);
|
||||
|
||||
// Thread local rounding control. Default is to_nearest
|
||||
enum rounding_mode { to_nearest, towards_zero, downward, upward };
|
||||
static rounding_mode
|
||||
@@ -529,39 +440,22 @@ private:
|
||||
static_assert(isPowerOfTen(smallRange.min));
|
||||
static_assert(smallRange.min == 1'000'000'000'000'000LL);
|
||||
static_assert(smallRange.max == 9'999'999'999'999'999LL);
|
||||
static_assert(smallRange.referenceMin == smallRange.min);
|
||||
static_assert(smallRange.log == 15);
|
||||
static_assert(smallRange.min < maxRep);
|
||||
static_assert(smallRange.max < maxRep);
|
||||
constexpr static MantissaRange largeRange{MantissaRange::large};
|
||||
static_assert(!isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
|
||||
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
|
||||
static_assert(largeRange.max == std::numeric_limits<rep>::max());
|
||||
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
|
||||
static_assert(largeRange.log == 18);
|
||||
// There are 2 values that will not fit in largeRange without some extra
|
||||
// work
|
||||
// * 9223372036854775808
|
||||
// * 9223372036854775809
|
||||
// They both end up < min, but with a leftover. If they round up, everything
|
||||
// will be fine. If they don't, we'll need to bring them up into range.
|
||||
// Guard::bringIntoRange handles this situation.
|
||||
static_assert(largeRange.min < maxRep);
|
||||
static_assert(largeRange.max > maxRep);
|
||||
|
||||
// The range for the mantissa when normalized.
|
||||
// Use reference_wrapper to avoid making copies, and prevent accidentally
|
||||
// changing the values inside the range.
|
||||
static thread_local std::reference_wrapper<MantissaRange const> range_;
|
||||
|
||||
// And one is needed because it needs to choose between oneSmall and
|
||||
// oneLarge based on the current range
|
||||
static Number
|
||||
one(MantissaRange const& range);
|
||||
|
||||
static Number
|
||||
root(MantissaRange const& range, Number f, unsigned d);
|
||||
|
||||
void
|
||||
normalize(MantissaRange const& range);
|
||||
|
||||
void
|
||||
normalize();
|
||||
|
||||
@@ -584,14 +478,11 @@ private:
|
||||
friend void
|
||||
doNormalize(
|
||||
bool& negative,
|
||||
T& mantissa,
|
||||
int& exponent,
|
||||
T& mantissa_,
|
||||
int& exponent_,
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa);
|
||||
|
||||
bool
|
||||
isnormal(MantissaRange const& range) const noexcept;
|
||||
|
||||
bool
|
||||
isnormal() const noexcept;
|
||||
|
||||
@@ -601,64 +492,18 @@ private:
|
||||
Number
|
||||
shiftExponent(int exponentDelta) const;
|
||||
|
||||
// Safely return the absolute value of a rep (int64) mantissa as an internalrep (uint64).
|
||||
// Safely convert rep (int64) mantissa to internalrep (uint64). If the rep
|
||||
// is negative, returns the positive value. This takes a little extra work
|
||||
// because converting std::numeric_limits<std::int64_t>::min() flirts with
|
||||
// UB, and can vary across compilers.
|
||||
static internalrep
|
||||
externalToInternal(rep mantissa);
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal(MantissaRange const& range) const;
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal() const;
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "expectNormal" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "expectNormal" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange);
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "expectNormal" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "expectNormal" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal = true, detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(bool negative, Rep mantissa, int exponent);
|
||||
|
||||
class Guard;
|
||||
|
||||
public:
|
||||
constexpr static internalrep largestMantissa = largeRange.max;
|
||||
};
|
||||
|
||||
inline constexpr Number::Number(bool negative, internalrep mantissa, int exponent, unchecked) noexcept
|
||||
: mantissa_{negative ? -static_cast<rep>(mantissa) : static_cast<rep>(mantissa)}, exponent_{exponent}
|
||||
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
|
||||
{
|
||||
}
|
||||
|
||||
@@ -669,6 +514,12 @@ inline constexpr Number::Number(internalrep mantissa, int exponent, unchecked) n
|
||||
|
||||
constexpr static Number numZero{};
|
||||
|
||||
inline Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
|
||||
: Number(negative, mantissa, exponent, unchecked{})
|
||||
{
|
||||
normalize();
|
||||
}
|
||||
|
||||
inline Number::Number(internalrep mantissa, int exponent, normalized) : Number(false, mantissa, exponent, normalized{})
|
||||
{
|
||||
}
|
||||
@@ -690,7 +541,17 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
|
||||
inline constexpr Number::rep
|
||||
Number::mantissa() const noexcept
|
||||
{
|
||||
return mantissa_;
|
||||
auto m = mantissa_;
|
||||
if (m > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
|
||||
"xrpl::Number::mantissa",
|
||||
"large normalized mantissa has no remainder");
|
||||
m /= 10;
|
||||
}
|
||||
auto const sign = negative_ ? -1 : 1;
|
||||
return sign * static_cast<Number::rep>(m);
|
||||
}
|
||||
|
||||
/** Returns the exponent of the external view of the Number.
|
||||
@@ -701,7 +562,16 @@ Number::mantissa() const noexcept
|
||||
inline constexpr int
|
||||
Number::exponent() const noexcept
|
||||
{
|
||||
return exponent_;
|
||||
auto e = exponent_;
|
||||
if (mantissa_ > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
|
||||
"xrpl::Number::exponent",
|
||||
"large normalized mantissa has no remainder");
|
||||
++e;
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
@@ -716,7 +586,7 @@ Number::operator-() const noexcept
|
||||
if (mantissa_ == 0)
|
||||
return Number{};
|
||||
auto x = *this;
|
||||
x.mantissa_ = -x.mantissa_;
|
||||
x.negative_ = !x.negative_;
|
||||
return x;
|
||||
}
|
||||
|
||||
@@ -797,55 +667,39 @@ Number::min() noexcept
|
||||
inline Number
|
||||
Number::max() noexcept
|
||||
{
|
||||
return Number{false, range_.get().max, maxExponent, unchecked{}};
|
||||
return Number{false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline Number
|
||||
Number::lowest() noexcept
|
||||
{
|
||||
return Number{true, range_.get().max, maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal(MantissaRange const& range) const noexcept
|
||||
{
|
||||
auto const abs_m = externalToInternal(mantissa_);
|
||||
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max && //
|
||||
minExponent <= exponent_ && exponent_ <= maxExponent);
|
||||
return Number{true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal() const noexcept
|
||||
{
|
||||
return isnormal(range_);
|
||||
MantissaRange const& range = range_;
|
||||
auto const abs_m = mantissa_;
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max && (abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
|
||||
exponent_ <= maxExponent);
|
||||
}
|
||||
|
||||
template <Integral64 T>
|
||||
std::pair<T, int>
|
||||
Number::normalizeToRange(T minMantissa, T maxMantissa) const
|
||||
{
|
||||
bool negative = mantissa_ < 0;
|
||||
internalrep mantissa = externalToInternal(mantissa_);
|
||||
bool negative = negative_;
|
||||
internalrep mantissa = mantissa_;
|
||||
int exponent = exponent_;
|
||||
|
||||
if constexpr (std::is_unsigned_v<T>)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(!negative, "xrpl::Number::normalizeToRange", "Number is non-negative for unsigned range.");
|
||||
// To avoid logical errors in release builds, throw if the Number is
|
||||
// negative for an unsigned range.
|
||||
if (negative)
|
||||
throw std::runtime_error(
|
||||
"Number::normalizeToRange: Number is negative for "
|
||||
"unsigned range.");
|
||||
}
|
||||
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
|
||||
|
||||
// Cast mantissa to signed type first (if T is a signed type) to avoid
|
||||
// unsigned integer overflow when multiplying by negative sign
|
||||
T signedMantissa = negative ? -static_cast<T>(mantissa) : static_cast<T>(mantissa);
|
||||
return std::make_pair(signedMantissa, exponent);
|
||||
auto const sign = negative ? -1 : 1;
|
||||
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
|
||||
@@ -10,6 +10,7 @@
|
||||
#include <cctype>
|
||||
#include <iterator>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <vector>
|
||||
|
||||
namespace beast {
|
||||
@@ -178,7 +179,7 @@ split_commas(FwdIt first, FwdIt last)
|
||||
|
||||
template <class Result = std::vector<std::string>>
|
||||
Result
|
||||
split_commas(boost::beast::string_view const& s)
|
||||
split_commas(std::string_view const& s)
|
||||
{
|
||||
return split_commas(s.begin(), s.end());
|
||||
}
|
||||
|
||||
@@ -1,20 +1,19 @@
|
||||
#pragma once
|
||||
|
||||
#include <boost/beast/core/string.hpp>
|
||||
|
||||
#include <functional>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
|
||||
namespace Json {
|
||||
|
||||
class Value;
|
||||
|
||||
using Output = std::function<void(boost::beast::string_view const&)>;
|
||||
using Output = std::function<void(std::string_view const&)>;
|
||||
|
||||
inline Output
|
||||
stringOutput(std::string& s)
|
||||
{
|
||||
return [&](boost::beast::string_view const& b) { s.append(b.data(), b.size()); };
|
||||
return [&](std::string_view const& b) { s.append(b.data(), b.size()); };
|
||||
}
|
||||
|
||||
/** Writes a minimal representation of a Json value to an Output in O(n) time.
|
||||
|
||||
@@ -133,10 +133,6 @@ public:
|
||||
std::uint32_t ledgerSeq,
|
||||
std::function<void(std::shared_ptr<NodeObject> const&)>&& callback);
|
||||
|
||||
/** Remove expired entries from the positive and negative caches. */
|
||||
virtual void
|
||||
sweep() = 0;
|
||||
|
||||
/** Gather statistics pertaining to read and write activities.
|
||||
*
|
||||
* @param obj Json object reference into which to place counters.
|
||||
|
||||
@@ -23,32 +23,6 @@ public:
|
||||
beast::Journal j)
|
||||
: Database(scheduler, readThreads, config, j), backend_(std::move(backend))
|
||||
{
|
||||
std::optional<int> cacheSize, cacheAge;
|
||||
|
||||
if (config.exists("cache_size"))
|
||||
{
|
||||
cacheSize = get<int>(config, "cache_size");
|
||||
if (cacheSize.value() < 0)
|
||||
{
|
||||
Throw<std::runtime_error>("Specified negative value for cache_size");
|
||||
}
|
||||
}
|
||||
|
||||
if (config.exists("cache_age"))
|
||||
{
|
||||
cacheAge = get<int>(config, "cache_age");
|
||||
if (cacheAge.value() < 0)
|
||||
{
|
||||
Throw<std::runtime_error>("Specified negative value for cache_age");
|
||||
}
|
||||
}
|
||||
|
||||
if (cacheSize != 0 || cacheAge != 0)
|
||||
{
|
||||
cache_ = std::make_shared<TaggedCache<uint256, NodeObject>>(
|
||||
"DatabaseNodeImp", cacheSize.value_or(0), std::chrono::minutes(cacheAge.value_or(0)), stopwatch(), j);
|
||||
}
|
||||
|
||||
XRPL_ASSERT(
|
||||
backend_,
|
||||
"xrpl::NodeStore::DatabaseNodeImp::DatabaseNodeImp : non-null "
|
||||
@@ -103,13 +77,7 @@ public:
|
||||
std::uint32_t ledgerSeq,
|
||||
std::function<void(std::shared_ptr<NodeObject> const&)>&& callback) override;
|
||||
|
||||
void
|
||||
sweep() override;
|
||||
|
||||
private:
|
||||
// Cache for database objects. This cache is not always initialized. Check
|
||||
// for null before using.
|
||||
std::shared_ptr<TaggedCache<uint256, NodeObject>> cache_;
|
||||
// Persistent key/value storage
|
||||
std::shared_ptr<Backend> backend_;
|
||||
|
||||
|
||||
@@ -55,9 +55,6 @@ public:
|
||||
void
|
||||
sync() override;
|
||||
|
||||
void
|
||||
sweep() override;
|
||||
|
||||
private:
|
||||
std::shared_ptr<Backend> writableBackend_;
|
||||
std::shared_ptr<Backend> archiveBackend_;
|
||||
|
||||
@@ -231,7 +231,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
|
||||
|
||||
/** The maximum amount of MPTokenIssuance */
|
||||
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
|
||||
static_assert(Number::largestMantissa >= maxMPTokenAmount);
|
||||
static_assert(Number::maxRep >= maxMPTokenAmount);
|
||||
|
||||
/** The maximum length of Data payload */
|
||||
std::size_t constexpr maxDataPayloadLength = 256;
|
||||
|
||||
@@ -521,7 +521,6 @@ STAmount::fromNumber(A const& a, Number const& number)
|
||||
return STAmount{asset, intValue, 0, negative};
|
||||
}
|
||||
|
||||
XRPL_ASSERT_PARTS(working.signum() >= 0, "xrpl::STAmount::fromNumber", "non-negative Number to normalize");
|
||||
auto const [mantissa, exponent] = working.normalizeToRange(cMinValue, cMaxValue);
|
||||
|
||||
return STAmount{asset, mantissa, exponent, negative};
|
||||
|
||||
@@ -23,7 +23,7 @@ systemName()
|
||||
/** Number of drops in the genesis account. */
|
||||
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
|
||||
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
|
||||
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
|
||||
static_assert(Number::maxRep >= INITIAL_XRP.drops());
|
||||
|
||||
/** Returns true if the amount does not exceed the initial XRP in existence. */
|
||||
inline bool
|
||||
|
||||
@@ -17,6 +17,7 @@
|
||||
|
||||
#include <functional>
|
||||
#include <list>
|
||||
#include <string_view>
|
||||
|
||||
namespace xrpl {
|
||||
|
||||
@@ -48,7 +49,7 @@ private:
|
||||
bool ping_active_ = false;
|
||||
boost::beast::websocket::ping_data payload_;
|
||||
error_code ec_;
|
||||
std::function<void(boost::beast::websocket::frame_type, boost::beast::string_view)> control_callback_;
|
||||
std::function<void(boost::beast::websocket::frame_type, std::string_view)> control_callback_;
|
||||
|
||||
public:
|
||||
template <class Body, class Headers>
|
||||
@@ -136,7 +137,7 @@ protected:
|
||||
on_ping(error_code const& ec);
|
||||
|
||||
void
|
||||
on_ping_pong(boost::beast::websocket::frame_type kind, boost::beast::string_view payload);
|
||||
on_ping_pong(boost::beast::websocket::frame_type kind, std::string_view payload);
|
||||
|
||||
void
|
||||
on_timer(error_code ec);
|
||||
@@ -389,11 +390,11 @@ BaseWSPeer<Handler, Impl>::on_ping(error_code const& ec)
|
||||
|
||||
template <class Handler, class Impl>
|
||||
void
|
||||
BaseWSPeer<Handler, Impl>::on_ping_pong(boost::beast::websocket::frame_type kind, boost::beast::string_view payload)
|
||||
BaseWSPeer<Handler, Impl>::on_ping_pong(boost::beast::websocket::frame_type kind, std::string_view payload)
|
||||
{
|
||||
if (kind == boost::beast::websocket::frame_type::pong)
|
||||
{
|
||||
boost::beast::string_view p(payload_.begin());
|
||||
std::string_view p(payload_.begin(), payload_.size());
|
||||
if (payload == p)
|
||||
{
|
||||
close_on_timer_ = false;
|
||||
|
||||
@@ -11,16 +11,18 @@
|
||||
#include <numeric>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
|
||||
#endif
|
||||
|
||||
using uint128_t = xrpl::detail::uint128_t;
|
||||
using int128_t = xrpl::detail::int128_t;
|
||||
#include <boost/multiprecision/cpp_int.hpp>
|
||||
using uint128_t = boost::multiprecision::uint128_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
#else // !defined(_MSC_VER)
|
||||
using uint128_t = __uint128_t;
|
||||
using int128_t = __int128_t;
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
namespace xrpl {
|
||||
|
||||
@@ -59,6 +61,9 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
|
||||
// precision to an operation. This enables the final result
|
||||
// to be correctly rounded to the internal precision of Number.
|
||||
|
||||
template <class T>
|
||||
concept UnsignedMantissa = std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
|
||||
|
||||
class Number::Guard
|
||||
{
|
||||
std::uint64_t digits_; // 16 decimal guard digits
|
||||
@@ -94,7 +99,7 @@ public:
|
||||
round() noexcept;
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
doRoundUp(
|
||||
bool& negative,
|
||||
@@ -102,22 +107,22 @@ public:
|
||||
int& exponent,
|
||||
internalrep const& minMantissa,
|
||||
internalrep const& maxMantissa,
|
||||
std::string_view location);
|
||||
std::string location);
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
doRoundDown(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa);
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
void
|
||||
doRound(rep& drops, std::string_view location);
|
||||
doRound(rep& drops, std::string location);
|
||||
|
||||
private:
|
||||
void
|
||||
doPush(unsigned d) noexcept;
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
bringIntoRange(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa);
|
||||
};
|
||||
@@ -204,7 +209,7 @@ Number::Guard::round() noexcept
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::bringIntoRange(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa)
|
||||
{
|
||||
@@ -219,13 +224,13 @@ Number::Guard::bringIntoRange(bool& negative, T& mantissa, int& exponent, intern
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
|
||||
negative = false;
|
||||
negative = zero.negative_;
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
}
|
||||
}
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::doRoundUp(
|
||||
bool& negative,
|
||||
@@ -233,7 +238,7 @@ Number::Guard::doRoundUp(
|
||||
int& exponent,
|
||||
internalrep const& minMantissa,
|
||||
internalrep const& maxMantissa,
|
||||
std::string_view location)
|
||||
std::string location)
|
||||
{
|
||||
auto r = round();
|
||||
if (r == 1 || (r == 0 && (mantissa & 1) == 1))
|
||||
@@ -241,7 +246,7 @@ Number::Guard::doRoundUp(
|
||||
++mantissa;
|
||||
// Ensure mantissa after incrementing fits within both the
|
||||
// min/maxMantissa range and is a valid "rep".
|
||||
if (mantissa > maxMantissa)
|
||||
if (mantissa > maxMantissa || mantissa > maxRep)
|
||||
{
|
||||
mantissa /= 10;
|
||||
++exponent;
|
||||
@@ -249,10 +254,10 @@ Number::Guard::doRoundUp(
|
||||
}
|
||||
bringIntoRange(negative, mantissa, exponent, minMantissa);
|
||||
if (exponent > maxExponent)
|
||||
throw std::overflow_error(std::string{location});
|
||||
throw std::overflow_error(location);
|
||||
}
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::doRoundDown(bool& negative, T& mantissa, int& exponent, internalrep const& minMantissa)
|
||||
{
|
||||
@@ -271,22 +276,21 @@ Number::Guard::doRoundDown(bool& negative, T& mantissa, int& exponent, internalr
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
void
|
||||
Number::Guard::doRound(rep& drops, std::string_view location)
|
||||
Number::Guard::doRound(rep& drops, std::string location)
|
||||
{
|
||||
auto r = round();
|
||||
if (r == 1 || (r == 0 && (drops & 1) == 1))
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
if (drops >= range.max)
|
||||
if (drops >= maxRep)
|
||||
{
|
||||
static_assert(sizeof(internalrep) == sizeof(rep));
|
||||
// This should be impossible, because it's impossible to represent
|
||||
// "largestMantissa + 0.6" in Number, regardless of the scale. There aren't
|
||||
// enough digits available. You'd either get a mantissa of "largestMantissa "
|
||||
// or "largestMantissa / 10 + 1", neither of which will round up when
|
||||
// "maxRep + 0.6" in Number, regardless of the scale. There aren't
|
||||
// enough digits available. You'd either get a mantissa of "maxRep"
|
||||
// or "(maxRep + 1) / 10", neither of which will round up when
|
||||
// converting to rep, though the latter might overflow _before_
|
||||
// rounding.
|
||||
throw std::overflow_error(std::string{location}); // LCOV_EXCL_LINE
|
||||
throw std::overflow_error(location); // LCOV_EXCL_LINE
|
||||
}
|
||||
++drops;
|
||||
}
|
||||
@@ -306,126 +310,23 @@ Number::externalToInternal(rep mantissa)
|
||||
// If the mantissa is already positive, just return it
|
||||
if (mantissa >= 0)
|
||||
return mantissa;
|
||||
// If the mantissa is negative, but fits within the positive range of rep,
|
||||
// return it negated
|
||||
if (mantissa >= -std::numeric_limits<rep>::max())
|
||||
return -mantissa;
|
||||
|
||||
// Cast to unsigned before negating to avoid undefined behavior
|
||||
// when v == INT64_MIN (negating INT64_MIN in signed is UB)
|
||||
return -static_cast<internalrep>(mantissa);
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal(MantissaRange const& range) const
|
||||
{
|
||||
auto exponent = exponent_;
|
||||
bool const negative = mantissa_ < 0;
|
||||
// It should be impossible for mantissa_ to be INT64_MIN, but use externalToInternal just in case.
|
||||
Rep mantissa = static_cast<Rep>(externalToInternal(mantissa_));
|
||||
|
||||
auto const referenceMin = range.referenceMin;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
|
||||
{
|
||||
// Ensure the mantissa has the correct number of digits
|
||||
mantissa *= 10;
|
||||
--exponent;
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= referenceMin && mantissa < referenceMin * 10,
|
||||
"xrpl::Number::toInternal()",
|
||||
"Number is within reference range and has 'log' digits");
|
||||
}
|
||||
|
||||
return {negative, mantissa, exponent};
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has exactly range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal() const
|
||||
{
|
||||
return toInternal(range_);
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "expectNormal" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "expectNormal" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(bool negative, Rep mantissa, int exponent, MantissaRange const* pRange)
|
||||
{
|
||||
if constexpr (std::is_same_v<std::bool_constant<expectNormal>, std::false_type>)
|
||||
{
|
||||
if (!pRange)
|
||||
throw std::runtime_error("Missing range to Number::fromInternal!");
|
||||
auto const& range = *pRange;
|
||||
|
||||
auto const maxMantissa = range.max;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
XRPL_ASSERT_PARTS(mantissa >= minMantissa, "xrpl::Number::fromInternal", "mantissa large enough");
|
||||
|
||||
if (mantissa > maxMantissa || mantissa < minMantissa)
|
||||
{
|
||||
normalize(negative, mantissa, exponent, range.min, maxMantissa);
|
||||
}
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa && mantissa <= maxMantissa, "xrpl::Number::fromInternal", "mantissa in range");
|
||||
}
|
||||
|
||||
// mantissa is unsigned, but it might not be uint64
|
||||
mantissa_ = static_cast<rep>(static_cast<internalrep>(mantissa));
|
||||
if (negative)
|
||||
mantissa_ = -mantissa_;
|
||||
exponent_ = exponent;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
(pRange && isnormal(*pRange)) || isnormal(), "xrpl::Number::fromInternal", "Number is normalized");
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "expectNormal" is true, the values are expected to be normalized - all in
|
||||
* their valid ranges.
|
||||
*
|
||||
* If "expectNormal" is false, the values are expected to be "near normalized",
|
||||
* meaning that the mantissa has to be modified at most once to bring it back
|
||||
* into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(bool negative, Rep mantissa, int exponent)
|
||||
{
|
||||
MantissaRange const* pRange = nullptr;
|
||||
if constexpr (std::is_same_v<std::bool_constant<expectNormal>, std::false_type>)
|
||||
{
|
||||
pRange = &Number::range_.get();
|
||||
}
|
||||
|
||||
fromInternal(negative, mantissa, exponent, pRange);
|
||||
// If the mantissa doesn't fit within the positive range, convert to
|
||||
// int128_t, negate that, and cast it back down to the internalrep
|
||||
// In practice, this is only going to cover the case of
|
||||
// std::numeric_limits<rep>::min().
|
||||
int128_t temp = mantissa;
|
||||
return static_cast<internalrep>(-temp);
|
||||
}
|
||||
|
||||
constexpr Number
|
||||
Number::oneSmall()
|
||||
{
|
||||
return Number{false, Number::smallRange.referenceMin, -Number::smallRange.log, Number::unchecked{}};
|
||||
return Number{false, Number::smallRange.min, -Number::smallRange.log, Number::unchecked{}};
|
||||
};
|
||||
|
||||
constexpr Number oneSml = Number::oneSmall();
|
||||
@@ -433,84 +334,101 @@ constexpr Number oneSml = Number::oneSmall();
|
||||
constexpr Number
|
||||
Number::oneLarge()
|
||||
{
|
||||
return Number{false, Number::largeRange.referenceMin, -Number::largeRange.log, Number::unchecked{}};
|
||||
return Number{false, Number::largeRange.min, -Number::largeRange.log, Number::unchecked{}};
|
||||
};
|
||||
|
||||
constexpr Number oneLrg = Number::oneLarge();
|
||||
|
||||
Number
|
||||
Number::one(MantissaRange const& range)
|
||||
Number::one()
|
||||
{
|
||||
if (&range == &smallRange)
|
||||
if (&range_.get() == &smallRange)
|
||||
return oneSml;
|
||||
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
|
||||
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
|
||||
return oneLrg;
|
||||
}
|
||||
|
||||
Number
|
||||
Number::one()
|
||||
{
|
||||
return one(range_);
|
||||
}
|
||||
|
||||
// Use the member names in this static function for now so the diff is cleaner
|
||||
// TODO: Rename the function parameters to get rid of the "_" suffix
|
||||
template <class T>
|
||||
void
|
||||
doNormalize(
|
||||
bool& negative,
|
||||
T& mantissa,
|
||||
int& exponent,
|
||||
T& mantissa_,
|
||||
int& exponent_,
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa)
|
||||
{
|
||||
auto constexpr minExponent = Number::minExponent;
|
||||
auto constexpr maxExponent = Number::maxExponent;
|
||||
auto constexpr maxRep = Number::maxRep;
|
||||
|
||||
using Guard = Number::Guard;
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
|
||||
if (mantissa_ == 0)
|
||||
{
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
negative = false;
|
||||
mantissa_ = zero.mantissa_;
|
||||
exponent_ = zero.exponent_;
|
||||
negative = zero.negative_;
|
||||
return;
|
||||
}
|
||||
|
||||
auto m = mantissa;
|
||||
while ((m < minMantissa) && (exponent > minExponent))
|
||||
auto m = mantissa_;
|
||||
while ((m < minMantissa) && (exponent_ > minExponent))
|
||||
{
|
||||
m *= 10;
|
||||
--exponent;
|
||||
--exponent_;
|
||||
}
|
||||
Guard g;
|
||||
if (negative)
|
||||
g.set_negative();
|
||||
while (m > maxMantissa)
|
||||
{
|
||||
if (exponent >= maxExponent)
|
||||
if (exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent;
|
||||
++exponent_;
|
||||
}
|
||||
if ((exponent < minExponent) || (m == 0))
|
||||
if ((exponent_ < minExponent) || (m < minMantissa))
|
||||
{
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
negative = false;
|
||||
mantissa_ = zero.mantissa_;
|
||||
exponent_ = zero.exponent_;
|
||||
negative = zero.negative_;
|
||||
return;
|
||||
}
|
||||
|
||||
XRPL_ASSERT_PARTS(m <= maxMantissa, "xrpl::doNormalize", "intermediate mantissa fits in int64");
|
||||
mantissa = m;
|
||||
|
||||
g.doRoundUp(negative, mantissa, exponent, minMantissa, maxMantissa, "Number::normalize 2");
|
||||
// When using the largeRange, "m" needs fit within an int64, even if
|
||||
// the final mantissa_ is going to end up larger to fit within the
|
||||
// MantissaRange. Cut it down here so that the rounding will be done while
|
||||
// it's smaller.
|
||||
//
|
||||
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
|
||||
// so "m" will be modified to 990,000,000,000,012,345. Then that value
|
||||
// will be rounded to 990,000,000,000,012,345 or
|
||||
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
|
||||
// mantissa_ will be "m*10" so it fits within the range, and end up as
|
||||
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
|
||||
// mantissa() will return mantissa_ / 10, and exponent() will return
|
||||
// exponent_ + 1.
|
||||
if (m > maxRep)
|
||||
{
|
||||
if (exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1.5");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent_;
|
||||
}
|
||||
// Before modification, m should be within the min/max range. After
|
||||
// modification, it must be less than maxRep. In other words, the original
|
||||
// value should have been no more than maxRep * 10.
|
||||
// (maxRep * 10 > maxMantissa)
|
||||
XRPL_ASSERT_PARTS(m <= maxRep, "xrpl::doNormalize", "intermediate mantissa fits in int64");
|
||||
mantissa_ = m;
|
||||
|
||||
g.doRoundUp(negative, mantissa_, exponent_, minMantissa, maxMantissa, "Number::normalize 2");
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa && mantissa <= maxMantissa, "xrpl::doNormalize", "final mantissa fits in range");
|
||||
XRPL_ASSERT_PARTS(
|
||||
exponent >= minExponent && exponent <= maxExponent, "xrpl::doNormalize", "final exponent fits in range");
|
||||
mantissa_ >= minMantissa && mantissa_ <= maxMantissa, "xrpl::doNormalize", "final mantissa fits in range");
|
||||
}
|
||||
|
||||
template <>
|
||||
@@ -549,20 +467,11 @@ Number::normalize<unsigned long>(
|
||||
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize(MantissaRange const& range)
|
||||
{
|
||||
auto [negative, mantissa, exponent] = toInternal(range);
|
||||
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize()
|
||||
{
|
||||
normalize(range_);
|
||||
auto const& range = range_.get();
|
||||
normalize(negative_, mantissa_, exponent_, range.min, range.max);
|
||||
}
|
||||
|
||||
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
|
||||
@@ -572,33 +481,21 @@ Number
|
||||
Number::shiftExponent(int exponentDelta) const
|
||||
{
|
||||
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
|
||||
|
||||
Number result = *this;
|
||||
|
||||
result.exponent_ += exponentDelta;
|
||||
|
||||
if (result.exponent_ >= maxExponent)
|
||||
auto const newExponent = exponent_ + exponentDelta;
|
||||
if (newExponent >= maxExponent)
|
||||
throw std::overflow_error("Number::shiftExponent");
|
||||
if (result.exponent_ < minExponent)
|
||||
if (newExponent < minExponent)
|
||||
{
|
||||
return Number{};
|
||||
}
|
||||
|
||||
Number const result{negative_, mantissa_, newExponent, unchecked{}};
|
||||
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::Number::shiftExponent", "result is normalized");
|
||||
return result;
|
||||
}
|
||||
|
||||
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator+=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
return *this;
|
||||
@@ -613,7 +510,7 @@ Number::operator+=(Number const& y)
|
||||
return *this;
|
||||
}
|
||||
|
||||
XRPL_ASSERT(isnormal(range) && y.isnormal(range), "xrpl::Number::operator+=(Number) : is normal");
|
||||
XRPL_ASSERT(isnormal() && y.isnormal(), "xrpl::Number::operator+=(Number) : is normal");
|
||||
// *n = negative
|
||||
// *s = sign
|
||||
// *m = mantissa
|
||||
@@ -621,10 +518,13 @@ Number::operator+=(Number const& y)
|
||||
|
||||
// Need to use uint128_t, because large mantissas can overflow when added
|
||||
// together.
|
||||
auto [xn, xm, xe] = toInternal<uint128_t>(range);
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
|
||||
bool xn = negative_;
|
||||
uint128_t xm = mantissa_;
|
||||
auto xe = exponent_;
|
||||
|
||||
bool yn = y.negative_;
|
||||
uint128_t ym = y.mantissa_;
|
||||
auto ye = y.exponent_;
|
||||
Guard g;
|
||||
if (xe < ye)
|
||||
{
|
||||
@@ -649,13 +549,14 @@ Number::operator+=(Number const& y)
|
||||
} while (xe > ye);
|
||||
}
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
if (xn == yn)
|
||||
{
|
||||
xm += ym;
|
||||
if (xm > maxMantissa)
|
||||
if (xm > maxMantissa || xm > maxRep)
|
||||
{
|
||||
g.push(xm % 10);
|
||||
xm /= 10;
|
||||
@@ -675,7 +576,7 @@ Number::operator+=(Number const& y)
|
||||
xe = ye;
|
||||
xn = yn;
|
||||
}
|
||||
while (xm < minMantissa)
|
||||
while (xm < minMantissa && xm * 10 <= maxRep)
|
||||
{
|
||||
xm *= 10;
|
||||
xm -= g.pop();
|
||||
@@ -684,8 +585,10 @@ Number::operator+=(Number const& y)
|
||||
g.doRoundDown(xn, xm, xe, minMantissa);
|
||||
}
|
||||
|
||||
normalize(xn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(xn, xm, xe, &range);
|
||||
negative_ = xn;
|
||||
mantissa_ = static_cast<internalrep>(xm);
|
||||
exponent_ = xe;
|
||||
normalize();
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -720,8 +623,6 @@ divu10(uint128_t& u)
|
||||
Number&
|
||||
Number::operator*=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (*this == zero)
|
||||
return *this;
|
||||
@@ -735,11 +636,15 @@ Number::operator*=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
auto [xn, xm, xe] = toInternal(range);
|
||||
bool xn = negative_;
|
||||
int xs = xn ? -1 : 1;
|
||||
internalrep xm = mantissa_;
|
||||
auto xe = exponent_;
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal(range);
|
||||
bool yn = y.negative_;
|
||||
int ys = yn ? -1 : 1;
|
||||
internalrep ym = y.mantissa_;
|
||||
auto ye = y.exponent_;
|
||||
|
||||
auto zm = uint128_t(xm) * uint128_t(ym);
|
||||
auto ze = xe + ye;
|
||||
@@ -749,10 +654,11 @@ Number::operator*=(Number const& y)
|
||||
if (zn)
|
||||
g.set_negative();
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
while (zm > maxMantissa)
|
||||
while (zm > maxMantissa || zm > maxRep)
|
||||
{
|
||||
// The following is optimization for:
|
||||
// g.push(static_cast<unsigned>(zm % 10));
|
||||
@@ -764,17 +670,17 @@ Number::operator*=(Number const& y)
|
||||
xe = ze;
|
||||
g.doRoundUp(
|
||||
zn, xm, xe, minMantissa, maxMantissa, "Number::multiplication overflow : exponent is " + std::to_string(xe));
|
||||
negative_ = zn;
|
||||
mantissa_ = xm;
|
||||
exponent_ = xe;
|
||||
|
||||
normalize(zn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(zn, xm, xe, &range);
|
||||
normalize();
|
||||
return *this;
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator/=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
throw std::overflow_error("Number: divide by 0");
|
||||
@@ -787,12 +693,17 @@ Number::operator/=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
auto [np, nm, ne] = toInternal(range);
|
||||
bool np = negative_;
|
||||
int ns = (np ? -1 : 1);
|
||||
auto nm = mantissa_;
|
||||
auto ne = exponent_;
|
||||
|
||||
auto [dp, dm, de] = y.toInternal(range);
|
||||
bool dp = y.negative_;
|
||||
int ds = (dp ? -1 : 1);
|
||||
auto dm = y.mantissa_;
|
||||
auto de = y.exponent_;
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
@@ -804,7 +715,7 @@ Number::operator/=(Number const& y)
|
||||
// f can be up to 10^(38-19) = 10^19 safely
|
||||
static_assert(smallRange.log == 15);
|
||||
static_assert(largeRange.log == 18);
|
||||
bool small = range.scale == MantissaRange::small;
|
||||
bool small = Number::getMantissaScale() == MantissaRange::small;
|
||||
uint128_t const f = small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
|
||||
XRPL_ASSERT_PARTS(f >= minMantissa * 10, "Number::operator/=", "factor expected size");
|
||||
|
||||
@@ -854,8 +765,10 @@ Number::operator/=(Number const& y)
|
||||
}
|
||||
}
|
||||
normalize(zn, zm, ze, minMantissa, maxMantissa);
|
||||
fromInternal(zn, zm, ze, &range);
|
||||
XRPL_ASSERT_PARTS(isnormal(range), "xrpl::Number::operator/=", "result is normalized");
|
||||
negative_ = zn;
|
||||
mantissa_ = static_cast<internalrep>(zm);
|
||||
exponent_ = ze;
|
||||
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::operator/=", "result is normalized");
|
||||
|
||||
return *this;
|
||||
}
|
||||
@@ -867,10 +780,10 @@ Number::operator rep() const
|
||||
Guard g;
|
||||
if (drops != 0)
|
||||
{
|
||||
if (drops < 0)
|
||||
if (negative_)
|
||||
{
|
||||
g.set_negative();
|
||||
drops = externalToInternal(drops);
|
||||
drops = -drops;
|
||||
}
|
||||
for (; offset < 0; ++offset)
|
||||
{
|
||||
@@ -879,7 +792,7 @@ Number::operator rep() const
|
||||
}
|
||||
for (; offset > 0; --offset)
|
||||
{
|
||||
if (drops >= largeRange.min)
|
||||
if (drops > maxRep / 10)
|
||||
throw std::overflow_error("Number::operator rep() overflow");
|
||||
drops *= 10;
|
||||
}
|
||||
@@ -909,21 +822,19 @@ Number::truncate() const noexcept
|
||||
std::string
|
||||
to_string(Number const& amount)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
// keep full internal accuracy, but make more human friendly if possible
|
||||
constexpr Number zero = Number{};
|
||||
if (amount == zero)
|
||||
return "0";
|
||||
|
||||
// The mantissa must have a set number of decimal places for this to work
|
||||
auto [negative, mantissa, exponent] = amount.toInternal(range);
|
||||
auto exponent = amount.exponent_;
|
||||
auto mantissa = amount.mantissa_;
|
||||
bool const negative = amount.negative_;
|
||||
|
||||
// Use scientific notation for exponents that are too small or too large
|
||||
auto const rangeLog = range.log;
|
||||
if (((exponent != 0 && amount.exponent() != 0) && ((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
|
||||
auto const rangeLog = Number::mantissaLog();
|
||||
if (((exponent != 0) && ((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
|
||||
{
|
||||
// Remove trailing zeroes from the mantissa.
|
||||
while (mantissa != 0 && mantissa % 10 == 0 && exponent < Number::maxExponent)
|
||||
{
|
||||
mantissa /= 10;
|
||||
@@ -931,11 +842,8 @@ to_string(Number const& amount)
|
||||
}
|
||||
std::string ret = negative ? "-" : "";
|
||||
ret.append(std::to_string(mantissa));
|
||||
if (exponent != 0)
|
||||
{
|
||||
ret.append(1, 'e');
|
||||
ret.append(std::to_string(exponent));
|
||||
}
|
||||
ret.append(1, 'e');
|
||||
ret.append(std::to_string(exponent));
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -1017,11 +925,20 @@ power(Number const& f, unsigned n)
|
||||
return r;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
root(Number f, unsigned d)
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one(range);
|
||||
auto const one = Number::one();
|
||||
|
||||
if (f == one || d == 1)
|
||||
return f;
|
||||
@@ -1038,28 +955,21 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
if (f == zero)
|
||||
return f;
|
||||
|
||||
auto const [e, di] = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that the scale change (e) is a
|
||||
// multiple of the root (d)
|
||||
auto e = exponent + range.log + 1;
|
||||
auto const di = static_cast<int>(d);
|
||||
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
|
||||
{
|
||||
int k = (e >= 0 ? e : e - (di - 1)) / di;
|
||||
int k2 = e - k * di;
|
||||
if (k2 == 0)
|
||||
return 0;
|
||||
return di - k2;
|
||||
}();
|
||||
e += ex;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return std::make_tuple(e, di);
|
||||
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
|
||||
auto e = f.exponent_ + Number::mantissaLog() + 1;
|
||||
auto const di = static_cast<int>(d);
|
||||
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
|
||||
{
|
||||
int k = (e >= 0 ? e : e - (di - 1)) / di;
|
||||
int k2 = e - k * di;
|
||||
if (k2 == 0)
|
||||
return 0;
|
||||
return di - k2;
|
||||
}();
|
||||
e += ex;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
|
||||
XRPL_ASSERT_PARTS(e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
|
||||
XRPL_ASSERT_PARTS(f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
bool neg = false;
|
||||
if (f < zero)
|
||||
{
|
||||
@@ -1092,32 +1002,15 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
|
||||
// return r * 10^(e/d) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / di);
|
||||
XRPL_ASSERT_PARTS(result.isnormal(range), "xrpl::root(Number, unsigned)", "result is normalized");
|
||||
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::root(Number, unsigned)", "result is normalized");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
root(Number f, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
return Number::root(range, f, d);
|
||||
}
|
||||
|
||||
Number
|
||||
root2(Number f)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one(range);
|
||||
auto const one = Number::one();
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1126,18 +1019,12 @@ root2(Number f)
|
||||
if (f == zero)
|
||||
return f;
|
||||
|
||||
auto const e = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that f's exponent is a
|
||||
// multiple of d
|
||||
auto e = exponent + range.log + 1;
|
||||
if (e % 2 != 0)
|
||||
++e;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return e;
|
||||
}();
|
||||
XRPL_ASSERT_PARTS(f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
|
||||
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
|
||||
auto e = f.exponent_ + Number::mantissaLog() + 1;
|
||||
if (e % 2 != 0)
|
||||
++e;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
|
||||
|
||||
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
|
||||
auto const D = 105;
|
||||
@@ -1159,7 +1046,7 @@ root2(Number f)
|
||||
|
||||
// return r * 10^(e/2) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / 2);
|
||||
XRPL_ASSERT_PARTS(result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
|
||||
XRPL_ASSERT_PARTS(result.isnormal(), "xrpl::root2(Number)", "result is normalized");
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1169,10 +1056,8 @@ root2(Number f)
|
||||
Number
|
||||
power(Number const& f, unsigned n, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one(range);
|
||||
auto const one = Number::one();
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1194,7 +1079,7 @@ power(Number const& f, unsigned n, unsigned d)
|
||||
d /= g;
|
||||
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
|
||||
throw std::overflow_error("Number::power nan");
|
||||
return Number::root(range, power(f, n), d);
|
||||
return root(power(f, n), d);
|
||||
}
|
||||
|
||||
} // namespace xrpl
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <set>
|
||||
#include <stack>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
@@ -87,14 +88,14 @@ public:
|
||||
}
|
||||
|
||||
void
|
||||
output(boost::beast::string_view const& bytes)
|
||||
output(std::string_view const& bytes)
|
||||
{
|
||||
markStarted();
|
||||
output_(bytes);
|
||||
}
|
||||
|
||||
void
|
||||
stringOutput(boost::beast::string_view const& bytes)
|
||||
stringOutput(std::string_view const& bytes)
|
||||
{
|
||||
markStarted();
|
||||
std::size_t position = 0, writtenUntil = 0;
|
||||
|
||||
@@ -85,8 +85,7 @@ registerSSLCerts(boost::asio::ssl::context& ctx, boost::system::error_code& ec,
|
||||
// There is a very unpleasant interaction between <wincrypt> and
|
||||
// openssl x509 types (namely the former has macros that stomp
|
||||
// on the latter), these undefs allow this TU to be safely used in
|
||||
// unity builds without messing up subsequent TUs. Although we
|
||||
// no longer use unity builds, leaving the undefs here does no harm.
|
||||
// unity builds without messing up subsequent TUs.
|
||||
#if BOOST_OS_WINDOWS
|
||||
#undef X509_NAME
|
||||
#undef X509_EXTENSIONS
|
||||
|
||||
@@ -10,11 +10,6 @@ DatabaseNodeImp::store(NodeObjectType type, Blob&& data, uint256 const& hash, st
|
||||
|
||||
auto obj = NodeObject::createObject(type, std::move(data), hash);
|
||||
backend_->store(obj);
|
||||
if (cache_)
|
||||
{
|
||||
// After the store, replace a negative cache entry if there is one
|
||||
cache_->canonicalize(hash, obj, [](std::shared_ptr<NodeObject> const& n) { return n->getType() == hotDUMMY; });
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
@@ -23,77 +18,36 @@ DatabaseNodeImp::asyncFetch(
|
||||
std::uint32_t ledgerSeq,
|
||||
std::function<void(std::shared_ptr<NodeObject> const&)>&& callback)
|
||||
{
|
||||
if (cache_)
|
||||
{
|
||||
std::shared_ptr<NodeObject> obj = cache_->fetch(hash);
|
||||
if (obj)
|
||||
{
|
||||
callback(obj->getType() == hotDUMMY ? nullptr : obj);
|
||||
return;
|
||||
}
|
||||
}
|
||||
Database::asyncFetch(hash, ledgerSeq, std::move(callback));
|
||||
}
|
||||
|
||||
void
|
||||
DatabaseNodeImp::sweep()
|
||||
{
|
||||
if (cache_)
|
||||
cache_->sweep();
|
||||
}
|
||||
|
||||
std::shared_ptr<NodeObject>
|
||||
DatabaseNodeImp::fetchNodeObject(uint256 const& hash, std::uint32_t, FetchReport& fetchReport, bool duplicate)
|
||||
{
|
||||
std::shared_ptr<NodeObject> nodeObject = cache_ ? cache_->fetch(hash) : nullptr;
|
||||
std::shared_ptr<NodeObject> nodeObject = nullptr;
|
||||
Status status;
|
||||
|
||||
if (!nodeObject)
|
||||
try
|
||||
{
|
||||
JLOG(j_.trace()) << "fetchNodeObject " << hash << ": record not " << (cache_ ? "cached" : "found");
|
||||
|
||||
Status status;
|
||||
|
||||
try
|
||||
{
|
||||
status = backend_->fetch(hash.data(), &nodeObject);
|
||||
}
|
||||
catch (std::exception const& e)
|
||||
{
|
||||
JLOG(j_.fatal()) << "fetchNodeObject " << hash << ": Exception fetching from backend: " << e.what();
|
||||
Rethrow();
|
||||
}
|
||||
|
||||
switch (status)
|
||||
{
|
||||
case ok:
|
||||
if (cache_)
|
||||
{
|
||||
if (nodeObject)
|
||||
cache_->canonicalize_replace_client(hash, nodeObject);
|
||||
else
|
||||
{
|
||||
auto notFound = NodeObject::createObject(hotDUMMY, {}, hash);
|
||||
cache_->canonicalize_replace_client(hash, notFound);
|
||||
if (notFound->getType() != hotDUMMY)
|
||||
nodeObject = notFound;
|
||||
}
|
||||
}
|
||||
break;
|
||||
case notFound:
|
||||
break;
|
||||
case dataCorrupt:
|
||||
JLOG(j_.fatal()) << "fetchNodeObject " << hash << ": nodestore data is corrupted";
|
||||
break;
|
||||
default:
|
||||
JLOG(j_.warn()) << "fetchNodeObject " << hash << ": backend returns unknown result " << status;
|
||||
break;
|
||||
}
|
||||
status = backend_->fetch(hash.data(), &nodeObject);
|
||||
}
|
||||
else
|
||||
catch (std::exception const& e)
|
||||
{
|
||||
JLOG(j_.trace()) << "fetchNodeObject " << hash << ": record found in cache";
|
||||
if (nodeObject->getType() == hotDUMMY)
|
||||
nodeObject.reset();
|
||||
JLOG(j_.fatal()) << "fetchNodeObject " << hash << ": Exception fetching from backend: " << e.what();
|
||||
Rethrow();
|
||||
}
|
||||
|
||||
switch (status)
|
||||
{
|
||||
case ok:
|
||||
case notFound:
|
||||
break;
|
||||
case dataCorrupt:
|
||||
JLOG(j_.fatal()) << "fetchNodeObject " << hash << ": nodestore data is corrupted";
|
||||
break;
|
||||
default:
|
||||
JLOG(j_.warn()) << "fetchNodeObject " << hash << ": backend returns unknown result " << status;
|
||||
break;
|
||||
}
|
||||
|
||||
if (nodeObject)
|
||||
@@ -105,66 +59,36 @@ DatabaseNodeImp::fetchNodeObject(uint256 const& hash, std::uint32_t, FetchReport
|
||||
std::vector<std::shared_ptr<NodeObject>>
|
||||
DatabaseNodeImp::fetchBatch(std::vector<uint256> const& hashes)
|
||||
{
|
||||
std::vector<std::shared_ptr<NodeObject>> results{hashes.size()};
|
||||
using namespace std::chrono;
|
||||
auto const before = steady_clock::now();
|
||||
std::unordered_map<uint256 const*, size_t> indexMap;
|
||||
std::vector<uint256 const*> cacheMisses;
|
||||
uint64_t hits = 0;
|
||||
uint64_t fetches = 0;
|
||||
|
||||
std::vector<uint256 const*> batch{};
|
||||
batch.reserve(hashes.size());
|
||||
for (size_t i = 0; i < hashes.size(); ++i)
|
||||
{
|
||||
auto const& hash = hashes[i];
|
||||
// See if the object already exists in the cache
|
||||
auto nObj = cache_ ? cache_->fetch(hash) : nullptr;
|
||||
++fetches;
|
||||
if (!nObj)
|
||||
{
|
||||
// Try the database
|
||||
indexMap[&hash] = i;
|
||||
cacheMisses.push_back(&hash);
|
||||
}
|
||||
else
|
||||
{
|
||||
results[i] = nObj->getType() == hotDUMMY ? nullptr : nObj;
|
||||
// It was in the cache.
|
||||
++hits;
|
||||
}
|
||||
batch.push_back(&hash);
|
||||
}
|
||||
|
||||
JLOG(j_.debug()) << "fetchBatch - cache hits = " << (hashes.size() - cacheMisses.size())
|
||||
<< " - cache misses = " << cacheMisses.size();
|
||||
auto dbResults = backend_->fetchBatch(cacheMisses).first;
|
||||
|
||||
for (size_t i = 0; i < dbResults.size(); ++i)
|
||||
// Get the node objects that match the hashes from the backend. To protect
|
||||
// against the backends returning fewer or more results than expected, the
|
||||
// container is resized to the number of hashes.
|
||||
auto results = backend_->fetchBatch(batch).first;
|
||||
XRPL_ASSERT(
|
||||
results.size() == hashes.size() || results.empty(),
|
||||
"number of output objects either matches number of input hashes or is empty");
|
||||
results.resize(hashes.size());
|
||||
for (size_t i = 0; i < results.size(); ++i)
|
||||
{
|
||||
auto nObj = std::move(dbResults[i]);
|
||||
size_t index = indexMap[cacheMisses[i]];
|
||||
auto const& hash = hashes[index];
|
||||
|
||||
if (nObj)
|
||||
{
|
||||
// Ensure all threads get the same object
|
||||
if (cache_)
|
||||
cache_->canonicalize_replace_client(hash, nObj);
|
||||
}
|
||||
else
|
||||
if (!results[i])
|
||||
{
|
||||
JLOG(j_.error()) << "fetchBatch - "
|
||||
<< "record not found in db or cache. hash = " << strHex(hash);
|
||||
if (cache_)
|
||||
{
|
||||
auto notFound = NodeObject::createObject(hotDUMMY, {}, hash);
|
||||
cache_->canonicalize_replace_client(hash, notFound);
|
||||
if (notFound->getType() != hotDUMMY)
|
||||
nObj = std::move(notFound);
|
||||
}
|
||||
<< "record not found in db. hash = " << strHex(hashes[i]);
|
||||
}
|
||||
results[index] = std::move(nObj);
|
||||
}
|
||||
|
||||
auto fetchDurationUs = std::chrono::duration_cast<std::chrono::microseconds>(steady_clock::now() - before).count();
|
||||
updateFetchMetrics(fetches, hits, fetchDurationUs);
|
||||
updateFetchMetrics(hashes.size(), 0, fetchDurationUs);
|
||||
return results;
|
||||
}
|
||||
|
||||
|
||||
@@ -93,12 +93,6 @@ DatabaseRotatingImp::store(NodeObjectType type, Blob&& data, uint256 const& hash
|
||||
storeStats(1, nObj->getData().size());
|
||||
}
|
||||
|
||||
void
|
||||
DatabaseRotatingImp::sweep()
|
||||
{
|
||||
// nothing to do
|
||||
}
|
||||
|
||||
std::shared_ptr<NodeObject>
|
||||
DatabaseRotatingImp::fetchNodeObject(uint256 const& hash, std::uint32_t, FetchReport& fetchReport, bool duplicate)
|
||||
{
|
||||
|
||||
@@ -490,19 +490,8 @@ public:
|
||||
Env env(*this, envconfig(onlineDelete));
|
||||
|
||||
/////////////////////////////////////////////////////////////
|
||||
// Create the backend. Normally, SHAMapStoreImp handles all these
|
||||
// details
|
||||
auto nscfg = env.app().config().section(ConfigSection::nodeDatabase());
|
||||
|
||||
// Provide default values:
|
||||
if (!nscfg.exists("cache_size"))
|
||||
nscfg.set(
|
||||
"cache_size", std::to_string(env.app().config().getValueFor(SizedItem::treeCacheSize, std::nullopt)));
|
||||
|
||||
if (!nscfg.exists("cache_age"))
|
||||
nscfg.set(
|
||||
"cache_age", std::to_string(env.app().config().getValueFor(SizedItem::treeCacheAge, std::nullopt)));
|
||||
|
||||
// Create NodeStore with two backends to allow online deletion of data.
|
||||
// Normally, SHAMapStoreImp handles all these details.
|
||||
NodeStoreScheduler scheduler(env.app().getJobQueue());
|
||||
|
||||
std::string const writableDb = "write";
|
||||
@@ -510,9 +499,8 @@ public:
|
||||
auto writableBackend = makeBackendRotating(env, scheduler, writableDb);
|
||||
auto archiveBackend = makeBackendRotating(env, scheduler, archiveDb);
|
||||
|
||||
// Create NodeStore with two backends to allow online deletion of
|
||||
// data
|
||||
constexpr int readThreads = 4;
|
||||
auto nscfg = env.app().config().section(ConfigSection::nodeDatabase());
|
||||
auto dbr = std::make_unique<NodeStore::DatabaseRotatingImp>(
|
||||
scheduler,
|
||||
readThreads,
|
||||
|
||||
@@ -32,10 +32,9 @@ public:
|
||||
test_limits()
|
||||
{
|
||||
auto const scale = Number::getMantissaScale();
|
||||
auto const minMantissa = Number::minMantissa();
|
||||
|
||||
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
|
||||
testcase << "test_limits " << to_string(scale);
|
||||
bool caught = false;
|
||||
auto const minMantissa = Number::minMantissa();
|
||||
try
|
||||
{
|
||||
Number x = Number{false, minMantissa * 10, 32768, Number::normalized{}};
|
||||
@@ -59,9 +58,8 @@ public:
|
||||
__LINE__);
|
||||
test(Number{false, minMantissa, -32769, Number::normalized{}}, Number{}, __LINE__);
|
||||
test(
|
||||
// Use 1501 to force rounding up
|
||||
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
|
||||
Number{false, 1'501, 32000, Number::normalized{}},
|
||||
Number{false, 1'500, 32000, Number::normalized{}},
|
||||
Number{false, minMantissa + 2, 32003, Number::normalized{}},
|
||||
__LINE__);
|
||||
// 9,223,372,036,854,775,808
|
||||
@@ -161,8 +159,8 @@ public:
|
||||
{Number{true, 9'999'999'999'999'999'999ULL, -37, Number::normalized{}},
|
||||
Number{1'000'000'000'000'000'000, -18},
|
||||
Number{false, 9'999'999'999'999'999'990ULL, -19, Number::normalized{}}},
|
||||
{Number{Number::largestMantissa}, Number{6, -1}, Number{Number::largestMantissa / 10, 1}},
|
||||
{Number{Number::largestMantissa - 1}, Number{1, 0}, Number{Number::largestMantissa}},
|
||||
{Number{Number::maxRep}, Number{6, -1}, Number{Number::maxRep / 10, 1}},
|
||||
{Number{Number::maxRep - 1}, Number{1, 0}, Number{Number::maxRep}},
|
||||
// Test extremes
|
||||
{
|
||||
// Each Number operand rounds up, so the actual mantissa is
|
||||
@@ -172,18 +170,11 @@ public:
|
||||
Number{2, 19},
|
||||
},
|
||||
{
|
||||
// Does not round. Mantissas are going to be >
|
||||
// largestMantissa, so if added together as uint64_t's, the
|
||||
// result will overflow. With addition using uint128_t,
|
||||
// there's no problem. After normalizing, the resulting
|
||||
// mantissa ends up less than largestMantissa.
|
||||
Number{false, Number::largestMantissa, 0, Number::normalized{}},
|
||||
Number{false, Number::largestMantissa, 0, Number::normalized{}},
|
||||
Number{false, Number::largestMantissa * 2, 0, Number::normalized{}},
|
||||
},
|
||||
{
|
||||
// These mantissas round down, so adding them together won't
|
||||
// have any consequences.
|
||||
// Does not round. Mantissas are going to be > maxRep, so if
|
||||
// added together as uint64_t's, the result will overflow.
|
||||
// With addition using uint128_t, there's no problem. After
|
||||
// normalizing, the resulting mantissa ends up less than
|
||||
// maxRep.
|
||||
Number{false, 9'999'999'999'999'999'990ULL, 0, Number::normalized{}},
|
||||
Number{false, 9'999'999'999'999'999'990ULL, 0, Number::normalized{}},
|
||||
Number{false, 1'999'999'999'999'999'998ULL, 1, Number::normalized{}},
|
||||
@@ -270,14 +261,12 @@ public:
|
||||
{Number{1'000'000'000'000'000'001, -18},
|
||||
Number{1'000'000'000'000'000'000, -18},
|
||||
Number{1'000'000'000'000'000'000, -36}},
|
||||
{Number{Number::largestMantissa}, Number{6, -1}, Number{Number::largestMantissa - 1}},
|
||||
{Number{false, Number::largestMantissa + 1, 0, Number::normalized{}},
|
||||
{Number{Number::maxRep}, Number{6, -1}, Number{Number::maxRep - 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{1, 0},
|
||||
Number{Number::largestMantissa / 10 + 1, 1}},
|
||||
{Number{false, Number::largestMantissa + 1, 0, Number::normalized{}},
|
||||
Number{3, 0},
|
||||
Number{Number::largestMantissa}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
|
||||
Number{Number::maxRep / 10 + 1, 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}}, Number{3, 0}, Number{Number::maxRep}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
|
||||
});
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z] : c)
|
||||
@@ -300,15 +289,14 @@ public:
|
||||
auto const scale = Number::getMantissaScale();
|
||||
testcase << "test_mul " << to_string(scale);
|
||||
|
||||
// Case: Factor 1, Factor 2, Expected product, Line number
|
||||
using Case = std::tuple<Number, Number, Number, int>;
|
||||
using Case = std::tuple<Number, Number, Number>;
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z, line] : c)
|
||||
for (auto const& [x, y, z] : c)
|
||||
{
|
||||
auto const result = x * y;
|
||||
std::stringstream ss;
|
||||
ss << x << " * " << y << " = " << result << ". Expected: " << z;
|
||||
BEAST_EXPECTS(result == z, ss.str() + " line: " + std::to_string(line));
|
||||
BEAST_EXPECTS(result == z, ss.str());
|
||||
}
|
||||
};
|
||||
auto tests = [&](auto const& cSmall, auto const& cLarge) {
|
||||
@@ -318,83 +306,48 @@ public:
|
||||
test(cLarge);
|
||||
};
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(static_cast<std::int64_t>(power(10, Number::mantissaLog()))) * 10 - 1;
|
||||
|
||||
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>({
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{2000000000000000, -15}, __LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{1000000000000000, -14}, __LINE__},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{2000000000000000, -15}},
|
||||
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{1000000000000000, -14}},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}},
|
||||
// Maximum mantissa range
|
||||
{Number{9'999'999'999'999'999, 0},
|
||||
Number{9'999'999'999'999'999, 0},
|
||||
Number{9'999'999'999'999'998, 16},
|
||||
__LINE__},
|
||||
{Number{9'999'999'999'999'999, 0}, Number{9'999'999'999'999'999, 0}, Number{9'999'999'999'999'998, 16}},
|
||||
});
|
||||
auto const cLarge = std::to_array<Case>({
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999862, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
|
||||
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}}},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2000000000000000001, -18},
|
||||
__LINE__},
|
||||
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2000000000000000001, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999998, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999998, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}, __LINE__},
|
||||
// Maximum internal mantissa range - rounds up to 1e19
|
||||
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38},
|
||||
__LINE__},
|
||||
// Maximum actual mantissa range - same as int64 range
|
||||
Number{1999999999999999999, -18}},
|
||||
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
|
||||
// Maximum mantissa range - rounds up to 1e19
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
Number{1, 38}},
|
||||
// Maximum int64 range
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'85, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -402,78 +355,44 @@ public:
|
||||
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " towards_zero";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{9999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__}});
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999, -15}},
|
||||
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{9999999999999999, -15}},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999861, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{false, 9999999999999999579ULL, -18, Number::normalized{}},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
|
||||
Number{false, 9999999999999999579ULL, -18, Number::normalized{}}},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}, __LINE__},
|
||||
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999997, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999997, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}, __LINE__},
|
||||
// Maximum internal mantissa range - rounds down to
|
||||
// maxMantissa/10e1
|
||||
Number{1999999999999999999, -18}},
|
||||
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
|
||||
// Maximum mantissa range - rounds down to maxMantissa/10e1
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100
|
||||
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}},
|
||||
__LINE__},
|
||||
// Maximum actual mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'84, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -481,78 +400,44 @@ public:
|
||||
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " downward";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{9999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__}});
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999, -15}},
|
||||
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{9999999999999999, -15}},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999861, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
|
||||
Number{false, 9'999'999'999'999'999'579ULL, -18, Number::normalized{}}},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}, __LINE__},
|
||||
{Number{1414213562373095049, -18}, Number{1414213562373095049, -18}, Number{2, 0}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999998, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999998, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}, __LINE__},
|
||||
// Maximum internal mantissa range - rounds down to
|
||||
// maxMantissa/10-1
|
||||
Number{1999999999999999999, -18}},
|
||||
{Number{3214285714285714278, -18}, Number{3111111111111111119, -18}, Number{10, 0}},
|
||||
// Maximum mantissa range - rounds down to maxMantissa/10e1
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100
|
||||
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}},
|
||||
__LINE__},
|
||||
// Maximum mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'84, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -560,80 +445,44 @@ public:
|
||||
testcase << "test_mul " << to_string(Number::getMantissaScale()) << " upward";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{1000000000000000, -14},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}, __LINE__}});
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{2000000000000000, -15}},
|
||||
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{1000000000000000, -14}},
|
||||
{Number{1000000000000000, -32768}, Number{1000000000000000, -32768}, Number{0}}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{999999999999999958, -17},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15}, Number{1414213562373095, -15}, Number{1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{1414213562373095, -15}, Number{-1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15}, Number{-1414213562373095, -15}, Number{1999999999999999862, -18}},
|
||||
{Number{3214285714285706, -15}, Number{3111111111111119, -15}, Number{999999999999999958, -17}},
|
||||
{Number{1000000000000000000, -32768}, Number{1000000000000000000, -32768}, Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2000000000000000001, -18},
|
||||
__LINE__},
|
||||
Number{2000000000000000001, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999997, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18}, Number{-1414213562373095049, -18}, Number{2, 0}, __LINE__},
|
||||
Number{-1999999999999999997, -18}},
|
||||
{Number{-1414213562373095048, -18}, Number{-1414213562373095049, -18}, Number{2, 0}},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{1000000000000000001, -17},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds up to
|
||||
// minMantissa*10 1e19*1e19=1e38
|
||||
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38},
|
||||
__LINE__},
|
||||
// Maximum mantissa range - same as int64
|
||||
Number{1000000000000000001, -17}},
|
||||
// Maximum mantissa range - rounds up to minMantissa*10
|
||||
// 1e19*1e19=1e38
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
Number{1, 38}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0}, Number{Number::maxRep, 0}, Number{85'070'591'730'234'615'85, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -848,9 +697,6 @@ public:
|
||||
};
|
||||
*/
|
||||
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(static_cast<std::int64_t>(power(10, Number::mantissaLog()))) * 10 - 1;
|
||||
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{2}, 2, Number{1414213562373095049, -18}},
|
||||
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
|
||||
@@ -862,14 +708,14 @@ public:
|
||||
{Number{0}, 5, Number{0}},
|
||||
{Number{5625, -4}, 2, Number{75, -2}}});
|
||||
auto const cLarge = std::to_array<Case>({
|
||||
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
|
||||
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
|
||||
2,
|
||||
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
|
||||
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
|
||||
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
|
||||
2,
|
||||
Number{false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
|
||||
{Number{Number::largestMantissa}, 2, Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
|
||||
{Number{Number::largestMantissa}, 4, Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
|
||||
{Number{Number::maxRep}, 2, Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
|
||||
{Number{Number::maxRep}, 4, Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
|
||||
});
|
||||
test(cSmall);
|
||||
if (Number::getMantissaScale() != MantissaRange::small)
|
||||
@@ -916,8 +762,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
auto const maxInternalMantissa = power(10, Number::mantissaLog()) * 10 - 1;
|
||||
|
||||
auto const cSmall = std::to_array<Number>({
|
||||
Number{2},
|
||||
Number{2'000'000},
|
||||
@@ -927,10 +771,7 @@ public:
|
||||
Number{5, -1},
|
||||
Number{0},
|
||||
Number{5625, -4},
|
||||
Number{Number::largestMantissa},
|
||||
maxInternalMantissa,
|
||||
Number{Number::minMantissa(), 0, Number::unchecked{}},
|
||||
Number{Number::maxMantissa(), 0, Number::unchecked{}},
|
||||
Number{Number::maxRep},
|
||||
});
|
||||
test(cSmall);
|
||||
bool caught = false;
|
||||
@@ -1272,16 +1113,16 @@ public:
|
||||
case MantissaRange::large:
|
||||
// Test the edges
|
||||
// ((exponent < -(28)) || (exponent > -(8)))))
|
||||
test(Number::min(), "922337203685477581e-32768");
|
||||
test(Number::min(), "1e-32750");
|
||||
test(Number::max(), "9223372036854775807e32768");
|
||||
test(Number::lowest(), "-9223372036854775807e32768");
|
||||
{
|
||||
NumberRoundModeGuard mg(Number::towards_zero);
|
||||
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
|
||||
test(Number{false, maxMantissa, 0, Number::normalized{}}, "9223372036854775807");
|
||||
test(Number{true, maxMantissa, 0, Number::normalized{}}, "-9223372036854775807");
|
||||
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
|
||||
test(Number{false, maxMantissa, 0, Number::normalized{}}, "9999999999999999990");
|
||||
test(Number{true, maxMantissa, 0, Number::normalized{}}, "-9999999999999999990");
|
||||
|
||||
test(Number{std::numeric_limits<std::int64_t>::max(), 0}, "9223372036854775807");
|
||||
test(-(Number{std::numeric_limits<std::int64_t>::max(), 0}), "-9223372036854775807");
|
||||
@@ -1459,7 +1300,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() > 0);
|
||||
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
Number const maxInt64{Number::maxRep};
|
||||
BEAST_EXPECT(maxInt64.exponent() > 0);
|
||||
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
|
||||
BEAST_EXPECT((power(maxInt64, 2) == Number{85'070'591'730'234'62, 22}));
|
||||
@@ -1476,198 +1317,20 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() <= 0);
|
||||
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
Number const maxInt64{Number::maxRep};
|
||||
BEAST_EXPECT(maxInt64.exponent() <= 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
|
||||
BEAST_EXPECT((power(maxInt64, 2) == Number{85'070'591'730'234'615'85, 19}));
|
||||
|
||||
NumberRoundModeGuard mg(Number::towards_zero);
|
||||
|
||||
{
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(static_cast<std::int64_t>(power(10, Number::mantissaLog()))) * 10 - 1;
|
||||
|
||||
// Rounds down to fit under 2^63
|
||||
Number const max = Number{false, maxInternalMantissa, 0, Number::normalized{}};
|
||||
// No alterations by the accessors
|
||||
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
|
||||
BEAST_EXPECT(max.exponent() == 1);
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT((power(max, 2) == Number{false, maxInternalMantissa / 10 - 1, 20, Number::normalized{}}));
|
||||
}
|
||||
|
||||
{
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
Number const max = Number{false, maxMantissa, 0, Number::normalized{}};
|
||||
// No alterations by the accessors
|
||||
BEAST_EXPECT(max.mantissa() == maxMantissa);
|
||||
BEAST_EXPECT(max.exponent() == 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT((power(max, 2) == Number{false, 85'070'591'730'234'615'84, 19, Number::normalized{}}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
testNormalizeToRange()
|
||||
{
|
||||
// Test edge-cases of normalizeToRange
|
||||
auto const scale = Number::getMantissaScale();
|
||||
testcase << "normalizeToRange " << to_string(scale);
|
||||
|
||||
auto test = [this](
|
||||
Number const& n,
|
||||
auto const rangeMin,
|
||||
auto const rangeMax,
|
||||
auto const expectedMantissa,
|
||||
auto const expectedExponent,
|
||||
auto const line) {
|
||||
auto const normalized = n.normalizeToRange(rangeMin, rangeMax);
|
||||
BEAST_EXPECTS(
|
||||
normalized.first == expectedMantissa,
|
||||
"Number " + to_string(n) + " scaled to " + std::to_string(rangeMax) +
|
||||
". Expected mantissa:" + std::to_string(expectedMantissa) +
|
||||
", got: " + std::to_string(normalized.first) + " @ " + std::to_string(line));
|
||||
BEAST_EXPECTS(
|
||||
normalized.second == expectedExponent,
|
||||
"Number " + to_string(n) + " scaled to " + std::to_string(rangeMax) +
|
||||
". Expected exponent:" + std::to_string(expectedExponent) +
|
||||
", got: " + std::to_string(normalized.second) + " @ " + std::to_string(line));
|
||||
};
|
||||
|
||||
std::int64_t constexpr iRangeMin = 100;
|
||||
std::int64_t constexpr iRangeMax = 999;
|
||||
|
||||
std::uint64_t constexpr uRangeMin = 100;
|
||||
std::uint64_t constexpr uRangeMax = 999;
|
||||
|
||||
constexpr static MantissaRange largeRange{MantissaRange::large};
|
||||
|
||||
std::int64_t constexpr iBigMin = largeRange.min;
|
||||
std::int64_t constexpr iBigMax = largeRange.max;
|
||||
|
||||
auto const testSuite = [&](Number const& n,
|
||||
auto const expectedSmallMantissa,
|
||||
auto const expectedSmallExponent,
|
||||
auto const expectedLargeMantissa,
|
||||
auto const expectedLargeExponent,
|
||||
auto const line) {
|
||||
test(n, iRangeMin, iRangeMax, expectedSmallMantissa, expectedSmallExponent, line);
|
||||
test(n, iBigMin, iBigMax, expectedLargeMantissa, expectedLargeExponent, line);
|
||||
|
||||
// Only test non-negative. testing a negative number with an
|
||||
// unsigned range will assert, and asserts can't be tested.
|
||||
if (n.signum() >= 0)
|
||||
{
|
||||
test(n, uRangeMin, uRangeMax, expectedSmallMantissa, expectedSmallExponent, line);
|
||||
test(n, largeRange.min, largeRange.max, expectedLargeMantissa, expectedLargeExponent, line);
|
||||
}
|
||||
};
|
||||
|
||||
{
|
||||
// zero
|
||||
Number const n{0};
|
||||
|
||||
testSuite(n, 0, std::numeric_limits<int>::lowest(), 0, std::numeric_limits<int>::lowest(), __LINE__);
|
||||
}
|
||||
{
|
||||
// Small positive number
|
||||
Number const n{2};
|
||||
|
||||
testSuite(n, 200, -2, 2'000'000'000'000'000'000, -18, __LINE__);
|
||||
}
|
||||
{
|
||||
// Negative number
|
||||
Number const n{-2};
|
||||
|
||||
testSuite(n, -200, -2, -2'000'000'000'000'000'000, -18, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa
|
||||
Number const n{Number::largestMantissa, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, Number::largestMantissa, 0, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa + 1
|
||||
Number const n{Number::largestMantissa + 1, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa + 2
|
||||
Number const n{Number::largestMantissa + 2, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa + 3
|
||||
Number const n{Number::largestMantissa + 3, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// int64 min
|
||||
Number const n{std::numeric_limits<std::int64_t>::min(), 0};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// int64 min + 1
|
||||
Number const n{std::numeric_limits<std::int64_t>::min() + 1, 0};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, -922, 16, -9'223'372'036'854'775'807, 0, __LINE__);
|
||||
}
|
||||
{
|
||||
// int64 min - 1
|
||||
// Need to cast to uint, even though we're dealing with a negative
|
||||
// number to avoid overflow and UB
|
||||
Number const n{
|
||||
true,
|
||||
-static_cast<std::uint64_t>(std::numeric_limits<std::int64_t>::min()) + 1,
|
||||
0,
|
||||
Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
Number const max = Number{false, maxMantissa, 0, Number::normalized{}};
|
||||
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
|
||||
BEAST_EXPECT(max.exponent() == 1);
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT((power(max, 2) == Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1698,7 +1361,6 @@ public:
|
||||
test_truncate();
|
||||
testRounding();
|
||||
testInt64();
|
||||
testNormalizeToRange();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -908,10 +908,6 @@ public:
|
||||
JLOG(m_journal.debug()) << "MasterTransaction sweep. Size before: " << oldMasterTxSize
|
||||
<< "; size after: " << masterTxCache.size();
|
||||
}
|
||||
{
|
||||
// Does not appear to have an associated cache.
|
||||
getNodeStore().sweep();
|
||||
}
|
||||
{
|
||||
std::size_t const oldLedgerMasterCacheSize = getLedgerMaster().getFetchPackCacheSize();
|
||||
|
||||
|
||||
@@ -130,14 +130,6 @@ std::unique_ptr<NodeStore::Database>
|
||||
SHAMapStoreImp::makeNodeStore(int readThreads)
|
||||
{
|
||||
auto nscfg = app_.config().section(ConfigSection::nodeDatabase());
|
||||
|
||||
// Provide default values:
|
||||
if (!nscfg.exists("cache_size"))
|
||||
nscfg.set("cache_size", std::to_string(app_.config().getValueFor(SizedItem::treeCacheSize, std::nullopt)));
|
||||
|
||||
if (!nscfg.exists("cache_age"))
|
||||
nscfg.set("cache_age", std::to_string(app_.config().getValueFor(SizedItem::treeCacheAge, std::nullopt)));
|
||||
|
||||
std::unique_ptr<NodeStore::Database> db;
|
||||
|
||||
if (deleteInterval_)
|
||||
@@ -226,8 +218,6 @@ SHAMapStoreImp::run()
|
||||
LedgerIndex lastRotated = state_db_.getState().lastRotated;
|
||||
netOPs_ = &app_.getOPs();
|
||||
ledgerMaster_ = &app_.getLedgerMaster();
|
||||
fullBelowCache_ = &(*app_.getNodeFamily().getFullBelowCache());
|
||||
treeNodeCache_ = &(*app_.getNodeFamily().getTreeNodeCache());
|
||||
|
||||
if (advisoryDelete_)
|
||||
canDelete_ = state_db_.getCanDelete();
|
||||
@@ -490,16 +480,19 @@ void
|
||||
SHAMapStoreImp::clearCaches(LedgerIndex validatedSeq)
|
||||
{
|
||||
ledgerMaster_->clearLedgerCachePrior(validatedSeq);
|
||||
fullBelowCache_->clear();
|
||||
// Also clear the FullBelowCache so its generation counter is bumped.
|
||||
// This prevents stale "full below" markers from persisting across
|
||||
// backend rotation/online deletion and interfering with SHAMap sync.
|
||||
app_.getNodeFamily().getFullBelowCache()->clear();
|
||||
}
|
||||
|
||||
void
|
||||
SHAMapStoreImp::freshenCaches()
|
||||
{
|
||||
if (freshenCache(*treeNodeCache_))
|
||||
return;
|
||||
if (freshenCache(app_.getMasterTransaction().getCache()))
|
||||
if (freshenCache(*app_.getNodeFamily().getTreeNodeCache()))
|
||||
return;
|
||||
|
||||
freshenCache(app_.getMasterTransaction().getCache());
|
||||
}
|
||||
|
||||
void
|
||||
|
||||
@@ -93,8 +93,6 @@ private:
|
||||
// as of run() or before
|
||||
NetworkOPs* netOPs_ = nullptr;
|
||||
LedgerMaster* ledgerMaster_ = nullptr;
|
||||
FullBelowCache* fullBelowCache_ = nullptr;
|
||||
TreeNodeCache* treeNodeCache_ = nullptr;
|
||||
|
||||
static constexpr auto nodeStoreName_ = "NodeStore";
|
||||
|
||||
|
||||
@@ -58,7 +58,7 @@ to_string(ProtocolVersion const& p)
|
||||
}
|
||||
|
||||
std::vector<ProtocolVersion>
|
||||
parseProtocolVersions(boost::beast::string_view const& value)
|
||||
parseProtocolVersions(std::string_view const& value)
|
||||
{
|
||||
static boost::regex re(
|
||||
"^" // start of line
|
||||
@@ -127,7 +127,7 @@ negotiateProtocolVersion(std::vector<ProtocolVersion> const& versions)
|
||||
}
|
||||
|
||||
std::optional<ProtocolVersion>
|
||||
negotiateProtocolVersion(boost::beast::string_view const& versions)
|
||||
negotiateProtocolVersion(std::string_view const& versions)
|
||||
{
|
||||
auto const them = parseProtocolVersions(versions);
|
||||
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
#pragma once
|
||||
|
||||
#include <boost/beast/core/string.hpp>
|
||||
|
||||
#include <cstdint>
|
||||
#include <optional>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
@@ -39,7 +38,7 @@ to_string(ProtocolVersion const& p);
|
||||
no duplicates and will be sorted in ascending protocol order.
|
||||
*/
|
||||
std::vector<ProtocolVersion>
|
||||
parseProtocolVersions(boost::beast::string_view const& s);
|
||||
parseProtocolVersions(std::string_view const& s);
|
||||
|
||||
/** Given a list of supported protocol versions, choose the one we prefer. */
|
||||
std::optional<ProtocolVersion>
|
||||
@@ -47,7 +46,7 @@ negotiateProtocolVersion(std::vector<ProtocolVersion> const& versions);
|
||||
|
||||
/** Given a list of supported protocol versions, choose the one we prefer. */
|
||||
std::optional<ProtocolVersion>
|
||||
negotiateProtocolVersion(boost::beast::string_view const& versions);
|
||||
negotiateProtocolVersion(std::string_view const& versions);
|
||||
|
||||
/** The list of all the protocol versions we support. */
|
||||
std::string const&
|
||||
|
||||
@@ -34,6 +34,7 @@
|
||||
#include <algorithm>
|
||||
#include <memory>
|
||||
#include <stdexcept>
|
||||
#include <string_view>
|
||||
|
||||
namespace xrpl {
|
||||
|
||||
@@ -227,7 +228,7 @@ ServerHandler::onHandoff(
|
||||
static inline Json::Output
|
||||
makeOutput(Session& session)
|
||||
{
|
||||
return [&](boost::beast::string_view const& b) { session.write(b.data(), b.size()); };
|
||||
return [&](std::string_view const& b) { session.write(b.data(), b.size()); };
|
||||
}
|
||||
|
||||
static std::map<std::string, std::string>
|
||||
@@ -511,11 +512,14 @@ ServerHandler::processSession(std::shared_ptr<Session> const& session, std::shar
|
||||
makeOutput(*session),
|
||||
coro,
|
||||
forwardedFor(session->request()),
|
||||
[&] {
|
||||
[&]() -> std::string_view {
|
||||
auto const iter = session->request().find("X-User");
|
||||
if (iter != session->request().end())
|
||||
return iter->value();
|
||||
return boost::beast::string_view{};
|
||||
{
|
||||
auto const val = iter->value();
|
||||
return std::string_view(val.data(), val.size());
|
||||
}
|
||||
return std::string_view{};
|
||||
}());
|
||||
|
||||
if (beast::rfc2616::is_keep_alive(session->request()))
|
||||
|
||||
Reference in New Issue
Block a user