Compare commits

..

1 Commits

Author SHA1 Message Date
Ed Hennis
08170ff4de Fix touchy "funds are conserved" assertion in LoanPay
- Add "Yield Theft via Rounding Manipulation" test, which used to
  reliably triggered it. The test now verifies that no "yield theft"
  occurs.
2026-01-16 19:19:17 -05:00
15 changed files with 700 additions and 1149 deletions

View File

@@ -23,16 +23,11 @@
#include <xrpl/beast/utility/instrumentation.h>
#include <cstdint>
#include <functional>
#include <limits>
#include <optional>
#include <ostream>
#include <string>
#ifdef _MSC_VER
#include <boost/multiprecision/cpp_int.hpp>
#endif // !defined(_MSC_VER)
namespace ripple {
class Number;
@@ -40,37 +35,18 @@ class Number;
std::string
to_string(Number const& amount);
/** Returns a rough estimate of log10(value).
*
* The return value is a pair (log, rem), where log is the estimated log10,
* and rem is value divided by 10^log. If rem is 1, then value is an exact
* power of ten, and log is the exact log10(value).
*
* This function only works for positive values.
*/
template <typename T>
constexpr std::pair<int, T>
logTenEstimate(T value)
{
int log = 0;
T remainder = value;
while (value >= 10)
{
if (value % 10 == 0)
remainder = remainder / 10;
value /= 10;
++log;
}
return {log, remainder};
}
template <typename T>
constexpr std::optional<int>
logTen(T value)
{
auto const est = logTenEstimate(value);
if (est.second == 1)
return est.first;
int log = 0;
while (value >= 10 && value % 10 == 0)
{
value /= 10;
++log;
}
if (value == 1)
return log;
return std::nullopt;
}
@@ -84,10 +60,12 @@ isPowerOfTen(T value)
/** MantissaRange defines a range for the mantissa of a normalized Number.
*
* The mantissa is in the range [min, max], where
* * min is a power of 10, and
* * max = min * 10 - 1.
*
* The mantissa_scale enum indicates whether the range is "small" or "large".
* This intentionally restricts the number of MantissaRanges that can be
* used to two: one for each scale.
* instantiated to two: one for each scale.
*
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
* value of 10^15, and a max value of 10^16-1. This was sufficient for
@@ -101,8 +79,8 @@ isPowerOfTen(T value)
* "large" scale.
*
* The "large" scale is intended to represent all values that can be represented
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
* (truncated), and a max value of 2^63-1.
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
* value of 10^19-1.
*
* Note that if the mentioned amendments are eventually retired, this class
* should be left in place, but the "small" scale option should be removed. This
@@ -114,50 +92,28 @@ struct MantissaRange
enum mantissa_scale { small, large };
explicit constexpr MantissaRange(mantissa_scale scale_)
: max(getMax(scale_))
, min(computeMin(max))
, referenceMin(getReferenceMin(scale_, min))
, log(computeLog(min))
: min(getMin(scale_))
, max(min * 10 - 1)
, log(logTen(min).value_or(-1))
, scale(scale_)
{
// Since this is constexpr, if any of these throw, it won't compile
if (min * 10 <= max)
throw std::out_of_range("min * 10 <= max");
if (max / 10 >= min)
throw std::out_of_range("max / 10 >= min");
if ((min - 1) * 10 > max)
throw std::out_of_range("(min - 1) * 10 > max");
// This is a little hacky
if ((max + 10) / 10 < min)
throw std::out_of_range("(max + 10) / 10 < min");
}
// Explicitly delete copy and move operations
MantissaRange(MantissaRange const&) = delete;
MantissaRange(MantissaRange&&) = delete;
MantissaRange&
operator=(MantissaRange const&) = delete;
MantissaRange&
operator=(MantissaRange&&) = delete;
rep max;
rep min;
// This is not a great name. Used to determine if mantissas are in range,
// but have fewer digits than max
rep referenceMin;
rep max;
int log;
mantissa_scale scale;
private:
static constexpr rep
getMax(mantissa_scale scale)
getMin(mantissa_scale scale_)
{
switch (scale)
switch (scale_)
{
case small:
return 9'999'999'999'999'999ULL;
return 1'000'000'000'000'000ULL;
case large:
return std::numeric_limits<std::int64_t>::max();
return 1'000'000'000'000'000'000ULL;
default:
// Since this can never be called outside a non-constexpr
// context, this throw assures that the build fails if an
@@ -165,33 +121,6 @@ private:
throw std::runtime_error("Unknown mantissa scale");
}
}
static constexpr rep
computeMin(rep max)
{
return max / 10 + 1;
}
static constexpr rep
getReferenceMin(mantissa_scale scale, rep min)
{
switch (scale)
{
case large:
return 1'000'000'000'000'000'000ULL;
default:
if (isPowerOfTen(min))
return min;
throw std::runtime_error("Unknown/bad mantissa scale");
}
}
static constexpr rep
computeLog(rep min)
{
auto const estimate = logTenEstimate(min);
return estimate.first + (estimate.second == 1 ? 0 : 1);
}
};
// Like std::integral, but only 64-bit integral types.
@@ -199,20 +128,6 @@ template <class T>
concept Integral64 =
std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
namespace detail {
#ifdef _MSC_VER
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
template <class T>
concept UnsignedMantissa =
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
} // namespace detail
/** Number is a floating point type that can represent a wide range of values.
*
* It can represent all values that can be represented by an STAmount -
@@ -240,7 +155,9 @@ concept UnsignedMantissa =
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
* should only be used at specific conversion points, some constexpr
* values, and in unit tests.
* 2. The max of the "large" range, 2^63-1, TODO: explain the large range.
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
* 10^20-1 > 2^64-1). This avoids under- and overflows.
*
* ---- External Interface ----
*
@@ -254,7 +171,7 @@ concept UnsignedMantissa =
*
* Note:
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
* mantissa range. TODO: update this explanation.
* mantissa range.
* 2. The functions mantissa() and exponent() return the external view of the
* Number value, specifically using a signed 63-bit mantissa. This may
* require altering the internal representation to fit into that range
@@ -314,7 +231,8 @@ class Number
using rep = std::int64_t;
using internalrep = MantissaRange::rep;
rep mantissa_{0};
bool negative_{false};
internalrep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
@@ -322,11 +240,9 @@ public:
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
#if MAXREP
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
static_assert(maxRep == 9'223'372'036'854'775'807);
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
#endif
// May need to make unchecked private
struct unchecked
@@ -412,7 +328,8 @@ public:
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ &&
x.exponent_ == y.exponent_;
}
friend constexpr bool
@@ -426,8 +343,8 @@ public:
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
bool const lneg = x.negative_;
bool const rneg = y.negative_;
if (lneg != rneg)
return lneg;
@@ -455,7 +372,7 @@ public:
constexpr int
signum() const noexcept
{
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
return negative_ ? -1 : (mantissa_ ? 1 : 0);
}
Number
@@ -494,9 +411,6 @@ public:
friend Number
root2(Number f);
friend Number
power(Number const& f, unsigned n, unsigned d);
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
@@ -561,48 +475,22 @@ private:
static_assert(isPowerOfTen(smallRange.min));
static_assert(smallRange.min == 1'000'000'000'000'000LL);
static_assert(smallRange.max == 9'999'999'999'999'999LL);
static_assert(smallRange.referenceMin == smallRange.min);
static_assert(smallRange.log == 15);
#if MAXREP
static_assert(smallRange.min < maxRep);
static_assert(smallRange.max < maxRep);
#endif
constexpr static MantissaRange largeRange{MantissaRange::large};
static_assert(!isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
static_assert(largeRange.max == std::numeric_limits<rep>::max());
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
static_assert(isPowerOfTen(largeRange.min));
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
static_assert(largeRange.log == 18);
// There are 2 values that will not fit in largeRange without some extra
// work
// * 9223372036854775808
// * 9223372036854775809
// They both end up < min, but with a leftover. If they round up, everything
// will be fine. If they don't, well need to bring them up into range.
// Guard::bringIntoRange handles this situation.
#if MAXREP
static_assert(largeRange.min < maxRep);
static_assert(largeRange.max > maxRep);
#endif
// The range for the mantissa when normalized.
// Use reference_wrapper to avoid making copies, and prevent accidentally
// changing the values inside the range.
static thread_local std::reference_wrapper<MantissaRange const> range_;
// And one is needed because it needs to choose between oneSmall and
// oneLarge based on the current range
static Number
one(MantissaRange const& range);
static Number
root(MantissaRange const& range, Number f, unsigned d);
void
normalize(MantissaRange const& range);
void
normalize();
@@ -625,14 +513,11 @@ private:
friend void
doNormalize(
bool& negative,
T& mantissa,
int& exponent,
T& mantissa_,
int& exponent_,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa);
bool
isnormal(MantissaRange const& range) const noexcept;
bool
isnormal() const noexcept;
@@ -649,64 +534,7 @@ private:
static internalrep
externalToInternal(rep mantissa);
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal(MantissaRange const& range) const;
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log + 1 digits.
*
*/
template <detail::UnsignedMantissa Rep = internalrep>
std::tuple<bool, Rep, int>
toInternal() const;
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "normalized" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <
bool expectNormal = true,
detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(
bool negative,
Rep mantissa,
int exponent,
MantissaRange const* pRange);
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "normalized" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <
bool expectNormal = true,
detail::UnsignedMantissa Rep = internalrep>
void
fromInternal(bool negative, Rep mantissa, int exponent);
class Guard;
public:
constexpr static internalrep largestMantissa = largeRange.max;
};
inline constexpr Number::Number(
@@ -714,8 +542,7 @@ inline constexpr Number::Number(
internalrep mantissa,
int exponent,
unchecked) noexcept
: mantissa_{(negative ? -1 : 1) * static_cast<rep>(mantissa)}
, exponent_{exponent}
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
{
}
@@ -729,6 +556,16 @@ inline constexpr Number::Number(
constexpr static Number numZero{};
inline Number::Number(
bool negative,
internalrep mantissa,
int exponent,
normalized)
: Number(negative, mantissa, exponent, unchecked{})
{
normalize();
}
inline Number::Number(internalrep mantissa, int exponent, normalized)
: Number(false, mantissa, exponent, normalized{})
{
@@ -751,7 +588,17 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
inline constexpr Number::rep
Number::mantissa() const noexcept
{
return mantissa_;
auto m = mantissa_;
if (m > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
"xrpl::Number::mantissa",
"large normalized mantissa has no remainder");
m /= 10;
}
auto const sign = negative_ ? -1 : 1;
return sign * static_cast<Number::rep>(m);
}
/** Returns the exponent of the external view of the Number.
@@ -762,7 +609,16 @@ Number::mantissa() const noexcept
inline constexpr int
Number::exponent() const noexcept
{
return exponent_;
auto e = exponent_;
if (mantissa_ > maxRep)
{
XRPL_ASSERT_PARTS(
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
"xrpl::Number::exponent",
"large normalized mantissa has no remainder");
++e;
}
return e;
}
inline constexpr Number
@@ -777,7 +633,7 @@ Number::operator-() const noexcept
if (mantissa_ == 0)
return Number{};
auto x = *this;
x.mantissa_ = -1 * x.mantissa_;
x.negative_ = !x.negative_;
return x;
}
@@ -858,38 +714,34 @@ Number::min() noexcept
inline Number
Number::max() noexcept
{
return Number{false, range_.get().max, maxExponent, unchecked{}};
return Number{
false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
}
inline Number
Number::lowest() noexcept
{
return Number{true, range_.get().max, maxExponent, unchecked{}};
}
inline bool
Number::isnormal(MantissaRange const& range) const noexcept
{
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max && //
minExponent <= exponent_ && exponent_ <= maxExponent);
return Number{
true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
}
inline bool
Number::isnormal() const noexcept
{
return isnormal(range_);
MantissaRange const& range = range_;
auto const abs_m = mantissa_;
return *this == Number{} ||
(range.min <= abs_m && abs_m <= range.max &&
(abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
exponent_ <= maxExponent);
}
template <Integral64 T>
std::pair<T, int>
Number::normalizeToRange(T minMantissa, T maxMantissa) const
{
bool negative = mantissa_ < 0;
auto const sign = negative ? -1 : 1;
internalrep mantissa = sign * mantissa_;
bool negative = negative_;
internalrep mantissa = mantissa_;
int exponent = exponent_;
if constexpr (std::is_unsigned_v<T>)
@@ -899,7 +751,8 @@ Number::normalizeToRange(T minMantissa, T maxMantissa) const
"Number is non-negative for unsigned range.");
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
return std::make_pair(sign * static_cast<T>(mantissa), exponent);
auto const sign = negative ? -1 : 1;
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
}
inline constexpr Number

View File

@@ -252,7 +252,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
/** The maximum amount of MPTokenIssuance */
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
static_assert(Number::largestMantissa >= maxMPTokenAmount);
static_assert(Number::maxRep >= maxMPTokenAmount);
/** The maximum length of Data payload */
std::size_t constexpr maxDataPayloadLength = 256;

View File

@@ -62,8 +62,8 @@ private:
public:
using value_type = STAmount;
static int const cMinOffset = -96;
static int const cMaxOffset = 80;
static constexpr int cMinOffset = -96;
static constexpr int cMaxOffset = 80;
// Maximum native value supported by the code
constexpr static std::uint64_t cMinValue = 1'000'000'000'000'000ull;

View File

@@ -416,9 +416,6 @@ public:
void
delField(int index);
SOEStyle
getStyle(SField const& field) const;
bool
hasMatchingEntry(STBase const&);

View File

@@ -43,7 +43,7 @@ systemName()
/** Number of drops in the genesis account. */
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
static_assert(Number::maxRep >= INITIAL_XRP.drops());
/** Returns true if the amount does not exceed the initial XRP in existence. */
inline bool

View File

@@ -35,10 +35,13 @@
#ifdef _MSC_VER
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
#endif
using uint128_t = ripple::detail::uint128_t;
using int128_t = ripple::detail::int128_t;
#include <boost/multiprecision/cpp_int.hpp>
using uint128_t = boost::multiprecision::uint128_t;
using int128_t = boost::multiprecision::int128_t;
#else // !defined(_MSC_VER)
using uint128_t = __uint128_t;
using int128_t = __int128_t;
#endif // !defined(_MSC_VER)
namespace ripple {
@@ -78,6 +81,10 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
// preicision to an operation. This enables the final result
// to be correctly rounded to the internal precision of Number.
template <class T>
concept UnsignedMantissa =
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
class Number::Guard
{
std::uint64_t digits_; // 16 decimal guard digits
@@ -113,7 +120,7 @@ public:
round() noexcept;
// Modify the result to the correctly rounded value
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
doRoundUp(
bool& negative,
@@ -124,7 +131,7 @@ public:
std::string location);
// Modify the result to the correctly rounded value
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
doRoundDown(
bool& negative,
@@ -140,7 +147,7 @@ private:
void
doPush(unsigned d) noexcept;
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
bringIntoRange(
bool& negative,
@@ -231,7 +238,7 @@ Number::Guard::round() noexcept
return 0;
}
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
Number::Guard::bringIntoRange(
bool& negative,
@@ -250,13 +257,13 @@ Number::Guard::bringIntoRange(
{
constexpr Number zero = Number{};
negative = false;
negative = zero.negative_;
mantissa = zero.mantissa_;
exponent = zero.exponent_;
}
}
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
Number::Guard::doRoundUp(
bool& negative,
@@ -272,7 +279,7 @@ Number::Guard::doRoundUp(
++mantissa;
// Ensure mantissa after incrementing fits within both the
// min/maxMantissa range and is a valid "rep".
if (mantissa > maxMantissa)
if (mantissa > maxMantissa || mantissa > maxRep)
{
mantissa /= 10;
++exponent;
@@ -283,7 +290,7 @@ Number::Guard::doRoundUp(
throw std::overflow_error(location);
}
template <detail::UnsignedMantissa T>
template <UnsignedMantissa T>
void
Number::Guard::doRoundDown(
bool& negative,
@@ -311,8 +318,7 @@ Number::Guard::doRound(rep& drops, std::string location)
auto r = round();
if (r == 1 || (r == 0 && (drops & 1) == 1))
{
auto const& range = range_.get();
if (drops >= range.max)
if (drops >= maxRep)
{
static_assert(sizeof(internalrep) == sizeof(rep));
// This should be impossible, because it's impossible to represent
@@ -354,136 +360,12 @@ Number::externalToInternal(rep mantissa)
return static_cast<internalrep>(-temp);
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal(MantissaRange const& range) const
{
auto exponent = exponent_;
bool const negative = mantissa_ < 0;
auto const sign = negative ? -1 : 1;
Rep mantissa = static_cast<Rep>(sign * mantissa_);
auto const referenceMin = range.referenceMin;
auto const minMantissa = range.min;
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
{
// Ensure the mantissa has the correct number of digits
mantissa *= 10;
--exponent;
XRPL_ASSERT_PARTS(
mantissa >= referenceMin && mantissa < referenceMin * 10,
"ripple::Number::toInternal()",
"Number is within reference range and has 'log' digits");
}
return {negative, mantissa, exponent};
}
/** Breaks down the number into components, potentially de-normalizing it.
*
* Ensures that the mantissa always has range_.log digits.
*
*/
template <detail::UnsignedMantissa Rep>
std::tuple<bool, Rep, int>
Number::toInternal() const
{
return toInternal(range_);
}
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all
* in their valid ranges.
*
* If "normalized" is false, the values are expected to be "near
* normalized", meaning that the mantissa has to be modified at most once to
* bring it back into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(
bool negative,
Rep mantissa,
int exponent,
MantissaRange const* pRange)
{
if constexpr (std::is_same_v<
std::bool_constant<expectNormal>,
std::false_type>)
{
if (!pRange)
throw std::runtime_error("Missing range to Number::fromInternal!");
auto const& range = *pRange;
auto const maxMantissa = range.max;
auto const minMantissa = range.min;
XRPL_ASSERT_PARTS(
mantissa >= minMantissa,
"ripple::Number::fromInternal",
"mantissa large enough");
if (mantissa > maxMantissa || mantissa < minMantissa)
{
normalize(negative, mantissa, exponent, range.min, maxMantissa);
}
XRPL_ASSERT_PARTS(
mantissa >= minMantissa && mantissa <= maxMantissa,
"ripple::Number::fromInternal",
"mantissa in range");
}
auto const sign = negative ? -1 : 1;
mantissa_ = sign * static_cast<rep>(mantissa);
exponent_ = exponent;
XRPL_ASSERT_PARTS(
(pRange && isnormal(*pRange)) || isnormal(),
"ripple::Number::fromInternal",
"Number is normalized");
}
/** Rebuilds the number from components.
*
* If "normalized" is true, the values are expected to be normalized - all in
* their valid ranges.
*
* If "normalized" is false, the values are expected to be "near normalized",
* meaning that the mantissa has to be modified at most once to bring it back
* into range.
*
*/
template <bool expectNormal, detail::UnsignedMantissa Rep>
void
Number::fromInternal(bool negative, Rep mantissa, int exponent)
{
MantissaRange const* pRange = nullptr;
if constexpr (std::is_same_v<
std::bool_constant<expectNormal>,
std::false_type>)
{
pRange = &Number::range_.get();
}
fromInternal(negative, mantissa, exponent, pRange);
}
constexpr Number
Number::oneSmall()
{
return Number{
false,
Number::smallRange.referenceMin,
Number::smallRange.min,
-Number::smallRange.log,
Number::unchecked{}};
};
@@ -495,7 +377,7 @@ Number::oneLarge()
{
return Number{
false,
Number::largeRange.referenceMin,
Number::largeRange.min,
-Number::largeRange.log,
Number::unchecked{}};
};
@@ -503,91 +385,106 @@ Number::oneLarge()
constexpr Number oneLrg = Number::oneLarge();
Number
Number::one(MantissaRange const& range)
Number::one()
{
if (&range == &smallRange)
if (&range_.get() == &smallRange)
return oneSml;
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
return oneLrg;
}
Number
Number::one()
{
return one(range_);
}
// Use the member names in this static function for now so the diff is cleaner
// TODO: Rename the function parameters to get rid of the "_" suffix
template <class T>
void
doNormalize(
bool& negative,
T& mantissa,
int& exponent,
T& mantissa_,
int& exponent_,
MantissaRange::rep const& minMantissa,
MantissaRange::rep const& maxMantissa)
{
auto constexpr minExponent = Number::minExponent;
auto constexpr maxExponent = Number::maxExponent;
auto constexpr maxRep = Number::maxRep;
using Guard = Number::Guard;
constexpr Number zero = Number{};
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
if (mantissa_ == 0)
{
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
return;
}
auto m = mantissa;
while ((m < minMantissa) && (exponent > minExponent))
auto m = mantissa_;
while ((m < minMantissa) && (exponent_ > minExponent))
{
m *= 10;
--exponent;
--exponent_;
}
Guard g;
if (negative)
g.set_negative();
while (m > maxMantissa)
{
if (exponent >= maxExponent)
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1");
g.push(m % 10);
m /= 10;
++exponent;
++exponent_;
}
if ((exponent < minExponent) || (m == 0))
if ((exponent_ < minExponent) || (m < minMantissa))
{
mantissa = zero.mantissa_;
exponent = zero.exponent_;
negative = false;
mantissa_ = zero.mantissa_;
exponent_ = zero.exponent_;
negative = zero.negative_;
return;
}
// When using the largeRange, "m" needs fit within an int64, even if
// the final mantissa_ is going to end up larger to fit within the
// MantissaRange. Cut it down here so that the rounding will be done while
// it's smaller.
//
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
// so "m" will be modified to 990,000,000,000,012,345. Then that value
// will be rounded to 990,000,000,000,012,345 or
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
// mantissa_ will be "m*10" so it fits within the range, and end up as
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
// mantissa() will return mantissa_ / 10, and exponent() will return
// exponent_ + 1.
if (m > maxRep)
{
if (exponent_ >= maxExponent)
throw std::overflow_error("Number::normalize 1.5");
g.push(m % 10);
m /= 10;
++exponent_;
}
// Before modification, m should be within the min/max range. After
// modification, it must be less than maxRep. In other words, the original
// value should have been no more than maxRep * 10.
// (maxRep * 10 > maxMantissa)
XRPL_ASSERT_PARTS(
m <= maxMantissa,
m <= maxRep,
"xrpl::doNormalize",
"intermediate mantissa fits in int64");
mantissa = m;
mantissa_ = m;
g.doRoundUp(
negative,
mantissa,
exponent,
mantissa_,
exponent_,
minMantissa,
maxMantissa,
"Number::normalize 2");
XRPL_ASSERT_PARTS(
mantissa >= minMantissa && mantissa <= maxMantissa,
mantissa_ >= minMantissa && mantissa_ <= maxMantissa,
"xrpl::doNormalize",
"final mantissa fits in range");
XRPL_ASSERT_PARTS(
exponent >= minExponent && exponent <= maxExponent,
"xrpl::doNormalize",
"final exponent fits in range");
}
template <>
@@ -626,20 +523,11 @@ Number::normalize<unsigned long>(
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
}
void
Number::normalize(MantissaRange const& range)
{
auto [negative, mantissa, exponent] = toInternal(range);
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
void
Number::normalize()
{
normalize(range_);
auto const& range = range_.get();
normalize(negative_, mantissa_, exponent_, range.min, range.max);
}
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
@@ -649,33 +537,24 @@ Number
Number::shiftExponent(int exponentDelta) const
{
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
Number result = *this;
result.exponent_ += exponentDelta;
if (result.exponent_ >= maxExponent)
auto const newExponent = exponent_ + exponentDelta;
if (newExponent >= maxExponent)
throw std::overflow_error("Number::shiftExponent");
if (result.exponent_ < minExponent)
if (newExponent < minExponent)
{
return Number{};
}
Number const result{negative_, mantissa_, newExponent, unchecked{}};
XRPL_ASSERT_PARTS(
result.isnormal(),
"xrpl::Number::shiftExponent",
"result is normalized");
return result;
}
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
{
auto const& range = range_.get();
normalize(negative, mantissa, exponent, range.min, range.max);
fromInternal(negative, mantissa, exponent, &range);
}
Number&
Number::operator+=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
return *this;
@@ -691,7 +570,7 @@ Number::operator+=(Number const& y)
}
XRPL_ASSERT(
isnormal(range) && y.isnormal(range),
isnormal() && y.isnormal(),
"xrpl::Number::operator+=(Number) : is normal");
// *n = negative
// *m = mantissa
@@ -699,10 +578,13 @@ Number::operator+=(Number const& y)
// Need to use uint128_t, because large mantissas can overflow when added
// together.
auto [xn, xm, xe] = toInternal<uint128_t>(range);
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
bool xn = negative_;
uint128_t xm = mantissa_;
auto xe = exponent_;
bool yn = y.negative_;
uint128_t ym = y.mantissa_;
auto ye = y.exponent_;
Guard g;
if (xe < ye)
{
@@ -727,13 +609,14 @@ Number::operator+=(Number const& y)
} while (xe > ye);
}
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
if (xn == yn)
{
xm += ym;
if (xm > maxMantissa)
if (xm > maxMantissa || xm > maxRep)
{
g.push(xm % 10);
xm /= 10;
@@ -754,7 +637,7 @@ Number::operator+=(Number const& y)
xe = ye;
xn = yn;
}
while (xm < minMantissa)
while (xm < minMantissa && xm * 10 <= maxRep)
{
xm *= 10;
xm -= g.pop();
@@ -763,8 +646,10 @@ Number::operator+=(Number const& y)
g.doRoundDown(xn, xm, xe, minMantissa);
}
normalize(xn, xm, xe, minMantissa, maxMantissa);
fromInternal(xn, xm, xe, &range);
negative_ = xn;
mantissa_ = static_cast<internalrep>(xm);
exponent_ = xe;
normalize();
return *this;
}
@@ -799,8 +684,6 @@ divu10(uint128_t& u)
Number&
Number::operator*=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (*this == zero)
return *this;
@@ -814,11 +697,15 @@ Number::operator*=(Number const& y)
// *m = mantissa
// *e = exponent
auto [xn, xm, xe] = toInternal(range);
bool xn = negative_;
int xs = xn ? -1 : 1;
internalrep xm = mantissa_;
auto xe = exponent_;
auto [yn, ym, ye] = y.toInternal(range);
bool yn = y.negative_;
int ys = yn ? -1 : 1;
internalrep ym = y.mantissa_;
auto ye = y.exponent_;
auto zm = uint128_t(xm) * uint128_t(ym);
auto ze = xe + ye;
@@ -828,10 +715,11 @@ Number::operator*=(Number const& y)
if (zn)
g.set_negative();
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
while (zm > maxMantissa)
while (zm > maxMantissa || zm > maxRep)
{
// The following is optimization for:
// g.push(static_cast<unsigned>(zm % 10));
@@ -848,17 +736,17 @@ Number::operator*=(Number const& y)
minMantissa,
maxMantissa,
"Number::multiplication overflow : exponent is " + std::to_string(xe));
negative_ = zn;
mantissa_ = xm;
exponent_ = xe;
normalize(zn, xm, xe, minMantissa, maxMantissa);
fromInternal(zn, xm, xe, &range);
normalize();
return *this;
}
Number&
Number::operator/=(Number const& y)
{
auto const& range = range_.get();
constexpr Number zero = Number{};
if (y == zero)
throw std::overflow_error("Number: divide by 0");
@@ -871,12 +759,17 @@ Number::operator/=(Number const& y)
// *m = mantissa
// *e = exponent
auto [np, nm, ne] = toInternal(range);
bool np = negative_;
int ns = (np ? -1 : 1);
auto nm = mantissa_;
auto ne = exponent_;
auto [dp, dm, de] = y.toInternal(range);
bool dp = y.negative_;
int ds = (dp ? -1 : 1);
auto dm = y.mantissa_;
auto de = y.exponent_;
auto const& range = range_.get();
auto const& minMantissa = range.min;
auto const& maxMantissa = range.max;
@@ -888,7 +781,7 @@ Number::operator/=(Number const& y)
// f can be up to 10^(38-19) = 10^19 safely
static_assert(smallRange.log == 15);
static_assert(largeRange.log == 18);
bool small = range.scale == MantissaRange::small;
bool small = Number::getMantissaScale() == MantissaRange::small;
uint128_t const f =
small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
XRPL_ASSERT_PARTS(
@@ -940,9 +833,11 @@ Number::operator/=(Number const& y)
}
}
normalize(zn, zm, ze, minMantissa, maxMantissa);
fromInternal(zn, zm, ze, &range);
negative_ = zn;
mantissa_ = static_cast<internalrep>(zm);
exponent_ = ze;
XRPL_ASSERT_PARTS(
isnormal(range), "xrpl::Number::operator/=", "result is normalized");
isnormal(), "xrpl::Number::operator/=", "result is normalized");
return *this;
}
@@ -954,7 +849,7 @@ Number::operator rep() const
Guard g;
if (drops != 0)
{
if (drops < 0)
if (negative_)
{
g.set_negative();
drops = -drops;
@@ -966,7 +861,7 @@ Number::operator rep() const
}
for (; offset > 0; --offset)
{
if (drops >= largeRange.min)
if (drops > maxRep / 10)
throw std::overflow_error("Number::operator rep() overflow");
drops *= 10;
}
@@ -996,22 +891,20 @@ Number::truncate() const noexcept
std::string
to_string(Number const& amount)
{
auto const& range = Number::range_.get();
// keep full internal accuracy, but make more human friendly if possible
constexpr Number zero = Number{};
if (amount == zero)
return "0";
// The mantissa must have a set number of decimal places for this to work
auto [negative, mantissa, exponent] = amount.toInternal(range);
auto exponent = amount.exponent_;
auto mantissa = amount.mantissa_;
bool const negative = amount.negative_;
// Use scientific notation for exponents that are too small or too large
auto const rangeLog = range.log;
if (((exponent != 0 && amount.exponent() != 0) &&
auto const rangeLog = Number::mantissaLog();
if (((exponent != 0) &&
((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
{
// Remove trailing zeroes from the mantissa.
while (mantissa != 0 && mantissa % 10 == 0 &&
exponent < Number::maxExponent)
{
@@ -1020,11 +913,8 @@ to_string(Number const& amount)
}
std::string ret = negative ? "-" : "";
ret.append(std::to_string(mantissa));
if (exponent != 0)
{
ret.append(1, 'e');
ret.append(std::to_string(exponent));
}
ret.append(1, 'e');
ret.append(std::to_string(exponent));
return ret;
}
@@ -1113,11 +1003,20 @@ power(Number const& f, unsigned n)
return r;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
Number::root(MantissaRange const& range, Number f, unsigned d)
root(Number f, unsigned d)
{
constexpr Number zero = Number{};
auto const one = Number::one(range);
auto const one = Number::one();
if (f == one || d == 1)
return f;
@@ -1134,30 +1033,22 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
if (f == zero)
return f;
auto const [e, di] = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that the scale change (e) is a
// multiple of the root (d)
auto e = exponent + range.log + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
return std::make_tuple(e, di);
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
auto const di = static_cast<int>(d);
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
{
int k = (e >= 0 ? e : e - (di - 1)) / di;
int k2 = e - k * di;
if (k2 == 0)
return 0;
return di - k2;
}();
e += ex;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(
e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
XRPL_ASSERT_PARTS(
f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
bool neg = false;
if (f < zero)
{
@@ -1191,34 +1082,17 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
// return r * 10^(e/d) to reverse scaling
auto const result = r.shiftExponent(e / di);
XRPL_ASSERT_PARTS(
result.isnormal(range),
result.isnormal(),
"xrpl::root(Number, unsigned)",
"result is normalized");
return result;
}
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the non-negative root of the polynomial g(x) = x^d - f
// This function, and power(Number f, unsigned n, unsigned d)
// treat corner cases such as 0 roots as advised by Annex F of
// the C standard, which itself is consistent with the IEEE
// floating point standards.
Number
root(Number f, unsigned d)
{
auto const& range = Number::range_.get();
return Number::root(range, f, d);
}
Number
root2(Number f)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one(range);
auto const one = Number::one();
if (f == one)
return f;
@@ -1227,19 +1101,12 @@ root2(Number f)
if (f == zero)
return f;
auto const e = [&]() {
auto const [negative, mantissa, exponent] = f.toInternal(range);
// Scale f into the range (0, 1) such that f's exponent is a
// multiple of d
auto e = exponent + range.log + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
return e;
}();
XRPL_ASSERT_PARTS(
f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
auto e = f.exponent_ + Number::mantissaLog() + 1;
if (e % 2 != 0)
++e;
f = f.shiftExponent(-e); // f /= 10^e;
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
auto const D = 105;
@@ -1262,7 +1129,7 @@ root2(Number f)
// return r * 10^(e/2) to reverse scaling
auto const result = r.shiftExponent(e / 2);
XRPL_ASSERT_PARTS(
result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
result.isnormal(), "xrpl::root2(Number)", "result is normalized");
return result;
}
@@ -1272,10 +1139,8 @@ root2(Number f)
Number
power(Number const& f, unsigned n, unsigned d)
{
auto const& range = Number::range_.get();
constexpr Number zero = Number{};
auto const one = Number::one(range);
auto const one = Number::one();
if (f == one)
return f;
@@ -1297,7 +1162,7 @@ power(Number const& f, unsigned n, unsigned d)
d /= g;
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
throw std::overflow_error("Number::power nan");
return Number::root(range, power(f, n), d);
return root(power(f, n), d);
}
} // namespace ripple

View File

@@ -36,7 +36,7 @@ namespace BuildInfo {
// and follow the format described at http://semver.org/
//------------------------------------------------------------------------------
// clang-format off
char const* const versionString = "3.1.0-rc2"
char const* const versionString = "3.1.0-rc1"
// clang-format on
#if defined(DEBUG) || defined(SANITIZER)

View File

@@ -142,8 +142,6 @@ areComparable(STAmount const& v1, STAmount const& v2)
return false;
}
static_assert(INITIAL_XRP.drops() == STAmount::cMaxNativeN);
STAmount::STAmount(SerialIter& sit, SField const& name) : STBase(name)
{
std::uint64_t value = sit.get64();

View File

@@ -599,12 +599,6 @@ STObject::delField(int index)
v_.erase(v_.begin() + index);
}
SOEStyle
STObject::getStyle(SField const& field) const
{
return mType ? mType->style(field) : soeINVALID;
}
unsigned char
STObject::getFieldU8(SField const& field) const
{

View File

@@ -18,28 +18,10 @@ associateAsset(SLE& sle, Asset const& asset)
// If the field is not set or present, skip it.
if (type == STI_NOTPRESENT)
continue;
// If the type doesn't downcast, then the flag shouldn't be on the
// SField
auto& ta = entry.downcast<STTakesAsset>();
auto const style = sle.getStyle(ta.getFName());
XRPL_ASSERT_PARTS(
style != soeINVALID,
"ripple::associateAsset",
"valid template element style");
XRPL_ASSERT_PARTS(
style != soeDEFAULT || !ta.isDefault(),
"ripple::associateAsset",
"non-default value");
ta.associateAsset(asset);
// associateAsset in derived classes may change the underlying
// value, but it won't know anything about how the value relates to
// the SLE. If the template element is soeDEFAULT, and the value
// changed to the default value, remove the field.
if (style == soeDEFAULT && ta.isDefault())
sle.makeFieldAbsent(field);
}
}
}

View File

@@ -7644,6 +7644,154 @@ protected:
BEAST_EXPECT(afterSecondCoverAvailable == 0);
}
void
testYieldTheftRounding(std::uint32_t flags)
{
testcase("Yield Theft via Rounding Manipulation");
using namespace jtx;
using namespace loan;
// 1. Setup Environment
Env env(*this, all);
Account const issuer{"issuer"};
Account const lender{"lender"};
Account const borrower{"borrower"};
env.fund(XRP(1000), issuer, lender, borrower);
env.close();
// 2. Asset Selection
PrettyAsset const iou = issuer["USD"];
env(trust(lender, iou(100'000'000)));
env(trust(borrower, iou(100'000'000)));
env(pay(issuer, lender, iou(100'000'000)));
env(pay(issuer, borrower, iou(100'000'000)));
env.close();
// 3. Create Vault and Broker with High Debt Limit (100M)
auto const brokerInfo = createVaultAndBroker(
env,
iou,
lender,
{
.vaultDeposit = 1'000'000,
.debtMax = Number{100'000'000},
});
auto const [currentSeq, vaultId, vaultKeylet] = [&]() {
auto const brokerSle =
env.le(keylet::loanbroker(brokerInfo.brokerID));
auto const currentSeq = brokerSle->at(sfLoanSequence);
auto const vaultKeylet = keylet::vault(brokerSle->at(sfVaultID));
auto const vaultId = brokerSle->at(sfVaultID);
return std::make_tuple(currentSeq, vaultId, vaultKeylet);
}();
Vault vault{env};
env(vault.deposit(
{.depositor = lender, .id = vaultId, .amount = iou(5'000'000)}));
env.close();
env(loanBroker::coverDeposit(
lender, brokerInfo.brokerID, iou(500'000)));
env.close();
// 4. Loan Parameters (Attack Vector)
Number const principal = 1'000'000;
TenthBips32 const interestRate = TenthBips32{1}; // 0.001%
std::uint32_t const paymentInterval = 86400;
std::uint32_t const paymentTotal = 3650;
auto const loanSetFee = fee(env.current()->fees().base * 2);
env(set(borrower, brokerInfo.brokerID, iou(principal).value(), flags),
sig(sfCounterpartySignature, lender),
loan::interestRate(interestRate),
loan::paymentInterval(paymentInterval),
loan::paymentTotal(paymentTotal),
fee(loanSetFee));
env.close();
// --- RETRIEVE OBJECTS & SETUP ATTACK ---
auto const loanKeylet = keylet::loan(brokerInfo.brokerID, currentSeq);
auto const [periodicPayment, loanScale] = [&]() {
auto const loanSle = env.le(loanKeylet);
// Construct Payment
return std::make_tuple(
STAmount{iou, loanSle->at(sfPeriodicPayment)},
loanSle->at(sfLoanScale));
}();
auto const roundedPayment =
roundToScale(periodicPayment, loanScale, Number::upward);
// ATTACK: Add dust buffer (1e-9) to force 'excess' logic execution
STAmount const paymentBuffer{iou, Number(1, -9)};
STAmount const attackPayment = periodicPayment + paymentBuffer;
auto const initialVaultAssets = env.le(vaultKeylet)->at(sfAssetsTotal);
log << "Periodic Payment: " << periodicPayment.value() << std::endl;
log << "Attack Payment: " << attackPayment.value() << std::endl;
log << "Initial Vault Assets: " << initialVaultAssets << std::endl;
// 5. Execution Loop
int yieldTheftCount = 0;
auto previousAssetsTotal = initialVaultAssets;
auto borrowerBalance = [&]() { return env.balance(borrower, iou); };
for (int i = 0; i < 100; ++i)
{
auto const balanceBefore = borrowerBalance();
env(pay(borrower, loanKeylet.key, attackPayment, flags));
env.close();
auto const borrowerDelta = borrowerBalance() - balanceBefore;
auto const loanSle = env.le(loanKeylet);
if (!BEAST_EXPECT(loanSle))
break;
auto const updatedPayment =
STAmount{iou, loanSle->at(sfPeriodicPayment)};
BEAST_EXPECT(
(roundToScale(updatedPayment, loanScale, Number::upward) ==
roundedPayment));
BEAST_EXPECT(
(updatedPayment == periodicPayment) ||
(flags == tfLoanOverpayment && i >= 2 &&
updatedPayment < periodicPayment));
auto const currentVaultSle = env.le(vaultKeylet);
if (!BEAST_EXPECT(currentVaultSle))
break;
auto const currentAssetsTotal = currentVaultSle->at(sfAssetsTotal);
auto const delta = currentAssetsTotal - previousAssetsTotal;
BEAST_EXPECT(
(delta == beast::zero && borrowerDelta <= roundedPayment) ||
(delta > beast::zero && borrowerDelta > roundedPayment));
// If tx succeeded but Assets Total didn't change, interest was
// stolen.
if (delta == beast::zero && borrowerDelta > roundedPayment)
{
yieldTheftCount++;
// delta should be zero
log << "[ALERT] Iteration " << i
<< ": YIELD THEFT CONFIRMED. Vault Delta: " << delta
<< std::endl;
}
else
{
log << "[INFO] Iteration " << i << ": Normal Yield: " << delta
<< std::endl;
}
previousAssetsTotal = currentAssetsTotal;
}
BEAST_EXPECTS(yieldTheftCount == 0, std::to_string(yieldTheftCount));
log << "[RESULT] Yield Theft Events: " << yieldTheftCount
<< " / 50 payments." << std::endl;
}
public:
void
run() override
@@ -7652,6 +7800,11 @@ public:
testLoanPayLateFullPaymentBypassesPenalties();
testLoanCoverMinimumRoundingExploit();
#endif
for (auto const flags : {0u, tfLoanOverpayment})
{
testYieldTheftRounding(flags);
}
testInvalidLoanSet();
testCoverDepositWithdrawNonTransferableMPT();

View File

@@ -5801,263 +5801,6 @@ class Vault_test : public beast::unit_test::suite
testCase(MPT, "MPT", owner, depositor, issuer);
}
void
testAssetsMaximum()
{
testcase("Assets Maximum");
using namespace test::jtx;
Env env{*this, testable_amendments() | featureSingleAssetVault};
Account const owner{"owner"};
Account const issuer{"issuer"};
Vault vault{env};
env.fund(XRP(1'000'000), issuer, owner);
env.close();
auto const maxInt64 =
std::to_string(std::numeric_limits<std::int64_t>::max());
BEAST_EXPECT(maxInt64 == "9223372036854775807");
// Naming things is hard
auto const maxInt64Plus1 = std::to_string(
static_cast<std::uint64_t>(
std::numeric_limits<std::int64_t>::max()) +
1);
BEAST_EXPECT(maxInt64Plus1 == "9223372036854775808");
auto const initialXRP = to_string(INITIAL_XRP);
BEAST_EXPECT(initialXRP == "100000000000000000");
auto const initialXRPPlus1 = to_string(INITIAL_XRP + 1);
BEAST_EXPECT(initialXRPPlus1 == "100000000000000001");
{
testcase("Assets Maximum: XRP");
PrettyAsset const xrpAsset = xrpIssue();
auto [tx, keylet] =
vault.create({.owner = owner, .asset = xrpAsset});
tx[sfData] = "4D65746144617461";
tx[sfAssetsMaximum] = maxInt64;
env(tx, ter(tefEXCEPTION), THISLINE);
env.close();
tx[sfAssetsMaximum] = initialXRPPlus1;
env(tx, ter(tefEXCEPTION), THISLINE);
env.close();
tx[sfAssetsMaximum] = initialXRP;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = maxInt64Plus1;
env(tx, ter(tefEXCEPTION), THISLINE);
env.close();
// This value will be rounded
auto const insertAt = maxInt64Plus1.size() - 3;
auto const decimalTest = maxInt64Plus1.substr(0, insertAt) + "." +
maxInt64Plus1.substr(insertAt); // (max int64+1) / 1000
BEAST_EXPECT(decimalTest == "9223372036854775.808");
tx[sfAssetsMaximum] = decimalTest;
auto const newKeylet = keylet::vault(owner.id(), env.seq(owner));
env(tx, THISLINE);
env.close();
auto const vaultSle = env.le(newKeylet);
if (!BEAST_EXPECT(vaultSle))
return;
BEAST_EXPECT(vaultSle->at(sfAssetsMaximum) == 9223372036854776);
}
{
testcase("Assets Maximum: MPT");
PrettyAsset const mptAsset = [&]() {
MPTTester mptt{env, issuer, mptInitNoFund};
mptt.create(
{.flags =
tfMPTCanClawback | tfMPTCanTransfer | tfMPTCanLock});
env.close();
PrettyAsset const mptAsset = mptt["MPT"];
mptt.authorize({.account = owner});
env.close();
return mptAsset;
}();
env(pay(issuer, owner, mptAsset(100'000)), THISLINE);
env.close();
auto [tx, keylet] =
vault.create({.owner = owner, .asset = mptAsset});
tx[sfData] = "4D65746144617461";
tx[sfAssetsMaximum] = maxInt64;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = initialXRPPlus1;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = initialXRP;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = maxInt64Plus1;
env(tx, ter(tefEXCEPTION), THISLINE);
env.close();
// This value will be rounded
auto const insertAt = maxInt64Plus1.size() - 1;
auto const decimalTest = maxInt64Plus1.substr(0, insertAt) + "." +
maxInt64Plus1.substr(insertAt); // (max int64+1) / 10
BEAST_EXPECT(decimalTest == "922337203685477580.8");
tx[sfAssetsMaximum] = decimalTest;
auto const newKeylet = keylet::vault(owner.id(), env.seq(owner));
env(tx, THISLINE);
env.close();
auto const vaultSle = env.le(newKeylet);
if (!BEAST_EXPECT(vaultSle))
return;
BEAST_EXPECT(vaultSle->at(sfAssetsMaximum) == 922337203685477581);
}
{
testcase("Assets Maximum: IOU");
// Almost anything goes with IOUs
PrettyAsset iouAsset = issuer["IOU"];
env.trust(iouAsset(1000), owner);
env(pay(issuer, owner, iouAsset(200)));
env.close();
auto [tx, keylet] =
vault.create({.owner = owner, .asset = iouAsset});
tx[sfData] = "4D65746144617461";
tx[sfAssetsMaximum] = maxInt64;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = initialXRPPlus1;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = initialXRP;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = maxInt64Plus1;
env(tx, THISLINE);
env.close();
tx[sfAssetsMaximum] = "1000000000000000e80";
env.close();
tx[sfAssetsMaximum] = "1000000000000000e-96";
env.close();
// These values will be rounded to 15 significant digits
{
auto const insertAt = maxInt64Plus1.size() - 1;
auto const decimalTest = maxInt64Plus1.substr(0, insertAt) +
"." + maxInt64Plus1.substr(insertAt); // (max int64+1) / 10
BEAST_EXPECT(decimalTest == "922337203685477580.8");
tx[sfAssetsMaximum] = decimalTest;
auto const newKeylet =
keylet::vault(owner.id(), env.seq(owner));
env(tx, THISLINE);
env.close();
auto const vaultSle = env.le(newKeylet);
if (!BEAST_EXPECT(vaultSle))
return;
BEAST_EXPECT(
(vaultSle->at(sfAssetsMaximum) ==
Number{9223372036854776, 2, Number::normalized{}}));
}
{
tx[sfAssetsMaximum] =
"9223372036854775807e40"; // max int64 * 10^40
auto const newKeylet =
keylet::vault(owner.id(), env.seq(owner));
env(tx, THISLINE);
env.close();
auto const vaultSle = env.le(newKeylet);
if (!BEAST_EXPECT(vaultSle))
return;
BEAST_EXPECT(
(vaultSle->at(sfAssetsMaximum) ==
Number{9223372036854776, 43, Number::normalized{}}));
}
{
tx[sfAssetsMaximum] =
"9223372036854775807e-40"; // max int64 * 10^-40
auto const newKeylet =
keylet::vault(owner.id(), env.seq(owner));
env(tx, THISLINE);
env.close();
auto const vaultSle = env.le(newKeylet);
if (!BEAST_EXPECT(vaultSle))
return;
BEAST_EXPECT(
(vaultSle->at(sfAssetsMaximum) ==
Number{9223372036854776, -37, Number::normalized{}}));
}
{
tx[sfAssetsMaximum] =
"9223372036854775807e-100"; // max int64 * 10^-100
auto const newKeylet =
keylet::vault(owner.id(), env.seq(owner));
env(tx, THISLINE);
env.close();
// Field 'AssetsMaximum' may not be explicitly set to default.
auto const vaultSle = env.le(newKeylet);
if (!BEAST_EXPECT(vaultSle))
return;
BEAST_EXPECT(vaultSle->at(sfAssetsMaximum) == numZero);
}
// What _can't_ IOUs do?
// 1. Exceed maximum exponent / offset
tx[sfAssetsMaximum] = "1000000000000000e81";
env(tx, ter(tefEXCEPTION), THISLINE);
env.close();
// 2. Mantissa larger than uint64 max
try
{
tx[sfAssetsMaximum] =
"18446744073709551617e5"; // uint64 max + 1
env(tx, THISLINE);
BEAST_EXPECT(false);
}
catch (parse_error const& e)
{
using namespace std::string_literals;
BEAST_EXPECT(
e.what() ==
"invalidParamsField 'tx_json.AssetsMaximum' has invalid "
"data."s);
}
}
}
public:
void
run() override
@@ -6078,7 +5821,6 @@ public:
testDelegate();
testVaultClawbackBurnShares();
testVaultClawbackAssets();
testAssetsMaximum();
}
};

View File

@@ -51,10 +51,9 @@ public:
test_limits()
{
auto const scale = Number::getMantissaScale();
auto const minMantissa = Number::minMantissa();
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
testcase << "test_limits " << to_string(scale);
bool caught = false;
auto const minMantissa = Number::minMantissa();
try
{
Number x =
@@ -82,9 +81,8 @@ public:
Number{},
__LINE__);
test(
// Use 1501 to force rounding up
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
Number{false, 1'501, 32000, Number::normalized{}},
Number{false, 1'500, 32000, Number::normalized{}},
Number{false, minMantissa + 2, 32003, Number::normalized{}},
__LINE__);
// 9,223,372,036,854,775,808
@@ -219,12 +217,12 @@ public:
9'999'999'999'999'999'990ULL,
-19,
Number::normalized{}}},
{Number{Number::largestMantissa},
{Number{Number::maxRep},
Number{6, -1},
Number{Number::largestMantissa / 10, 1}},
{Number{Number::largestMantissa - 1},
Number{Number::maxRep / 10, 1}},
{Number{Number::maxRep - 1},
Number{1, 0},
Number{Number::largestMantissa}},
Number{Number::maxRep}},
// Test extremes
{
// Each Number operand rounds up, so the actual mantissa is
@@ -242,30 +240,11 @@ public:
Number{2, 19},
},
{
// Does not round. Mantissas are going to be >
// largestMantissa, so if added together as uint64_t's, the
// result will overflow. With addition using uint128_t,
// there's no problem. After normalizing, the resulting
// mantissa ends up less than largestMantissa.
Number{
false,
Number::largestMantissa,
0,
Number::normalized{}},
Number{
false,
Number::largestMantissa,
0,
Number::normalized{}},
Number{
false,
Number::largestMantissa * 2,
0,
Number::normalized{}},
},
{
// These mantissas round down, so adding them together won't
// have any consequences.
// Does not round. Mantissas are going to be > maxRep, so if
// added together as uint64_t's, the result will overflow.
// With addition using uint128_t, there's no problem. After
// normalizing, the resulting mantissa ends up less than
// maxRep.
Number{
false,
9'999'999'999'999'999'990ULL,
@@ -392,24 +371,16 @@ public:
{Number{1'000'000'000'000'000'001, -18},
Number{1'000'000'000'000'000'000, -18},
Number{1'000'000'000'000'000'000, -36}},
{Number{Number::largestMantissa},
{Number{Number::maxRep},
Number{6, -1},
Number{Number::largestMantissa - 1}},
{Number{
false,
Number::largestMantissa + 1,
0,
Number::normalized{}},
Number{Number::maxRep - 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
Number{1, 0},
Number{Number::largestMantissa / 10 + 1, 1}},
{Number{
false,
Number::largestMantissa + 1,
0,
Number::normalized{}},
Number{Number::maxRep / 10 + 1, 1}},
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
Number{3, 0},
Number{Number::largestMantissa}},
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
Number{Number::maxRep}},
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
});
auto test = [this](auto const& c) {
for (auto const& [x, y, z] : c)
@@ -432,16 +403,14 @@ public:
auto const scale = Number::getMantissaScale();
testcase << "test_mul " << to_string(scale);
// Case: Factor 1, Factor 2, Expected product, Line number
using Case = std::tuple<Number, Number, Number, int>;
using Case = std::tuple<Number, Number, Number>;
auto test = [this](auto const& c) {
for (auto const& [x, y, z, line] : c)
for (auto const& [x, y, z] : c)
{
auto const result = x * y;
std::stringstream ss;
ss << x << " * " << y << " = " << result << ". Expected: " << z;
BEAST_EXPECTS(
result == z, ss.str() + " line: " + std::to_string(line));
BEAST_EXPECTS(result == z, ss.str());
}
};
auto tests = [&](auto const& cSmall, auto const& cLarge) {
@@ -451,105 +420,78 @@ public:
test(cLarge);
};
auto const maxMantissa = Number::maxMantissa();
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
{
auto const cSmall = std::to_array<Case>({
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
Number{2000000000000000, -15}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15},
__LINE__},
Number{-2000000000000000, -15}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
Number{2000000000000000, -15}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14},
__LINE__},
Number{1000000000000000, -14}},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__},
Number{0}},
// Maximum mantissa range
{Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'999, 0},
Number{9'999'999'999'999'998, 16},
__LINE__},
Number{9'999'999'999'999'998, 16}},
});
auto const cLarge = std::to_array<Case>({
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
Number{1999999999999999862, -18}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18},
__LINE__},
Number{-1999999999999999862, -18}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
Number{1999999999999999862, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9'999'999'999'999'999'579ULL,
-18,
Number::normalized{}},
__LINE__},
Number::normalized{}}},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18},
__LINE__},
Number{2000000000000000001, -18}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18},
__LINE__},
Number{-1999999999999999998, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds up to 1e19
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum actual mantissa range - same as int64 range
Number{10, 0}},
// Maximum mantissa range - rounds up to 1e19
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
Number{1, 38}},
// Maximum int64 range
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'85, 19}},
});
tests(cSmall, cLarge);
}
@@ -558,100 +500,76 @@ public:
<< " towards_zero";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
Number{1999999999999999, -15}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15},
__LINE__},
Number{-1999999999999999, -15}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
Number{1999999999999999, -15}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15},
__LINE__},
Number{9999999999999999, -15}},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
Number{0}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
Number{1999999999999999861, -18}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18},
__LINE__},
Number{-1999999999999999861, -18}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
Number{1999999999999999861, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9999999999999999579ULL,
-18,
Number::normalized{}},
__LINE__},
Number::normalized{}}},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0},
__LINE__},
Number{2, 0}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18},
__LINE__},
Number{-1999999999999999997, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10e1
Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}},
__LINE__},
// Maximum actual mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
Number{
false,
maxMantissa / 10 - 1,
20,
Number::normalized{}}},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'84, 19}},
});
tests(cSmall, cLarge);
}
@@ -660,100 +578,76 @@ public:
<< " downward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
Number{1999999999999999, -15}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-2000000000000000, -15},
__LINE__},
Number{-2000000000000000, -15}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999, -15},
__LINE__},
Number{1999999999999999, -15}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{9999999999999999, -15},
__LINE__},
Number{9999999999999999, -15}},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
Number{0}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
Number{1999999999999999861, -18}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999862, -18},
__LINE__},
Number{-1999999999999999862, -18}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999861, -18},
__LINE__},
Number{1999999999999999861, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{
false,
9'999'999'999'999'999'579ULL,
-18,
Number::normalized{}},
__LINE__},
Number::normalized{}}},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2, 0},
__LINE__},
Number{2, 0}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999998, -18},
__LINE__},
Number{-1999999999999999998, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{1999999999999999999, -18},
__LINE__},
Number{1999999999999999999, -18}},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{10, 0},
__LINE__},
// Maximum internal mantissa range - rounds down to
// maxMantissa/10-1
Number{10, 0}},
// Maximum mantissa range - rounds down to maxMantissa/10e1
// 99'999'999'999'999'999'800'000'000'000'000'000'100
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}},
__LINE__},
// Maximum mantissa range - same as int64
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
Number{
false,
maxMantissa / 10 - 1,
20,
Number::normalized{}}},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'84, 19},
__LINE__},
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'84, 19}},
});
tests(cSmall, cLarge);
}
@@ -762,91 +656,68 @@ public:
<< " upward";
{
auto const cSmall = std::to_array<Case>(
{{Number{7}, Number{8}, Number{56}, __LINE__},
{{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
Number{2000000000000000, -15}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999, -15},
__LINE__},
Number{-1999999999999999, -15}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{2000000000000000, -15},
__LINE__},
Number{2000000000000000, -15}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{1000000000000000, -14},
__LINE__},
Number{1000000000000000, -14}},
{Number{1000000000000000, -32768},
Number{1000000000000000, -32768},
Number{0},
__LINE__}});
Number{0}}});
auto const cLarge = std::to_array<Case>(
// Note that items with extremely large mantissas need to be
// calculated, because otherwise they overflow uint64. Items
// from C with larger mantissa
{
{Number{7}, Number{8}, Number{56}, __LINE__},
{Number{7}, Number{8}, Number{56}},
{Number{1414213562373095, -15},
Number{1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
Number{1999999999999999862, -18}},
{Number{-1414213562373095, -15},
Number{1414213562373095, -15},
Number{-1999999999999999861, -18},
__LINE__},
Number{-1999999999999999861, -18}},
{Number{-1414213562373095, -15},
Number{-1414213562373095, -15},
Number{1999999999999999862, -18},
__LINE__},
Number{1999999999999999862, -18}},
{Number{3214285714285706, -15},
Number{3111111111111119, -15},
Number{999999999999999958, -17},
__LINE__},
Number{999999999999999958, -17}},
{Number{1000000000000000000, -32768},
Number{1000000000000000000, -32768},
Number{0},
__LINE__},
Number{0}},
// Items from cSmall expanded for the larger mantissa,
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
// with higher precision
{Number{1414213562373095049, -18},
Number{1414213562373095049, -18},
Number{2000000000000000001, -18},
__LINE__},
Number{2000000000000000001, -18}},
{Number{-1414213562373095048, -18},
Number{1414213562373095048, -18},
Number{-1999999999999999997, -18},
__LINE__},
Number{-1999999999999999997, -18}},
{Number{-1414213562373095048, -18},
Number{-1414213562373095049, -18},
Number{2, 0},
__LINE__},
Number{2, 0}},
{Number{3214285714285714278, -18},
Number{3111111111111111119, -18},
Number{1000000000000000001, -17},
__LINE__},
// Maximum internal mantissa range - rounds up to
// minMantissa*10 1e19*1e19=1e38
{Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{
false, maxInternalMantissa, 0, Number::normalized{}},
Number{1, 38},
__LINE__},
// Maximum mantissa range - same as int64
Number{1000000000000000001, -17}},
// Maximum mantissa range - rounds up to minMantissa*10
// 1e19*1e19=1e38
{Number{false, maxMantissa, 0, Number::normalized{}},
Number{false, maxMantissa, 0, Number::normalized{}},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
Number{1, 38}},
// Maximum int64 range
// 85'070'591'730'234'615'847'396'907'784'232'501'249
{Number{Number::largestMantissa, 0},
Number{Number::largestMantissa, 0},
Number{85'070'591'730'234'615'85, 19},
__LINE__},
{Number{Number::maxRep, 0},
Number{Number::maxRep, 0},
Number{85'070'591'730'234'615'85, 19}},
});
tests(cSmall, cLarge);
}
@@ -1119,12 +990,6 @@ public:
};
*/
auto const maxInternalMantissa =
static_cast<std::uint64_t>(
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
10 -
1;
auto const cSmall = std::to_array<Case>(
{{Number{2}, 2, Number{1414213562373095049, -18}},
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
@@ -1136,17 +1001,17 @@ public:
{Number{0}, 5, Number{0}},
{Number{5625, -4}, 2, Number{75, -2}}});
auto const cLarge = std::to_array<Case>({
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
2,
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
2,
Number{
false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
{Number{Number::largestMantissa},
{Number{Number::maxRep},
2,
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
{Number{Number::largestMantissa},
{Number{Number::maxRep},
4,
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
});
@@ -1196,9 +1061,6 @@ public:
}
};
auto const maxInternalMantissa =
power(10, Number::mantissaLog()) * 10 - 1;
auto const cSmall = std::to_array<Number>({
Number{2},
Number{2'000'000},
@@ -1208,10 +1070,7 @@ public:
Number{5, -1},
Number{0},
Number{5625, -4},
Number{Number::largestMantissa},
maxInternalMantissa,
Number{Number::minMantissa(), 0, Number::unchecked{}},
Number{Number::maxMantissa(), 0, Number::unchecked{}},
Number{Number::maxRep},
});
test(cSmall);
bool caught = false;
@@ -1577,20 +1436,20 @@ public:
case MantissaRange::large:
// Test the edges
// ((exponent < -(28)) || (exponent > -(8)))))
test(Number::min(), "922337203685477581e-32768");
test(Number::min(), "1e-32750");
test(Number::max(), "9223372036854775807e32768");
test(Number::lowest(), "-9223372036854775807e32768");
{
NumberRoundModeGuard mg(Number::towards_zero);
auto const maxMantissa = Number::maxMantissa();
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
test(
Number{false, maxMantissa, 0, Number::normalized{}},
"9223372036854775807");
"9999999999999999990");
test(
Number{true, maxMantissa, 0, Number::normalized{}},
"-9223372036854775807");
"-9999999999999999990");
test(
Number{std::numeric_limits<std::int64_t>::max(), 0},
@@ -1831,7 +1690,7 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() > 0);
Number const maxInt64{Number::largestMantissa};
Number const maxInt64{Number::maxRep};
BEAST_EXPECT(maxInt64.exponent() > 0);
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
BEAST_EXPECT(
@@ -1851,7 +1710,7 @@ public:
Number const initalXrp{INITIAL_XRP};
BEAST_EXPECT(initalXrp.exponent() <= 0);
Number const maxInt64{Number::largestMantissa};
Number const maxInt64{Number::maxRep};
BEAST_EXPECT(maxInt64.exponent() <= 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
BEAST_EXPECT(
@@ -1859,47 +1718,16 @@ public:
NumberRoundModeGuard mg(Number::towards_zero);
{
auto const maxInternalMantissa =
static_cast<std::uint64_t>(static_cast<std::int64_t>(
power(10, Number::mantissaLog()))) *
10 -
1;
// Rounds down to fit under 2^63
Number const max =
Number{false, maxInternalMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{
false,
maxInternalMantissa / 10 - 1,
20,
Number::normalized{}}));
}
{
auto const maxMantissa = Number::maxMantissa();
Number const max =
Number{false, maxMantissa, 0, Number::normalized{}};
// No alterations by the accessors
BEAST_EXPECT(max.mantissa() == maxMantissa);
BEAST_EXPECT(max.exponent() == 0);
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
// digits
BEAST_EXPECT(
(power(max, 2) ==
Number{
false,
85'070'591'730'234'615'84,
19,
Number::normalized{}}));
}
auto const maxMantissa = Number::maxMantissa();
Number const max =
Number{false, maxMantissa, 0, Number::normalized{}};
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
BEAST_EXPECT(max.exponent() == 1);
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
// digits
BEAST_EXPECT((
power(max, 2) ==
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
}
}

View File

@@ -1928,9 +1928,12 @@ loanMakePayment(
// -------------------------------------------------------------
// overpayment handling
auto const roundedAmount =
roundToAsset(asset, amount, loanScale, Number::towards_zero);
if (paymentType == LoanPaymentType::overpayment &&
loan->isFlag(lsfLoanOverpayment) && paymentRemainingProxy > 0 &&
totalPaid < amount && numPayments < loanMaximumPaymentsPerTransaction)
totalPaid < roundedAmount &&
numPayments < loanMaximumPaymentsPerTransaction)
{
TenthBips32 const overpaymentInterestRate{
loan->at(sfOverpaymentInterestRate)};
@@ -1940,7 +1943,7 @@ loanMakePayment(
// totalValueOutstanding, because that would have been processed as
// another normal payment. But cap it just in case.
Number const overpayment =
std::min(amount - totalPaid, *totalValueOutstandingProxy);
std::min(roundedAmount - totalPaid, *totalValueOutstandingProxy);
detail::ExtendedPaymentComponents const overpaymentComponents =
detail::computeOverpaymentComponents(

View File

@@ -8,6 +8,7 @@
#include <xrpl/protocol/STTakesAsset.h>
#include <xrpl/protocol/TxFlags.h>
#include <algorithm>
#include <bit>
namespace ripple {
@@ -430,9 +431,10 @@ LoanPay::doApply()
// Vault object state changes
view.update(vaultSle);
Number const assetsAvailableBefore = *assetsAvailableProxy;
Number const assetsTotalBefore = *assetsTotalProxy;
#if !NDEBUG
{
Number const assetsAvailableBefore = *assetsAvailableProxy;
Number const pseudoAccountBalanceBefore = accountHolds(
view,
vaultPseudoAccount,
@@ -456,17 +458,6 @@ LoanPay::doApply()
"rippled::LoanPay::doApply",
"assets available must not be greater than assets outstanding");
if (*assetsAvailableProxy > *assetsTotalProxy)
{
// LCOV_EXCL_START
JLOG(j_.fatal()) << "Vault assets available must not be greater "
"than assets outstanding. Available: "
<< *assetsAvailableProxy
<< ", Total: " << *assetsTotalProxy;
return tecINTERNAL;
// LCOV_EXCL_STOP
}
JLOG(j_.debug()) << "total paid to vault raw: " << totalPaidToVaultRaw
<< ", total paid to vault rounded: "
<< totalPaidToVaultRounded
@@ -493,10 +484,70 @@ LoanPay::doApply()
associateAsset(*vaultSle, asset);
// Duplicate some checks after rounding
Number const assetsAvailableAfter = *assetsAvailableProxy;
Number const assetsTotalAfter = *assetsTotalProxy;
XRPL_ASSERT_PARTS(
*assetsAvailableProxy <= *assetsTotalProxy,
assetsAvailableAfter <= *assetsTotalProxy,
"xrpl::LoanPay::doApply",
"assets available must not be greater than assets outstanding");
if (assetsAvailableAfter == assetsAvailableBefore)
{
// An unchanged assetsAvailable indicates that the amount paid to the
// vault was zero, or rounded to zero. That should be impossible, but I
// can't rule it out for extreme edge cases, so fail gracefully if it
// happens.
//
// LCOV_EXCL_START
JLOG(j_.warn()) << "LoanPay: Vault assets available unchanged after "
"rounding: Before: "
<< assetsAvailableBefore
<< ", After: " << assetsAvailableAfter;
return tecPRECISION_LOSS;
// LCOV_EXCL_STOP
}
if (paymentParts->valueChange != beast::zero &&
assetsTotalAfter == assetsTotalBefore)
{
// Non-zero valueChange with an unchanged assetsTotal indicates that the
// actual value change rounded to zero. That should be impossible, but I
// can't rule it out for extreme edge cases, so fail gracefully if it
// happens.
//
// LCOV_EXCL_START
JLOG(j_.warn())
<< "LoanPay: Vault assets expected change, but unchanged after "
"rounding: Before: "
<< assetsTotalBefore << ", After: " << assetsTotalAfter
<< ", ValueChange: " << paymentParts->valueChange;
return tecPRECISION_LOSS;
// LCOV_EXCL_STOP
}
if (paymentParts->valueChange == beast::zero &&
assetsTotalAfter != assetsTotalBefore)
{
// A change in assetsTotal when there was no valueChange indicates that
// something really weird happened. That should be flat out impossible.
//
// LCOV_EXCL_START
JLOG(j_.warn()) << "LoanPay: Vault assets changed unexpectedly after "
"rounding: Before: "
<< assetsTotalBefore << ", After: " << assetsTotalAfter
<< ", ValueChange: " << paymentParts->valueChange;
return tecINTERNAL;
// LCOV_EXCL_STOP
}
if (assetsAvailableAfter > *assetsTotalProxy)
{
// Assets available are not allowed to be larger than assets total.
// LCOV_EXCL_START
JLOG(j_.fatal())
<< "LoanPay: Vault assets available must not be greater "
"than assets outstanding. Available: "
<< assetsAvailableAfter << ", Total: " << *assetsTotalProxy;
return tecINTERNAL;
// LCOV_EXCL_STOP
}
#if !NDEBUG
auto const accountBalanceBefore = accountHolds(
@@ -568,7 +619,6 @@ LoanPay::doApply()
return ter;
#if !NDEBUG
Number const assetsAvailableAfter = *assetsAvailableProxy;
Number const pseudoAccountBalanceAfter = accountHolds(
view,
vaultPseudoAccount,
@@ -609,12 +659,98 @@ LoanPay::doApply()
ahIGNORE_AUTH,
j_,
SpendableHandling::shFULL_BALANCE);
auto const balanceScale = [&]() {
// This is so ugly.
std::vector<int> exponents;
for (auto const& a : {
accountBalanceBefore,
vaultBalanceBefore,
brokerBalanceBefore,
accountBalanceAfter,
vaultBalanceAfter,
brokerBalanceAfter,
})
{
// Exclude zeroes
if (a != beast::zero)
exponents.push_back(a.exponent());
}
auto [min, max] =
std::minmax_element(exponents.begin(), exponents.end());
// IOU rounding can be interesting. Give a margin of error that reflects
// the orders of magnitude between the extremes.
if (!asset.integral() && *max < STAmount::cMaxOffset * 3 / 4)
*max += *max - *min;
return std::min(*max, STAmount::cMaxOffset);
}();
auto const accountBalanceBeforeRounded =
roundToScale(accountBalanceBefore, balanceScale);
auto const vaultBalanceBeforeRounded =
roundToScale(vaultBalanceBefore, balanceScale);
auto const brokerBalanceBeforeRounded =
roundToScale(brokerBalanceBefore, balanceScale);
auto const totalBalanceBefore =
accountBalanceBefore + vaultBalanceBefore + brokerBalanceBefore;
auto const totalBalanceBeforeRounded =
roundToScale(totalBalanceBefore, balanceScale);
JLOG(j_.trace()) << "Before: account "
<< Number(accountBalanceBeforeRounded) << " ("
<< Number(accountBalanceBefore) << ")"
<< ", vault " << Number(vaultBalanceBeforeRounded) << " ("
<< Number(vaultBalanceBefore) << ")"
<< ", broker " << Number(brokerBalanceBeforeRounded)
<< " (" << Number(brokerBalanceBefore) << ")"
<< ", total " << Number(totalBalanceBeforeRounded) << " ("
<< Number(totalBalanceBefore) << ")";
auto const accountBalanceAfterRounded =
roundToScale(accountBalanceAfter, balanceScale);
auto const vaultBalanceAfterRounded =
roundToScale(vaultBalanceAfter, balanceScale);
auto const brokerBalanceAfterRounded =
roundToScale(brokerBalanceAfter, balanceScale);
auto const totalBalanceAfter =
accountBalanceAfter + vaultBalanceAfter + brokerBalanceAfter;
auto const totalBalanceAfterRounded =
roundToScale(totalBalanceAfter, balanceScale);
JLOG(j_.trace()) << "After: account " << Number(accountBalanceAfterRounded)
<< " (" << Number(accountBalanceAfter) << ")"
<< ", vault " << Number(vaultBalanceAfterRounded) << " ("
<< Number(vaultBalanceAfter) << ")"
<< ", broker " << Number(brokerBalanceAfterRounded) << " ("
<< Number(brokerBalanceAfter) << ")"
<< ", total " << Number(totalBalanceAfterRounded) << " ("
<< Number(totalBalanceAfter) << ")";
auto const accountBalanceChange =
accountBalanceAfter - accountBalanceBefore;
auto const vaultBalanceChange = vaultBalanceAfter - vaultBalanceBefore;
auto const brokerBalanceChange = brokerBalanceAfter - brokerBalanceBefore;
auto const totalBalanceChange = roundToScale(
accountBalanceChange + vaultBalanceChange + brokerBalanceChange,
balanceScale);
JLOG(j_.trace()) << "Changes: account " << to_string(accountBalanceChange)
<< ", vault " << to_string(vaultBalanceChange)
<< ", broker " << to_string(brokerBalanceChange)
<< ", total " << to_string(totalBalanceChange);
// Rounding for IOUs can be weird, so check a few different ways to show
// that funds are conserved.
XRPL_ASSERT_PARTS(
accountBalanceBefore + vaultBalanceBefore + brokerBalanceBefore ==
accountBalanceAfter + vaultBalanceAfter + brokerBalanceAfter,
totalBalanceBefore == totalBalanceAfter ||
totalBalanceBeforeRounded == totalBalanceAfterRounded ||
totalBalanceChange == beast::zero,
"ripple::LoanPay::doApply",
"funds are conserved (with rounding)");
XRPL_ASSERT_PARTS(
accountBalanceAfter >= beast::zero,
"ripple::LoanPay::doApply",