mirror of
https://github.com/XRPLF/rippled.git
synced 2026-01-28 02:25:28 +00:00
Compare commits
1 Commits
ximinez/nu
...
ximinez/lo
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
08170ff4de |
@@ -23,16 +23,11 @@
|
||||
#include <xrpl/beast/utility/instrumentation.h>
|
||||
|
||||
#include <cstdint>
|
||||
#include <functional>
|
||||
#include <limits>
|
||||
#include <optional>
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <boost/multiprecision/cpp_int.hpp>
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
namespace ripple {
|
||||
|
||||
class Number;
|
||||
@@ -40,37 +35,18 @@ class Number;
|
||||
std::string
|
||||
to_string(Number const& amount);
|
||||
|
||||
/** Returns a rough estimate of log10(value).
|
||||
*
|
||||
* The return value is a pair (log, rem), where log is the estimated log10,
|
||||
* and rem is value divided by 10^log. If rem is 1, then value is an exact
|
||||
* power of ten, and log is the exact log10(value).
|
||||
*
|
||||
* This function only works for positive values.
|
||||
*/
|
||||
template <typename T>
|
||||
constexpr std::pair<int, T>
|
||||
logTenEstimate(T value)
|
||||
{
|
||||
int log = 0;
|
||||
T remainder = value;
|
||||
while (value >= 10)
|
||||
{
|
||||
if (value % 10 == 0)
|
||||
remainder = remainder / 10;
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
return {log, remainder};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr std::optional<int>
|
||||
logTen(T value)
|
||||
{
|
||||
auto const est = logTenEstimate(value);
|
||||
if (est.second == 1)
|
||||
return est.first;
|
||||
int log = 0;
|
||||
while (value >= 10 && value % 10 == 0)
|
||||
{
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
if (value == 1)
|
||||
return log;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
@@ -84,10 +60,12 @@ isPowerOfTen(T value)
|
||||
/** MantissaRange defines a range for the mantissa of a normalized Number.
|
||||
*
|
||||
* The mantissa is in the range [min, max], where
|
||||
* * min is a power of 10, and
|
||||
* * max = min * 10 - 1.
|
||||
*
|
||||
* The mantissa_scale enum indicates whether the range is "small" or "large".
|
||||
* This intentionally restricts the number of MantissaRanges that can be
|
||||
* used to two: one for each scale.
|
||||
* instantiated to two: one for each scale.
|
||||
*
|
||||
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
|
||||
* value of 10^15, and a max value of 10^16-1. This was sufficient for
|
||||
@@ -101,8 +79,8 @@ isPowerOfTen(T value)
|
||||
* "large" scale.
|
||||
*
|
||||
* The "large" scale is intended to represent all values that can be represented
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
|
||||
* (truncated), and a max value of 2^63-1.
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
|
||||
* value of 10^19-1.
|
||||
*
|
||||
* Note that if the mentioned amendments are eventually retired, this class
|
||||
* should be left in place, but the "small" scale option should be removed. This
|
||||
@@ -114,50 +92,28 @@ struct MantissaRange
|
||||
enum mantissa_scale { small, large };
|
||||
|
||||
explicit constexpr MantissaRange(mantissa_scale scale_)
|
||||
: max(getMax(scale_))
|
||||
, min(computeMin(max))
|
||||
, referenceMin(getReferenceMin(scale_, min))
|
||||
, log(computeLog(min))
|
||||
: min(getMin(scale_))
|
||||
, max(min * 10 - 1)
|
||||
, log(logTen(min).value_or(-1))
|
||||
, scale(scale_)
|
||||
{
|
||||
// Since this is constexpr, if any of these throw, it won't compile
|
||||
if (min * 10 <= max)
|
||||
throw std::out_of_range("min * 10 <= max");
|
||||
if (max / 10 >= min)
|
||||
throw std::out_of_range("max / 10 >= min");
|
||||
if ((min - 1) * 10 > max)
|
||||
throw std::out_of_range("(min - 1) * 10 > max");
|
||||
// This is a little hacky
|
||||
if ((max + 10) / 10 < min)
|
||||
throw std::out_of_range("(max + 10) / 10 < min");
|
||||
}
|
||||
|
||||
// Explicitly delete copy and move operations
|
||||
MantissaRange(MantissaRange const&) = delete;
|
||||
MantissaRange(MantissaRange&&) = delete;
|
||||
MantissaRange&
|
||||
operator=(MantissaRange const&) = delete;
|
||||
MantissaRange&
|
||||
operator=(MantissaRange&&) = delete;
|
||||
|
||||
rep max;
|
||||
rep min;
|
||||
// This is not a great name. Used to determine if mantissas are in range,
|
||||
// but have fewer digits than max
|
||||
rep referenceMin;
|
||||
rep max;
|
||||
int log;
|
||||
mantissa_scale scale;
|
||||
|
||||
private:
|
||||
static constexpr rep
|
||||
getMax(mantissa_scale scale)
|
||||
getMin(mantissa_scale scale_)
|
||||
{
|
||||
switch (scale)
|
||||
switch (scale_)
|
||||
{
|
||||
case small:
|
||||
return 9'999'999'999'999'999ULL;
|
||||
return 1'000'000'000'000'000ULL;
|
||||
case large:
|
||||
return std::numeric_limits<std::int64_t>::max();
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
default:
|
||||
// Since this can never be called outside a non-constexpr
|
||||
// context, this throw assures that the build fails if an
|
||||
@@ -165,33 +121,6 @@ private:
|
||||
throw std::runtime_error("Unknown mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeMin(rep max)
|
||||
{
|
||||
return max / 10 + 1;
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
getReferenceMin(mantissa_scale scale, rep min)
|
||||
{
|
||||
switch (scale)
|
||||
{
|
||||
case large:
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
default:
|
||||
if (isPowerOfTen(min))
|
||||
return min;
|
||||
throw std::runtime_error("Unknown/bad mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeLog(rep min)
|
||||
{
|
||||
auto const estimate = logTenEstimate(min);
|
||||
return estimate.first + (estimate.second == 1 ? 0 : 1);
|
||||
}
|
||||
};
|
||||
|
||||
// Like std::integral, but only 64-bit integral types.
|
||||
@@ -199,20 +128,6 @@ template <class T>
|
||||
concept Integral64 =
|
||||
std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
|
||||
|
||||
namespace detail {
|
||||
#ifdef _MSC_VER
|
||||
using uint128_t = boost::multiprecision::uint128_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
#else // !defined(_MSC_VER)
|
||||
using uint128_t = __uint128_t;
|
||||
using int128_t = __int128_t;
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
template <class T>
|
||||
concept UnsignedMantissa =
|
||||
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
|
||||
} // namespace detail
|
||||
|
||||
/** Number is a floating point type that can represent a wide range of values.
|
||||
*
|
||||
* It can represent all values that can be represented by an STAmount -
|
||||
@@ -240,7 +155,9 @@ concept UnsignedMantissa =
|
||||
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
|
||||
* should only be used at specific conversion points, some constexpr
|
||||
* values, and in unit tests.
|
||||
* 2. The max of the "large" range, 2^63-1, TODO: explain the large range.
|
||||
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
|
||||
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
|
||||
* 10^20-1 > 2^64-1). This avoids under- and overflows.
|
||||
*
|
||||
* ---- External Interface ----
|
||||
*
|
||||
@@ -254,7 +171,7 @@ concept UnsignedMantissa =
|
||||
*
|
||||
* Note:
|
||||
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
|
||||
* mantissa range. TODO: update this explanation.
|
||||
* mantissa range.
|
||||
* 2. The functions mantissa() and exponent() return the external view of the
|
||||
* Number value, specifically using a signed 63-bit mantissa. This may
|
||||
* require altering the internal representation to fit into that range
|
||||
@@ -314,7 +231,8 @@ class Number
|
||||
using rep = std::int64_t;
|
||||
using internalrep = MantissaRange::rep;
|
||||
|
||||
rep mantissa_{0};
|
||||
bool negative_{false};
|
||||
internalrep mantissa_{0};
|
||||
int exponent_{std::numeric_limits<int>::lowest()};
|
||||
|
||||
public:
|
||||
@@ -322,11 +240,9 @@ public:
|
||||
constexpr static int minExponent = -32768;
|
||||
constexpr static int maxExponent = 32768;
|
||||
|
||||
#if MAXREP
|
||||
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
|
||||
static_assert(maxRep == 9'223'372'036'854'775'807);
|
||||
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
|
||||
#endif
|
||||
|
||||
// May need to make unchecked private
|
||||
struct unchecked
|
||||
@@ -412,7 +328,8 @@ public:
|
||||
friend constexpr bool
|
||||
operator==(Number const& x, Number const& y) noexcept
|
||||
{
|
||||
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
|
||||
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ &&
|
||||
x.exponent_ == y.exponent_;
|
||||
}
|
||||
|
||||
friend constexpr bool
|
||||
@@ -426,8 +343,8 @@ public:
|
||||
{
|
||||
// If the two amounts have different signs (zero is treated as positive)
|
||||
// then the comparison is true iff the left is negative.
|
||||
bool const lneg = x.mantissa_ < 0;
|
||||
bool const rneg = y.mantissa_ < 0;
|
||||
bool const lneg = x.negative_;
|
||||
bool const rneg = y.negative_;
|
||||
|
||||
if (lneg != rneg)
|
||||
return lneg;
|
||||
@@ -455,7 +372,7 @@ public:
|
||||
constexpr int
|
||||
signum() const noexcept
|
||||
{
|
||||
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
|
||||
return negative_ ? -1 : (mantissa_ ? 1 : 0);
|
||||
}
|
||||
|
||||
Number
|
||||
@@ -494,9 +411,6 @@ public:
|
||||
friend Number
|
||||
root2(Number f);
|
||||
|
||||
friend Number
|
||||
power(Number const& f, unsigned n, unsigned d);
|
||||
|
||||
// Thread local rounding control. Default is to_nearest
|
||||
enum rounding_mode { to_nearest, towards_zero, downward, upward };
|
||||
static rounding_mode
|
||||
@@ -561,48 +475,22 @@ private:
|
||||
static_assert(isPowerOfTen(smallRange.min));
|
||||
static_assert(smallRange.min == 1'000'000'000'000'000LL);
|
||||
static_assert(smallRange.max == 9'999'999'999'999'999LL);
|
||||
static_assert(smallRange.referenceMin == smallRange.min);
|
||||
static_assert(smallRange.log == 15);
|
||||
#if MAXREP
|
||||
static_assert(smallRange.min < maxRep);
|
||||
static_assert(smallRange.max < maxRep);
|
||||
#endif
|
||||
constexpr static MantissaRange largeRange{MantissaRange::large};
|
||||
static_assert(!isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
|
||||
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
|
||||
static_assert(largeRange.max == std::numeric_limits<rep>::max());
|
||||
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
|
||||
static_assert(largeRange.log == 18);
|
||||
// There are 2 values that will not fit in largeRange without some extra
|
||||
// work
|
||||
// * 9223372036854775808
|
||||
// * 9223372036854775809
|
||||
// They both end up < min, but with a leftover. If they round up, everything
|
||||
// will be fine. If they don't, well need to bring them up into range.
|
||||
// Guard::bringIntoRange handles this situation.
|
||||
|
||||
#if MAXREP
|
||||
static_assert(largeRange.min < maxRep);
|
||||
static_assert(largeRange.max > maxRep);
|
||||
#endif
|
||||
|
||||
// The range for the mantissa when normalized.
|
||||
// Use reference_wrapper to avoid making copies, and prevent accidentally
|
||||
// changing the values inside the range.
|
||||
static thread_local std::reference_wrapper<MantissaRange const> range_;
|
||||
|
||||
// And one is needed because it needs to choose between oneSmall and
|
||||
// oneLarge based on the current range
|
||||
static Number
|
||||
one(MantissaRange const& range);
|
||||
|
||||
static Number
|
||||
root(MantissaRange const& range, Number f, unsigned d);
|
||||
|
||||
void
|
||||
normalize(MantissaRange const& range);
|
||||
|
||||
void
|
||||
normalize();
|
||||
|
||||
@@ -625,14 +513,11 @@ private:
|
||||
friend void
|
||||
doNormalize(
|
||||
bool& negative,
|
||||
T& mantissa,
|
||||
int& exponent,
|
||||
T& mantissa_,
|
||||
int& exponent_,
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa);
|
||||
|
||||
bool
|
||||
isnormal(MantissaRange const& range) const noexcept;
|
||||
|
||||
bool
|
||||
isnormal() const noexcept;
|
||||
|
||||
@@ -649,64 +534,7 @@ private:
|
||||
static internalrep
|
||||
externalToInternal(rep mantissa);
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal(MantissaRange const& range) const;
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal() const;
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <
|
||||
bool expectNormal = true,
|
||||
detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(
|
||||
bool negative,
|
||||
Rep mantissa,
|
||||
int exponent,
|
||||
MantissaRange const* pRange);
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <
|
||||
bool expectNormal = true,
|
||||
detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(bool negative, Rep mantissa, int exponent);
|
||||
|
||||
class Guard;
|
||||
|
||||
public:
|
||||
constexpr static internalrep largestMantissa = largeRange.max;
|
||||
};
|
||||
|
||||
inline constexpr Number::Number(
|
||||
@@ -714,8 +542,7 @@ inline constexpr Number::Number(
|
||||
internalrep mantissa,
|
||||
int exponent,
|
||||
unchecked) noexcept
|
||||
: mantissa_{(negative ? -1 : 1) * static_cast<rep>(mantissa)}
|
||||
, exponent_{exponent}
|
||||
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
|
||||
{
|
||||
}
|
||||
|
||||
@@ -729,6 +556,16 @@ inline constexpr Number::Number(
|
||||
|
||||
constexpr static Number numZero{};
|
||||
|
||||
inline Number::Number(
|
||||
bool negative,
|
||||
internalrep mantissa,
|
||||
int exponent,
|
||||
normalized)
|
||||
: Number(negative, mantissa, exponent, unchecked{})
|
||||
{
|
||||
normalize();
|
||||
}
|
||||
|
||||
inline Number::Number(internalrep mantissa, int exponent, normalized)
|
||||
: Number(false, mantissa, exponent, normalized{})
|
||||
{
|
||||
@@ -751,7 +588,17 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
|
||||
inline constexpr Number::rep
|
||||
Number::mantissa() const noexcept
|
||||
{
|
||||
return mantissa_;
|
||||
auto m = mantissa_;
|
||||
if (m > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
|
||||
"xrpl::Number::mantissa",
|
||||
"large normalized mantissa has no remainder");
|
||||
m /= 10;
|
||||
}
|
||||
auto const sign = negative_ ? -1 : 1;
|
||||
return sign * static_cast<Number::rep>(m);
|
||||
}
|
||||
|
||||
/** Returns the exponent of the external view of the Number.
|
||||
@@ -762,7 +609,16 @@ Number::mantissa() const noexcept
|
||||
inline constexpr int
|
||||
Number::exponent() const noexcept
|
||||
{
|
||||
return exponent_;
|
||||
auto e = exponent_;
|
||||
if (mantissa_ > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
|
||||
"xrpl::Number::exponent",
|
||||
"large normalized mantissa has no remainder");
|
||||
++e;
|
||||
}
|
||||
return e;
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
@@ -777,7 +633,7 @@ Number::operator-() const noexcept
|
||||
if (mantissa_ == 0)
|
||||
return Number{};
|
||||
auto x = *this;
|
||||
x.mantissa_ = -1 * x.mantissa_;
|
||||
x.negative_ = !x.negative_;
|
||||
return x;
|
||||
}
|
||||
|
||||
@@ -858,38 +714,34 @@ Number::min() noexcept
|
||||
inline Number
|
||||
Number::max() noexcept
|
||||
{
|
||||
return Number{false, range_.get().max, maxExponent, unchecked{}};
|
||||
return Number{
|
||||
false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline Number
|
||||
Number::lowest() noexcept
|
||||
{
|
||||
return Number{true, range_.get().max, maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal(MantissaRange const& range) const noexcept
|
||||
{
|
||||
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
|
||||
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max && //
|
||||
minExponent <= exponent_ && exponent_ <= maxExponent);
|
||||
return Number{
|
||||
true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal() const noexcept
|
||||
{
|
||||
return isnormal(range_);
|
||||
MantissaRange const& range = range_;
|
||||
auto const abs_m = mantissa_;
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max &&
|
||||
(abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
|
||||
exponent_ <= maxExponent);
|
||||
}
|
||||
|
||||
template <Integral64 T>
|
||||
std::pair<T, int>
|
||||
Number::normalizeToRange(T minMantissa, T maxMantissa) const
|
||||
{
|
||||
bool negative = mantissa_ < 0;
|
||||
auto const sign = negative ? -1 : 1;
|
||||
internalrep mantissa = sign * mantissa_;
|
||||
bool negative = negative_;
|
||||
internalrep mantissa = mantissa_;
|
||||
int exponent = exponent_;
|
||||
|
||||
if constexpr (std::is_unsigned_v<T>)
|
||||
@@ -899,7 +751,8 @@ Number::normalizeToRange(T minMantissa, T maxMantissa) const
|
||||
"Number is non-negative for unsigned range.");
|
||||
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
|
||||
|
||||
return std::make_pair(sign * static_cast<T>(mantissa), exponent);
|
||||
auto const sign = negative ? -1 : 1;
|
||||
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
|
||||
@@ -252,7 +252,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
|
||||
|
||||
/** The maximum amount of MPTokenIssuance */
|
||||
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
|
||||
static_assert(Number::largestMantissa >= maxMPTokenAmount);
|
||||
static_assert(Number::maxRep >= maxMPTokenAmount);
|
||||
|
||||
/** The maximum length of Data payload */
|
||||
std::size_t constexpr maxDataPayloadLength = 256;
|
||||
|
||||
@@ -62,8 +62,8 @@ private:
|
||||
public:
|
||||
using value_type = STAmount;
|
||||
|
||||
static int const cMinOffset = -96;
|
||||
static int const cMaxOffset = 80;
|
||||
static constexpr int cMinOffset = -96;
|
||||
static constexpr int cMaxOffset = 80;
|
||||
|
||||
// Maximum native value supported by the code
|
||||
constexpr static std::uint64_t cMinValue = 1'000'000'000'000'000ull;
|
||||
|
||||
@@ -416,9 +416,6 @@ public:
|
||||
void
|
||||
delField(int index);
|
||||
|
||||
SOEStyle
|
||||
getStyle(SField const& field) const;
|
||||
|
||||
bool
|
||||
hasMatchingEntry(STBase const&);
|
||||
|
||||
|
||||
@@ -43,7 +43,7 @@ systemName()
|
||||
/** Number of drops in the genesis account. */
|
||||
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
|
||||
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
|
||||
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
|
||||
static_assert(Number::maxRep >= INITIAL_XRP.drops());
|
||||
|
||||
/** Returns true if the amount does not exceed the initial XRP in existence. */
|
||||
inline bool
|
||||
|
||||
@@ -35,10 +35,13 @@
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
|
||||
#endif
|
||||
|
||||
using uint128_t = ripple::detail::uint128_t;
|
||||
using int128_t = ripple::detail::int128_t;
|
||||
#include <boost/multiprecision/cpp_int.hpp>
|
||||
using uint128_t = boost::multiprecision::uint128_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
#else // !defined(_MSC_VER)
|
||||
using uint128_t = __uint128_t;
|
||||
using int128_t = __int128_t;
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
namespace ripple {
|
||||
|
||||
@@ -78,6 +81,10 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
|
||||
// preicision to an operation. This enables the final result
|
||||
// to be correctly rounded to the internal precision of Number.
|
||||
|
||||
template <class T>
|
||||
concept UnsignedMantissa =
|
||||
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
|
||||
|
||||
class Number::Guard
|
||||
{
|
||||
std::uint64_t digits_; // 16 decimal guard digits
|
||||
@@ -113,7 +120,7 @@ public:
|
||||
round() noexcept;
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
doRoundUp(
|
||||
bool& negative,
|
||||
@@ -124,7 +131,7 @@ public:
|
||||
std::string location);
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
doRoundDown(
|
||||
bool& negative,
|
||||
@@ -140,7 +147,7 @@ private:
|
||||
void
|
||||
doPush(unsigned d) noexcept;
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
bringIntoRange(
|
||||
bool& negative,
|
||||
@@ -231,7 +238,7 @@ Number::Guard::round() noexcept
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::bringIntoRange(
|
||||
bool& negative,
|
||||
@@ -250,13 +257,13 @@ Number::Guard::bringIntoRange(
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
|
||||
negative = false;
|
||||
negative = zero.negative_;
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
}
|
||||
}
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::doRoundUp(
|
||||
bool& negative,
|
||||
@@ -272,7 +279,7 @@ Number::Guard::doRoundUp(
|
||||
++mantissa;
|
||||
// Ensure mantissa after incrementing fits within both the
|
||||
// min/maxMantissa range and is a valid "rep".
|
||||
if (mantissa > maxMantissa)
|
||||
if (mantissa > maxMantissa || mantissa > maxRep)
|
||||
{
|
||||
mantissa /= 10;
|
||||
++exponent;
|
||||
@@ -283,7 +290,7 @@ Number::Guard::doRoundUp(
|
||||
throw std::overflow_error(location);
|
||||
}
|
||||
|
||||
template <detail::UnsignedMantissa T>
|
||||
template <UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::doRoundDown(
|
||||
bool& negative,
|
||||
@@ -311,8 +318,7 @@ Number::Guard::doRound(rep& drops, std::string location)
|
||||
auto r = round();
|
||||
if (r == 1 || (r == 0 && (drops & 1) == 1))
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
if (drops >= range.max)
|
||||
if (drops >= maxRep)
|
||||
{
|
||||
static_assert(sizeof(internalrep) == sizeof(rep));
|
||||
// This should be impossible, because it's impossible to represent
|
||||
@@ -354,136 +360,12 @@ Number::externalToInternal(rep mantissa)
|
||||
return static_cast<internalrep>(-temp);
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal(MantissaRange const& range) const
|
||||
{
|
||||
auto exponent = exponent_;
|
||||
bool const negative = mantissa_ < 0;
|
||||
auto const sign = negative ? -1 : 1;
|
||||
Rep mantissa = static_cast<Rep>(sign * mantissa_);
|
||||
|
||||
auto const referenceMin = range.referenceMin;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
|
||||
{
|
||||
// Ensure the mantissa has the correct number of digits
|
||||
mantissa *= 10;
|
||||
--exponent;
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= referenceMin && mantissa < referenceMin * 10,
|
||||
"ripple::Number::toInternal()",
|
||||
"Number is within reference range and has 'log' digits");
|
||||
}
|
||||
|
||||
return {negative, mantissa, exponent};
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal() const
|
||||
{
|
||||
return toInternal(range_);
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(
|
||||
bool negative,
|
||||
Rep mantissa,
|
||||
int exponent,
|
||||
MantissaRange const* pRange)
|
||||
{
|
||||
if constexpr (std::is_same_v<
|
||||
std::bool_constant<expectNormal>,
|
||||
std::false_type>)
|
||||
{
|
||||
if (!pRange)
|
||||
throw std::runtime_error("Missing range to Number::fromInternal!");
|
||||
auto const& range = *pRange;
|
||||
|
||||
auto const maxMantissa = range.max;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa,
|
||||
"ripple::Number::fromInternal",
|
||||
"mantissa large enough");
|
||||
|
||||
if (mantissa > maxMantissa || mantissa < minMantissa)
|
||||
{
|
||||
normalize(negative, mantissa, exponent, range.min, maxMantissa);
|
||||
}
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa && mantissa <= maxMantissa,
|
||||
"ripple::Number::fromInternal",
|
||||
"mantissa in range");
|
||||
}
|
||||
|
||||
auto const sign = negative ? -1 : 1;
|
||||
|
||||
mantissa_ = sign * static_cast<rep>(mantissa);
|
||||
exponent_ = exponent;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
(pRange && isnormal(*pRange)) || isnormal(),
|
||||
"ripple::Number::fromInternal",
|
||||
"Number is normalized");
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all in
|
||||
* their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near normalized",
|
||||
* meaning that the mantissa has to be modified at most once to bring it back
|
||||
* into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(bool negative, Rep mantissa, int exponent)
|
||||
{
|
||||
MantissaRange const* pRange = nullptr;
|
||||
if constexpr (std::is_same_v<
|
||||
std::bool_constant<expectNormal>,
|
||||
std::false_type>)
|
||||
{
|
||||
pRange = &Number::range_.get();
|
||||
}
|
||||
|
||||
fromInternal(negative, mantissa, exponent, pRange);
|
||||
}
|
||||
|
||||
constexpr Number
|
||||
Number::oneSmall()
|
||||
{
|
||||
return Number{
|
||||
false,
|
||||
Number::smallRange.referenceMin,
|
||||
Number::smallRange.min,
|
||||
-Number::smallRange.log,
|
||||
Number::unchecked{}};
|
||||
};
|
||||
@@ -495,7 +377,7 @@ Number::oneLarge()
|
||||
{
|
||||
return Number{
|
||||
false,
|
||||
Number::largeRange.referenceMin,
|
||||
Number::largeRange.min,
|
||||
-Number::largeRange.log,
|
||||
Number::unchecked{}};
|
||||
};
|
||||
@@ -503,91 +385,106 @@ Number::oneLarge()
|
||||
constexpr Number oneLrg = Number::oneLarge();
|
||||
|
||||
Number
|
||||
Number::one(MantissaRange const& range)
|
||||
Number::one()
|
||||
{
|
||||
if (&range == &smallRange)
|
||||
if (&range_.get() == &smallRange)
|
||||
return oneSml;
|
||||
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
|
||||
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
|
||||
return oneLrg;
|
||||
}
|
||||
|
||||
Number
|
||||
Number::one()
|
||||
{
|
||||
return one(range_);
|
||||
}
|
||||
|
||||
// Use the member names in this static function for now so the diff is cleaner
|
||||
// TODO: Rename the function parameters to get rid of the "_" suffix
|
||||
template <class T>
|
||||
void
|
||||
doNormalize(
|
||||
bool& negative,
|
||||
T& mantissa,
|
||||
int& exponent,
|
||||
T& mantissa_,
|
||||
int& exponent_,
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa)
|
||||
{
|
||||
auto constexpr minExponent = Number::minExponent;
|
||||
auto constexpr maxExponent = Number::maxExponent;
|
||||
auto constexpr maxRep = Number::maxRep;
|
||||
|
||||
using Guard = Number::Guard;
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
|
||||
if (mantissa_ == 0)
|
||||
{
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
negative = false;
|
||||
mantissa_ = zero.mantissa_;
|
||||
exponent_ = zero.exponent_;
|
||||
negative = zero.negative_;
|
||||
return;
|
||||
}
|
||||
|
||||
auto m = mantissa;
|
||||
while ((m < minMantissa) && (exponent > minExponent))
|
||||
auto m = mantissa_;
|
||||
while ((m < minMantissa) && (exponent_ > minExponent))
|
||||
{
|
||||
m *= 10;
|
||||
--exponent;
|
||||
--exponent_;
|
||||
}
|
||||
Guard g;
|
||||
if (negative)
|
||||
g.set_negative();
|
||||
while (m > maxMantissa)
|
||||
{
|
||||
if (exponent >= maxExponent)
|
||||
if (exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent;
|
||||
++exponent_;
|
||||
}
|
||||
if ((exponent < minExponent) || (m == 0))
|
||||
if ((exponent_ < minExponent) || (m < minMantissa))
|
||||
{
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
negative = false;
|
||||
mantissa_ = zero.mantissa_;
|
||||
exponent_ = zero.exponent_;
|
||||
negative = zero.negative_;
|
||||
return;
|
||||
}
|
||||
|
||||
// When using the largeRange, "m" needs fit within an int64, even if
|
||||
// the final mantissa_ is going to end up larger to fit within the
|
||||
// MantissaRange. Cut it down here so that the rounding will be done while
|
||||
// it's smaller.
|
||||
//
|
||||
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
|
||||
// so "m" will be modified to 990,000,000,000,012,345. Then that value
|
||||
// will be rounded to 990,000,000,000,012,345 or
|
||||
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
|
||||
// mantissa_ will be "m*10" so it fits within the range, and end up as
|
||||
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
|
||||
// mantissa() will return mantissa_ / 10, and exponent() will return
|
||||
// exponent_ + 1.
|
||||
if (m > maxRep)
|
||||
{
|
||||
if (exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1.5");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent_;
|
||||
}
|
||||
// Before modification, m should be within the min/max range. After
|
||||
// modification, it must be less than maxRep. In other words, the original
|
||||
// value should have been no more than maxRep * 10.
|
||||
// (maxRep * 10 > maxMantissa)
|
||||
XRPL_ASSERT_PARTS(
|
||||
m <= maxMantissa,
|
||||
m <= maxRep,
|
||||
"xrpl::doNormalize",
|
||||
"intermediate mantissa fits in int64");
|
||||
mantissa = m;
|
||||
mantissa_ = m;
|
||||
|
||||
g.doRoundUp(
|
||||
negative,
|
||||
mantissa,
|
||||
exponent,
|
||||
mantissa_,
|
||||
exponent_,
|
||||
minMantissa,
|
||||
maxMantissa,
|
||||
"Number::normalize 2");
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa && mantissa <= maxMantissa,
|
||||
mantissa_ >= minMantissa && mantissa_ <= maxMantissa,
|
||||
"xrpl::doNormalize",
|
||||
"final mantissa fits in range");
|
||||
XRPL_ASSERT_PARTS(
|
||||
exponent >= minExponent && exponent <= maxExponent,
|
||||
"xrpl::doNormalize",
|
||||
"final exponent fits in range");
|
||||
}
|
||||
|
||||
template <>
|
||||
@@ -626,20 +523,11 @@ Number::normalize<unsigned long>(
|
||||
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize(MantissaRange const& range)
|
||||
{
|
||||
auto [negative, mantissa, exponent] = toInternal(range);
|
||||
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize()
|
||||
{
|
||||
normalize(range_);
|
||||
auto const& range = range_.get();
|
||||
normalize(negative_, mantissa_, exponent_, range.min, range.max);
|
||||
}
|
||||
|
||||
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
|
||||
@@ -649,33 +537,24 @@ Number
|
||||
Number::shiftExponent(int exponentDelta) const
|
||||
{
|
||||
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
|
||||
|
||||
Number result = *this;
|
||||
|
||||
result.exponent_ += exponentDelta;
|
||||
|
||||
if (result.exponent_ >= maxExponent)
|
||||
auto const newExponent = exponent_ + exponentDelta;
|
||||
if (newExponent >= maxExponent)
|
||||
throw std::overflow_error("Number::shiftExponent");
|
||||
if (result.exponent_ < minExponent)
|
||||
if (newExponent < minExponent)
|
||||
{
|
||||
return Number{};
|
||||
}
|
||||
|
||||
Number const result{negative_, mantissa_, newExponent, unchecked{}};
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(),
|
||||
"xrpl::Number::shiftExponent",
|
||||
"result is normalized");
|
||||
return result;
|
||||
}
|
||||
|
||||
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator+=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
return *this;
|
||||
@@ -691,7 +570,7 @@ Number::operator+=(Number const& y)
|
||||
}
|
||||
|
||||
XRPL_ASSERT(
|
||||
isnormal(range) && y.isnormal(range),
|
||||
isnormal() && y.isnormal(),
|
||||
"xrpl::Number::operator+=(Number) : is normal");
|
||||
// *n = negative
|
||||
// *m = mantissa
|
||||
@@ -699,10 +578,13 @@ Number::operator+=(Number const& y)
|
||||
|
||||
// Need to use uint128_t, because large mantissas can overflow when added
|
||||
// together.
|
||||
auto [xn, xm, xe] = toInternal<uint128_t>(range);
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
|
||||
bool xn = negative_;
|
||||
uint128_t xm = mantissa_;
|
||||
auto xe = exponent_;
|
||||
|
||||
bool yn = y.negative_;
|
||||
uint128_t ym = y.mantissa_;
|
||||
auto ye = y.exponent_;
|
||||
Guard g;
|
||||
if (xe < ye)
|
||||
{
|
||||
@@ -727,13 +609,14 @@ Number::operator+=(Number const& y)
|
||||
} while (xe > ye);
|
||||
}
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
if (xn == yn)
|
||||
{
|
||||
xm += ym;
|
||||
if (xm > maxMantissa)
|
||||
if (xm > maxMantissa || xm > maxRep)
|
||||
{
|
||||
g.push(xm % 10);
|
||||
xm /= 10;
|
||||
@@ -754,7 +637,7 @@ Number::operator+=(Number const& y)
|
||||
xe = ye;
|
||||
xn = yn;
|
||||
}
|
||||
while (xm < minMantissa)
|
||||
while (xm < minMantissa && xm * 10 <= maxRep)
|
||||
{
|
||||
xm *= 10;
|
||||
xm -= g.pop();
|
||||
@@ -763,8 +646,10 @@ Number::operator+=(Number const& y)
|
||||
g.doRoundDown(xn, xm, xe, minMantissa);
|
||||
}
|
||||
|
||||
normalize(xn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(xn, xm, xe, &range);
|
||||
negative_ = xn;
|
||||
mantissa_ = static_cast<internalrep>(xm);
|
||||
exponent_ = xe;
|
||||
normalize();
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -799,8 +684,6 @@ divu10(uint128_t& u)
|
||||
Number&
|
||||
Number::operator*=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (*this == zero)
|
||||
return *this;
|
||||
@@ -814,11 +697,15 @@ Number::operator*=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
auto [xn, xm, xe] = toInternal(range);
|
||||
bool xn = negative_;
|
||||
int xs = xn ? -1 : 1;
|
||||
internalrep xm = mantissa_;
|
||||
auto xe = exponent_;
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal(range);
|
||||
bool yn = y.negative_;
|
||||
int ys = yn ? -1 : 1;
|
||||
internalrep ym = y.mantissa_;
|
||||
auto ye = y.exponent_;
|
||||
|
||||
auto zm = uint128_t(xm) * uint128_t(ym);
|
||||
auto ze = xe + ye;
|
||||
@@ -828,10 +715,11 @@ Number::operator*=(Number const& y)
|
||||
if (zn)
|
||||
g.set_negative();
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
while (zm > maxMantissa)
|
||||
while (zm > maxMantissa || zm > maxRep)
|
||||
{
|
||||
// The following is optimization for:
|
||||
// g.push(static_cast<unsigned>(zm % 10));
|
||||
@@ -848,17 +736,17 @@ Number::operator*=(Number const& y)
|
||||
minMantissa,
|
||||
maxMantissa,
|
||||
"Number::multiplication overflow : exponent is " + std::to_string(xe));
|
||||
negative_ = zn;
|
||||
mantissa_ = xm;
|
||||
exponent_ = xe;
|
||||
|
||||
normalize(zn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(zn, xm, xe, &range);
|
||||
normalize();
|
||||
return *this;
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator/=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
throw std::overflow_error("Number: divide by 0");
|
||||
@@ -871,12 +759,17 @@ Number::operator/=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
auto [np, nm, ne] = toInternal(range);
|
||||
bool np = negative_;
|
||||
int ns = (np ? -1 : 1);
|
||||
auto nm = mantissa_;
|
||||
auto ne = exponent_;
|
||||
|
||||
auto [dp, dm, de] = y.toInternal(range);
|
||||
bool dp = y.negative_;
|
||||
int ds = (dp ? -1 : 1);
|
||||
auto dm = y.mantissa_;
|
||||
auto de = y.exponent_;
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
@@ -888,7 +781,7 @@ Number::operator/=(Number const& y)
|
||||
// f can be up to 10^(38-19) = 10^19 safely
|
||||
static_assert(smallRange.log == 15);
|
||||
static_assert(largeRange.log == 18);
|
||||
bool small = range.scale == MantissaRange::small;
|
||||
bool small = Number::getMantissaScale() == MantissaRange::small;
|
||||
uint128_t const f =
|
||||
small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
|
||||
XRPL_ASSERT_PARTS(
|
||||
@@ -940,9 +833,11 @@ Number::operator/=(Number const& y)
|
||||
}
|
||||
}
|
||||
normalize(zn, zm, ze, minMantissa, maxMantissa);
|
||||
fromInternal(zn, zm, ze, &range);
|
||||
negative_ = zn;
|
||||
mantissa_ = static_cast<internalrep>(zm);
|
||||
exponent_ = ze;
|
||||
XRPL_ASSERT_PARTS(
|
||||
isnormal(range), "xrpl::Number::operator/=", "result is normalized");
|
||||
isnormal(), "xrpl::Number::operator/=", "result is normalized");
|
||||
|
||||
return *this;
|
||||
}
|
||||
@@ -954,7 +849,7 @@ Number::operator rep() const
|
||||
Guard g;
|
||||
if (drops != 0)
|
||||
{
|
||||
if (drops < 0)
|
||||
if (negative_)
|
||||
{
|
||||
g.set_negative();
|
||||
drops = -drops;
|
||||
@@ -966,7 +861,7 @@ Number::operator rep() const
|
||||
}
|
||||
for (; offset > 0; --offset)
|
||||
{
|
||||
if (drops >= largeRange.min)
|
||||
if (drops > maxRep / 10)
|
||||
throw std::overflow_error("Number::operator rep() overflow");
|
||||
drops *= 10;
|
||||
}
|
||||
@@ -996,22 +891,20 @@ Number::truncate() const noexcept
|
||||
std::string
|
||||
to_string(Number const& amount)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
// keep full internal accuracy, but make more human friendly if possible
|
||||
constexpr Number zero = Number{};
|
||||
if (amount == zero)
|
||||
return "0";
|
||||
|
||||
// The mantissa must have a set number of decimal places for this to work
|
||||
auto [negative, mantissa, exponent] = amount.toInternal(range);
|
||||
auto exponent = amount.exponent_;
|
||||
auto mantissa = amount.mantissa_;
|
||||
bool const negative = amount.negative_;
|
||||
|
||||
// Use scientific notation for exponents that are too small or too large
|
||||
auto const rangeLog = range.log;
|
||||
if (((exponent != 0 && amount.exponent() != 0) &&
|
||||
auto const rangeLog = Number::mantissaLog();
|
||||
if (((exponent != 0) &&
|
||||
((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
|
||||
{
|
||||
// Remove trailing zeroes from the mantissa.
|
||||
while (mantissa != 0 && mantissa % 10 == 0 &&
|
||||
exponent < Number::maxExponent)
|
||||
{
|
||||
@@ -1020,11 +913,8 @@ to_string(Number const& amount)
|
||||
}
|
||||
std::string ret = negative ? "-" : "";
|
||||
ret.append(std::to_string(mantissa));
|
||||
if (exponent != 0)
|
||||
{
|
||||
ret.append(1, 'e');
|
||||
ret.append(std::to_string(exponent));
|
||||
}
|
||||
ret.append(1, 'e');
|
||||
ret.append(std::to_string(exponent));
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -1113,11 +1003,20 @@ power(Number const& f, unsigned n)
|
||||
return r;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
root(Number f, unsigned d)
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one(range);
|
||||
auto const one = Number::one();
|
||||
|
||||
if (f == one || d == 1)
|
||||
return f;
|
||||
@@ -1134,30 +1033,22 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
if (f == zero)
|
||||
return f;
|
||||
|
||||
auto const [e, di] = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that the scale change (e) is a
|
||||
// multiple of the root (d)
|
||||
auto e = exponent + range.log + 1;
|
||||
auto const di = static_cast<int>(d);
|
||||
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
|
||||
{
|
||||
int k = (e >= 0 ? e : e - (di - 1)) / di;
|
||||
int k2 = e - k * di;
|
||||
if (k2 == 0)
|
||||
return 0;
|
||||
return di - k2;
|
||||
}();
|
||||
e += ex;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return std::make_tuple(e, di);
|
||||
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
|
||||
auto e = f.exponent_ + Number::mantissaLog() + 1;
|
||||
auto const di = static_cast<int>(d);
|
||||
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
|
||||
{
|
||||
int k = (e >= 0 ? e : e - (di - 1)) / di;
|
||||
int k2 = e - k * di;
|
||||
if (k2 == 0)
|
||||
return 0;
|
||||
return di - k2;
|
||||
}();
|
||||
e += ex;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
bool neg = false;
|
||||
if (f < zero)
|
||||
{
|
||||
@@ -1191,34 +1082,17 @@ Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
// return r * 10^(e/d) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / di);
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(range),
|
||||
result.isnormal(),
|
||||
"xrpl::root(Number, unsigned)",
|
||||
"result is normalized");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
root(Number f, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
return Number::root(range, f, d);
|
||||
}
|
||||
|
||||
Number
|
||||
root2(Number f)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one(range);
|
||||
auto const one = Number::one();
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1227,19 +1101,12 @@ root2(Number f)
|
||||
if (f == zero)
|
||||
return f;
|
||||
|
||||
auto const e = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that f's exponent is a
|
||||
// multiple of d
|
||||
auto e = exponent + range.log + 1;
|
||||
if (e % 2 != 0)
|
||||
++e;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return e;
|
||||
}();
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
|
||||
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
|
||||
auto e = f.exponent_ + Number::mantissaLog() + 1;
|
||||
if (e % 2 != 0)
|
||||
++e;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
|
||||
|
||||
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
|
||||
auto const D = 105;
|
||||
@@ -1262,7 +1129,7 @@ root2(Number f)
|
||||
// return r * 10^(e/2) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / 2);
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
|
||||
result.isnormal(), "xrpl::root2(Number)", "result is normalized");
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1272,10 +1139,8 @@ root2(Number f)
|
||||
Number
|
||||
power(Number const& f, unsigned n, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one(range);
|
||||
auto const one = Number::one();
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1297,7 +1162,7 @@ power(Number const& f, unsigned n, unsigned d)
|
||||
d /= g;
|
||||
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
|
||||
throw std::overflow_error("Number::power nan");
|
||||
return Number::root(range, power(f, n), d);
|
||||
return root(power(f, n), d);
|
||||
}
|
||||
|
||||
} // namespace ripple
|
||||
|
||||
@@ -36,7 +36,7 @@ namespace BuildInfo {
|
||||
// and follow the format described at http://semver.org/
|
||||
//------------------------------------------------------------------------------
|
||||
// clang-format off
|
||||
char const* const versionString = "3.1.0-rc2"
|
||||
char const* const versionString = "3.1.0-rc1"
|
||||
// clang-format on
|
||||
|
||||
#if defined(DEBUG) || defined(SANITIZER)
|
||||
|
||||
@@ -142,8 +142,6 @@ areComparable(STAmount const& v1, STAmount const& v2)
|
||||
return false;
|
||||
}
|
||||
|
||||
static_assert(INITIAL_XRP.drops() == STAmount::cMaxNativeN);
|
||||
|
||||
STAmount::STAmount(SerialIter& sit, SField const& name) : STBase(name)
|
||||
{
|
||||
std::uint64_t value = sit.get64();
|
||||
|
||||
@@ -599,12 +599,6 @@ STObject::delField(int index)
|
||||
v_.erase(v_.begin() + index);
|
||||
}
|
||||
|
||||
SOEStyle
|
||||
STObject::getStyle(SField const& field) const
|
||||
{
|
||||
return mType ? mType->style(field) : soeINVALID;
|
||||
}
|
||||
|
||||
unsigned char
|
||||
STObject::getFieldU8(SField const& field) const
|
||||
{
|
||||
|
||||
@@ -18,28 +18,10 @@ associateAsset(SLE& sle, Asset const& asset)
|
||||
// If the field is not set or present, skip it.
|
||||
if (type == STI_NOTPRESENT)
|
||||
continue;
|
||||
|
||||
// If the type doesn't downcast, then the flag shouldn't be on the
|
||||
// SField
|
||||
auto& ta = entry.downcast<STTakesAsset>();
|
||||
auto const style = sle.getStyle(ta.getFName());
|
||||
XRPL_ASSERT_PARTS(
|
||||
style != soeINVALID,
|
||||
"ripple::associateAsset",
|
||||
"valid template element style");
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
style != soeDEFAULT || !ta.isDefault(),
|
||||
"ripple::associateAsset",
|
||||
"non-default value");
|
||||
ta.associateAsset(asset);
|
||||
|
||||
// associateAsset in derived classes may change the underlying
|
||||
// value, but it won't know anything about how the value relates to
|
||||
// the SLE. If the template element is soeDEFAULT, and the value
|
||||
// changed to the default value, remove the field.
|
||||
if (style == soeDEFAULT && ta.isDefault())
|
||||
sle.makeFieldAbsent(field);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@@ -7644,6 +7644,154 @@ protected:
|
||||
BEAST_EXPECT(afterSecondCoverAvailable == 0);
|
||||
}
|
||||
|
||||
void
|
||||
testYieldTheftRounding(std::uint32_t flags)
|
||||
{
|
||||
testcase("Yield Theft via Rounding Manipulation");
|
||||
using namespace jtx;
|
||||
using namespace loan;
|
||||
|
||||
// 1. Setup Environment
|
||||
Env env(*this, all);
|
||||
Account const issuer{"issuer"};
|
||||
Account const lender{"lender"};
|
||||
Account const borrower{"borrower"};
|
||||
|
||||
env.fund(XRP(1000), issuer, lender, borrower);
|
||||
env.close();
|
||||
|
||||
// 2. Asset Selection
|
||||
PrettyAsset const iou = issuer["USD"];
|
||||
env(trust(lender, iou(100'000'000)));
|
||||
env(trust(borrower, iou(100'000'000)));
|
||||
env(pay(issuer, lender, iou(100'000'000)));
|
||||
env(pay(issuer, borrower, iou(100'000'000)));
|
||||
env.close();
|
||||
|
||||
// 3. Create Vault and Broker with High Debt Limit (100M)
|
||||
auto const brokerInfo = createVaultAndBroker(
|
||||
env,
|
||||
iou,
|
||||
lender,
|
||||
{
|
||||
.vaultDeposit = 1'000'000,
|
||||
.debtMax = Number{100'000'000},
|
||||
});
|
||||
auto const [currentSeq, vaultId, vaultKeylet] = [&]() {
|
||||
auto const brokerSle =
|
||||
env.le(keylet::loanbroker(brokerInfo.brokerID));
|
||||
auto const currentSeq = brokerSle->at(sfLoanSequence);
|
||||
auto const vaultKeylet = keylet::vault(brokerSle->at(sfVaultID));
|
||||
auto const vaultId = brokerSle->at(sfVaultID);
|
||||
return std::make_tuple(currentSeq, vaultId, vaultKeylet);
|
||||
}();
|
||||
Vault vault{env};
|
||||
env(vault.deposit(
|
||||
{.depositor = lender, .id = vaultId, .amount = iou(5'000'000)}));
|
||||
env.close();
|
||||
env(loanBroker::coverDeposit(
|
||||
lender, brokerInfo.brokerID, iou(500'000)));
|
||||
env.close();
|
||||
|
||||
// 4. Loan Parameters (Attack Vector)
|
||||
Number const principal = 1'000'000;
|
||||
TenthBips32 const interestRate = TenthBips32{1}; // 0.001%
|
||||
std::uint32_t const paymentInterval = 86400;
|
||||
std::uint32_t const paymentTotal = 3650;
|
||||
|
||||
auto const loanSetFee = fee(env.current()->fees().base * 2);
|
||||
env(set(borrower, brokerInfo.brokerID, iou(principal).value(), flags),
|
||||
sig(sfCounterpartySignature, lender),
|
||||
loan::interestRate(interestRate),
|
||||
loan::paymentInterval(paymentInterval),
|
||||
loan::paymentTotal(paymentTotal),
|
||||
fee(loanSetFee));
|
||||
env.close();
|
||||
|
||||
// --- RETRIEVE OBJECTS & SETUP ATTACK ---
|
||||
|
||||
auto const loanKeylet = keylet::loan(brokerInfo.brokerID, currentSeq);
|
||||
auto const [periodicPayment, loanScale] = [&]() {
|
||||
auto const loanSle = env.le(loanKeylet);
|
||||
// Construct Payment
|
||||
return std::make_tuple(
|
||||
STAmount{iou, loanSle->at(sfPeriodicPayment)},
|
||||
loanSle->at(sfLoanScale));
|
||||
}();
|
||||
auto const roundedPayment =
|
||||
roundToScale(periodicPayment, loanScale, Number::upward);
|
||||
|
||||
// ATTACK: Add dust buffer (1e-9) to force 'excess' logic execution
|
||||
STAmount const paymentBuffer{iou, Number(1, -9)};
|
||||
STAmount const attackPayment = periodicPayment + paymentBuffer;
|
||||
|
||||
auto const initialVaultAssets = env.le(vaultKeylet)->at(sfAssetsTotal);
|
||||
|
||||
log << "Periodic Payment: " << periodicPayment.value() << std::endl;
|
||||
log << "Attack Payment: " << attackPayment.value() << std::endl;
|
||||
log << "Initial Vault Assets: " << initialVaultAssets << std::endl;
|
||||
|
||||
// 5. Execution Loop
|
||||
int yieldTheftCount = 0;
|
||||
auto previousAssetsTotal = initialVaultAssets;
|
||||
|
||||
auto borrowerBalance = [&]() { return env.balance(borrower, iou); };
|
||||
|
||||
for (int i = 0; i < 100; ++i)
|
||||
{
|
||||
auto const balanceBefore = borrowerBalance();
|
||||
env(pay(borrower, loanKeylet.key, attackPayment, flags));
|
||||
env.close();
|
||||
auto const borrowerDelta = borrowerBalance() - balanceBefore;
|
||||
|
||||
auto const loanSle = env.le(loanKeylet);
|
||||
if (!BEAST_EXPECT(loanSle))
|
||||
break;
|
||||
auto const updatedPayment =
|
||||
STAmount{iou, loanSle->at(sfPeriodicPayment)};
|
||||
BEAST_EXPECT(
|
||||
(roundToScale(updatedPayment, loanScale, Number::upward) ==
|
||||
roundedPayment));
|
||||
BEAST_EXPECT(
|
||||
(updatedPayment == periodicPayment) ||
|
||||
(flags == tfLoanOverpayment && i >= 2 &&
|
||||
updatedPayment < periodicPayment));
|
||||
|
||||
auto const currentVaultSle = env.le(vaultKeylet);
|
||||
if (!BEAST_EXPECT(currentVaultSle))
|
||||
break;
|
||||
|
||||
auto const currentAssetsTotal = currentVaultSle->at(sfAssetsTotal);
|
||||
auto const delta = currentAssetsTotal - previousAssetsTotal;
|
||||
|
||||
BEAST_EXPECT(
|
||||
(delta == beast::zero && borrowerDelta <= roundedPayment) ||
|
||||
(delta > beast::zero && borrowerDelta > roundedPayment));
|
||||
|
||||
// If tx succeeded but Assets Total didn't change, interest was
|
||||
// stolen.
|
||||
if (delta == beast::zero && borrowerDelta > roundedPayment)
|
||||
{
|
||||
yieldTheftCount++;
|
||||
// delta should be zero
|
||||
log << "[ALERT] Iteration " << i
|
||||
<< ": YIELD THEFT CONFIRMED. Vault Delta: " << delta
|
||||
<< std::endl;
|
||||
}
|
||||
else
|
||||
{
|
||||
log << "[INFO] Iteration " << i << ": Normal Yield: " << delta
|
||||
<< std::endl;
|
||||
}
|
||||
|
||||
previousAssetsTotal = currentAssetsTotal;
|
||||
}
|
||||
|
||||
BEAST_EXPECTS(yieldTheftCount == 0, std::to_string(yieldTheftCount));
|
||||
log << "[RESULT] Yield Theft Events: " << yieldTheftCount
|
||||
<< " / 50 payments." << std::endl;
|
||||
}
|
||||
|
||||
public:
|
||||
void
|
||||
run() override
|
||||
@@ -7652,6 +7800,11 @@ public:
|
||||
testLoanPayLateFullPaymentBypassesPenalties();
|
||||
testLoanCoverMinimumRoundingExploit();
|
||||
#endif
|
||||
for (auto const flags : {0u, tfLoanOverpayment})
|
||||
{
|
||||
testYieldTheftRounding(flags);
|
||||
}
|
||||
|
||||
testInvalidLoanSet();
|
||||
|
||||
testCoverDepositWithdrawNonTransferableMPT();
|
||||
|
||||
@@ -5801,263 +5801,6 @@ class Vault_test : public beast::unit_test::suite
|
||||
testCase(MPT, "MPT", owner, depositor, issuer);
|
||||
}
|
||||
|
||||
void
|
||||
testAssetsMaximum()
|
||||
{
|
||||
testcase("Assets Maximum");
|
||||
|
||||
using namespace test::jtx;
|
||||
|
||||
Env env{*this, testable_amendments() | featureSingleAssetVault};
|
||||
Account const owner{"owner"};
|
||||
Account const issuer{"issuer"};
|
||||
|
||||
Vault vault{env};
|
||||
env.fund(XRP(1'000'000), issuer, owner);
|
||||
env.close();
|
||||
|
||||
auto const maxInt64 =
|
||||
std::to_string(std::numeric_limits<std::int64_t>::max());
|
||||
BEAST_EXPECT(maxInt64 == "9223372036854775807");
|
||||
|
||||
// Naming things is hard
|
||||
auto const maxInt64Plus1 = std::to_string(
|
||||
static_cast<std::uint64_t>(
|
||||
std::numeric_limits<std::int64_t>::max()) +
|
||||
1);
|
||||
BEAST_EXPECT(maxInt64Plus1 == "9223372036854775808");
|
||||
|
||||
auto const initialXRP = to_string(INITIAL_XRP);
|
||||
BEAST_EXPECT(initialXRP == "100000000000000000");
|
||||
|
||||
auto const initialXRPPlus1 = to_string(INITIAL_XRP + 1);
|
||||
BEAST_EXPECT(initialXRPPlus1 == "100000000000000001");
|
||||
|
||||
{
|
||||
testcase("Assets Maximum: XRP");
|
||||
|
||||
PrettyAsset const xrpAsset = xrpIssue();
|
||||
|
||||
auto [tx, keylet] =
|
||||
vault.create({.owner = owner, .asset = xrpAsset});
|
||||
tx[sfData] = "4D65746144617461";
|
||||
|
||||
tx[sfAssetsMaximum] = maxInt64;
|
||||
env(tx, ter(tefEXCEPTION), THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = initialXRPPlus1;
|
||||
env(tx, ter(tefEXCEPTION), THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = initialXRP;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = maxInt64Plus1;
|
||||
env(tx, ter(tefEXCEPTION), THISLINE);
|
||||
env.close();
|
||||
|
||||
// This value will be rounded
|
||||
auto const insertAt = maxInt64Plus1.size() - 3;
|
||||
auto const decimalTest = maxInt64Plus1.substr(0, insertAt) + "." +
|
||||
maxInt64Plus1.substr(insertAt); // (max int64+1) / 1000
|
||||
BEAST_EXPECT(decimalTest == "9223372036854775.808");
|
||||
tx[sfAssetsMaximum] = decimalTest;
|
||||
auto const newKeylet = keylet::vault(owner.id(), env.seq(owner));
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
auto const vaultSle = env.le(newKeylet);
|
||||
if (!BEAST_EXPECT(vaultSle))
|
||||
return;
|
||||
|
||||
BEAST_EXPECT(vaultSle->at(sfAssetsMaximum) == 9223372036854776);
|
||||
}
|
||||
|
||||
{
|
||||
testcase("Assets Maximum: MPT");
|
||||
|
||||
PrettyAsset const mptAsset = [&]() {
|
||||
MPTTester mptt{env, issuer, mptInitNoFund};
|
||||
mptt.create(
|
||||
{.flags =
|
||||
tfMPTCanClawback | tfMPTCanTransfer | tfMPTCanLock});
|
||||
env.close();
|
||||
PrettyAsset const mptAsset = mptt["MPT"];
|
||||
mptt.authorize({.account = owner});
|
||||
env.close();
|
||||
return mptAsset;
|
||||
}();
|
||||
|
||||
env(pay(issuer, owner, mptAsset(100'000)), THISLINE);
|
||||
env.close();
|
||||
|
||||
auto [tx, keylet] =
|
||||
vault.create({.owner = owner, .asset = mptAsset});
|
||||
tx[sfData] = "4D65746144617461";
|
||||
|
||||
tx[sfAssetsMaximum] = maxInt64;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = initialXRPPlus1;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = initialXRP;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = maxInt64Plus1;
|
||||
env(tx, ter(tefEXCEPTION), THISLINE);
|
||||
env.close();
|
||||
|
||||
// This value will be rounded
|
||||
auto const insertAt = maxInt64Plus1.size() - 1;
|
||||
auto const decimalTest = maxInt64Plus1.substr(0, insertAt) + "." +
|
||||
maxInt64Plus1.substr(insertAt); // (max int64+1) / 10
|
||||
BEAST_EXPECT(decimalTest == "922337203685477580.8");
|
||||
tx[sfAssetsMaximum] = decimalTest;
|
||||
auto const newKeylet = keylet::vault(owner.id(), env.seq(owner));
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
auto const vaultSle = env.le(newKeylet);
|
||||
if (!BEAST_EXPECT(vaultSle))
|
||||
return;
|
||||
|
||||
BEAST_EXPECT(vaultSle->at(sfAssetsMaximum) == 922337203685477581);
|
||||
}
|
||||
|
||||
{
|
||||
testcase("Assets Maximum: IOU");
|
||||
|
||||
// Almost anything goes with IOUs
|
||||
PrettyAsset iouAsset = issuer["IOU"];
|
||||
env.trust(iouAsset(1000), owner);
|
||||
env(pay(issuer, owner, iouAsset(200)));
|
||||
env.close();
|
||||
|
||||
auto [tx, keylet] =
|
||||
vault.create({.owner = owner, .asset = iouAsset});
|
||||
tx[sfData] = "4D65746144617461";
|
||||
|
||||
tx[sfAssetsMaximum] = maxInt64;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = initialXRPPlus1;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = initialXRP;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = maxInt64Plus1;
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = "1000000000000000e80";
|
||||
env.close();
|
||||
|
||||
tx[sfAssetsMaximum] = "1000000000000000e-96";
|
||||
env.close();
|
||||
|
||||
// These values will be rounded to 15 significant digits
|
||||
{
|
||||
auto const insertAt = maxInt64Plus1.size() - 1;
|
||||
auto const decimalTest = maxInt64Plus1.substr(0, insertAt) +
|
||||
"." + maxInt64Plus1.substr(insertAt); // (max int64+1) / 10
|
||||
BEAST_EXPECT(decimalTest == "922337203685477580.8");
|
||||
tx[sfAssetsMaximum] = decimalTest;
|
||||
auto const newKeylet =
|
||||
keylet::vault(owner.id(), env.seq(owner));
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
auto const vaultSle = env.le(newKeylet);
|
||||
if (!BEAST_EXPECT(vaultSle))
|
||||
return;
|
||||
|
||||
BEAST_EXPECT(
|
||||
(vaultSle->at(sfAssetsMaximum) ==
|
||||
Number{9223372036854776, 2, Number::normalized{}}));
|
||||
}
|
||||
{
|
||||
tx[sfAssetsMaximum] =
|
||||
"9223372036854775807e40"; // max int64 * 10^40
|
||||
auto const newKeylet =
|
||||
keylet::vault(owner.id(), env.seq(owner));
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
auto const vaultSle = env.le(newKeylet);
|
||||
if (!BEAST_EXPECT(vaultSle))
|
||||
return;
|
||||
|
||||
BEAST_EXPECT(
|
||||
(vaultSle->at(sfAssetsMaximum) ==
|
||||
Number{9223372036854776, 43, Number::normalized{}}));
|
||||
}
|
||||
{
|
||||
tx[sfAssetsMaximum] =
|
||||
"9223372036854775807e-40"; // max int64 * 10^-40
|
||||
auto const newKeylet =
|
||||
keylet::vault(owner.id(), env.seq(owner));
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
auto const vaultSle = env.le(newKeylet);
|
||||
if (!BEAST_EXPECT(vaultSle))
|
||||
return;
|
||||
|
||||
BEAST_EXPECT(
|
||||
(vaultSle->at(sfAssetsMaximum) ==
|
||||
Number{9223372036854776, -37, Number::normalized{}}));
|
||||
}
|
||||
{
|
||||
tx[sfAssetsMaximum] =
|
||||
"9223372036854775807e-100"; // max int64 * 10^-100
|
||||
auto const newKeylet =
|
||||
keylet::vault(owner.id(), env.seq(owner));
|
||||
env(tx, THISLINE);
|
||||
env.close();
|
||||
|
||||
// Field 'AssetsMaximum' may not be explicitly set to default.
|
||||
auto const vaultSle = env.le(newKeylet);
|
||||
if (!BEAST_EXPECT(vaultSle))
|
||||
return;
|
||||
|
||||
BEAST_EXPECT(vaultSle->at(sfAssetsMaximum) == numZero);
|
||||
}
|
||||
|
||||
// What _can't_ IOUs do?
|
||||
// 1. Exceed maximum exponent / offset
|
||||
tx[sfAssetsMaximum] = "1000000000000000e81";
|
||||
env(tx, ter(tefEXCEPTION), THISLINE);
|
||||
env.close();
|
||||
|
||||
// 2. Mantissa larger than uint64 max
|
||||
try
|
||||
{
|
||||
tx[sfAssetsMaximum] =
|
||||
"18446744073709551617e5"; // uint64 max + 1
|
||||
env(tx, THISLINE);
|
||||
BEAST_EXPECT(false);
|
||||
}
|
||||
catch (parse_error const& e)
|
||||
{
|
||||
using namespace std::string_literals;
|
||||
BEAST_EXPECT(
|
||||
e.what() ==
|
||||
"invalidParamsField 'tx_json.AssetsMaximum' has invalid "
|
||||
"data."s);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public:
|
||||
void
|
||||
run() override
|
||||
@@ -6078,7 +5821,6 @@ public:
|
||||
testDelegate();
|
||||
testVaultClawbackBurnShares();
|
||||
testVaultClawbackAssets();
|
||||
testAssetsMaximum();
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
@@ -51,10 +51,9 @@ public:
|
||||
test_limits()
|
||||
{
|
||||
auto const scale = Number::getMantissaScale();
|
||||
auto const minMantissa = Number::minMantissa();
|
||||
|
||||
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
|
||||
testcase << "test_limits " << to_string(scale);
|
||||
bool caught = false;
|
||||
auto const minMantissa = Number::minMantissa();
|
||||
try
|
||||
{
|
||||
Number x =
|
||||
@@ -82,9 +81,8 @@ public:
|
||||
Number{},
|
||||
__LINE__);
|
||||
test(
|
||||
// Use 1501 to force rounding up
|
||||
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
|
||||
Number{false, 1'501, 32000, Number::normalized{}},
|
||||
Number{false, 1'500, 32000, Number::normalized{}},
|
||||
Number{false, minMantissa + 2, 32003, Number::normalized{}},
|
||||
__LINE__);
|
||||
// 9,223,372,036,854,775,808
|
||||
@@ -219,12 +217,12 @@ public:
|
||||
9'999'999'999'999'999'990ULL,
|
||||
-19,
|
||||
Number::normalized{}}},
|
||||
{Number{Number::largestMantissa},
|
||||
{Number{Number::maxRep},
|
||||
Number{6, -1},
|
||||
Number{Number::largestMantissa / 10, 1}},
|
||||
{Number{Number::largestMantissa - 1},
|
||||
Number{Number::maxRep / 10, 1}},
|
||||
{Number{Number::maxRep - 1},
|
||||
Number{1, 0},
|
||||
Number{Number::largestMantissa}},
|
||||
Number{Number::maxRep}},
|
||||
// Test extremes
|
||||
{
|
||||
// Each Number operand rounds up, so the actual mantissa is
|
||||
@@ -242,30 +240,11 @@ public:
|
||||
Number{2, 19},
|
||||
},
|
||||
{
|
||||
// Does not round. Mantissas are going to be >
|
||||
// largestMantissa, so if added together as uint64_t's, the
|
||||
// result will overflow. With addition using uint128_t,
|
||||
// there's no problem. After normalizing, the resulting
|
||||
// mantissa ends up less than largestMantissa.
|
||||
Number{
|
||||
false,
|
||||
Number::largestMantissa,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
Number::largestMantissa,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
Number::largestMantissa * 2,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
},
|
||||
{
|
||||
// These mantissas round down, so adding them together won't
|
||||
// have any consequences.
|
||||
// Does not round. Mantissas are going to be > maxRep, so if
|
||||
// added together as uint64_t's, the result will overflow.
|
||||
// With addition using uint128_t, there's no problem. After
|
||||
// normalizing, the resulting mantissa ends up less than
|
||||
// maxRep.
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'990ULL,
|
||||
@@ -392,24 +371,16 @@ public:
|
||||
{Number{1'000'000'000'000'000'001, -18},
|
||||
Number{1'000'000'000'000'000'000, -18},
|
||||
Number{1'000'000'000'000'000'000, -36}},
|
||||
{Number{Number::largestMantissa},
|
||||
{Number{Number::maxRep},
|
||||
Number{6, -1},
|
||||
Number{Number::largestMantissa - 1}},
|
||||
{Number{
|
||||
false,
|
||||
Number::largestMantissa + 1,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{Number::maxRep - 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{1, 0},
|
||||
Number{Number::largestMantissa / 10 + 1, 1}},
|
||||
{Number{
|
||||
false,
|
||||
Number::largestMantissa + 1,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{Number::maxRep / 10 + 1, 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{3, 0},
|
||||
Number{Number::largestMantissa}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
|
||||
Number{Number::maxRep}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
|
||||
});
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z] : c)
|
||||
@@ -432,16 +403,14 @@ public:
|
||||
auto const scale = Number::getMantissaScale();
|
||||
testcase << "test_mul " << to_string(scale);
|
||||
|
||||
// Case: Factor 1, Factor 2, Expected product, Line number
|
||||
using Case = std::tuple<Number, Number, Number, int>;
|
||||
using Case = std::tuple<Number, Number, Number>;
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z, line] : c)
|
||||
for (auto const& [x, y, z] : c)
|
||||
{
|
||||
auto const result = x * y;
|
||||
std::stringstream ss;
|
||||
ss << x << " * " << y << " = " << result << ". Expected: " << z;
|
||||
BEAST_EXPECTS(
|
||||
result == z, ss.str() + " line: " + std::to_string(line));
|
||||
BEAST_EXPECTS(result == z, ss.str());
|
||||
}
|
||||
};
|
||||
auto tests = [&](auto const& cSmall, auto const& cLarge) {
|
||||
@@ -451,105 +420,78 @@ public:
|
||||
test(cLarge);
|
||||
};
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(
|
||||
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
|
||||
10 -
|
||||
1;
|
||||
|
||||
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>({
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
Number{2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-2000000000000000, -15},
|
||||
__LINE__},
|
||||
Number{-2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
Number{2000000000000000, -15}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{1000000000000000, -14},
|
||||
__LINE__},
|
||||
Number{1000000000000000, -14}},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
Number{0}},
|
||||
// Maximum mantissa range
|
||||
{Number{9'999'999'999'999'999, 0},
|
||||
Number{9'999'999'999'999'999, 0},
|
||||
Number{9'999'999'999'999'998, 16},
|
||||
__LINE__},
|
||||
Number{9'999'999'999'999'998, 16}},
|
||||
});
|
||||
auto const cLarge = std::to_array<Case>({
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999862, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999862, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'579ULL,
|
||||
-18,
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
Number::normalized{}}},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2000000000000000001, -18},
|
||||
__LINE__},
|
||||
Number{2000000000000000001, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999998, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999998, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999999, -18}},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{10, 0},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds up to 1e19
|
||||
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38},
|
||||
__LINE__},
|
||||
// Maximum actual mantissa range - same as int64 range
|
||||
Number{10, 0}},
|
||||
// Maximum mantissa range - rounds up to 1e19
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
Number{1, 38}},
|
||||
// Maximum int64 range
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'85, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -558,100 +500,76 @@ public:
|
||||
<< " towards_zero";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{-1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{1999999999999999, -15}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{9999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{9999999999999999, -15}},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__}});
|
||||
Number{0}}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999861, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999861, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{
|
||||
false,
|
||||
9999999999999999579ULL,
|
||||
-18,
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
Number::normalized{}}},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2, 0},
|
||||
__LINE__},
|
||||
Number{2, 0}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999997, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999997, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999999, -18}},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{10, 0},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds down to
|
||||
// maxMantissa/10e1
|
||||
Number{10, 0}},
|
||||
// Maximum mantissa range - rounds down to maxMantissa/10e1
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100
|
||||
{Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
maxInternalMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
// Maximum actual mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
Number{
|
||||
false,
|
||||
maxMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'84, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -660,100 +578,76 @@ public:
|
||||
<< " downward";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-2000000000000000, -15},
|
||||
__LINE__},
|
||||
Number{-2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{1999999999999999, -15}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{9999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{9999999999999999, -15}},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__}});
|
||||
Number{0}}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999862, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999861, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'579ULL,
|
||||
-18,
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
Number::normalized{}}},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2, 0},
|
||||
__LINE__},
|
||||
Number{2, 0}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999998, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999998, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999999, -18}},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{10, 0},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds down to
|
||||
// maxMantissa/10-1
|
||||
Number{10, 0}},
|
||||
// Maximum mantissa range - rounds down to maxMantissa/10e1
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100
|
||||
{Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
maxInternalMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
// Maximum mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
Number{
|
||||
false,
|
||||
maxMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'84, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -762,91 +656,68 @@ public:
|
||||
<< " upward";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
Number{2000000000000000, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999, -15},
|
||||
__LINE__},
|
||||
Number{-1999999999999999, -15}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
Number{2000000000000000, -15}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{1000000000000000, -14},
|
||||
__LINE__},
|
||||
Number{1000000000000000, -14}},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__}});
|
||||
Number{0}}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999862, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999861, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999861, -18}},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
Number{1999999999999999862, -18}},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{999999999999999958, -17},
|
||||
__LINE__},
|
||||
Number{999999999999999958, -17}},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
Number{0}},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2000000000000000001, -18},
|
||||
__LINE__},
|
||||
Number{2000000000000000001, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999997, -18},
|
||||
__LINE__},
|
||||
Number{-1999999999999999997, -18}},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{2, 0},
|
||||
__LINE__},
|
||||
Number{2, 0}},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{1000000000000000001, -17},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds up to
|
||||
// minMantissa*10 1e19*1e19=1e38
|
||||
{Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38},
|
||||
__LINE__},
|
||||
// Maximum mantissa range - same as int64
|
||||
Number{1000000000000000001, -17}},
|
||||
// Maximum mantissa range - rounds up to minMantissa*10
|
||||
// 1e19*1e19=1e38
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
Number{1, 38}},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'85, 19}},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -1119,12 +990,6 @@ public:
|
||||
};
|
||||
*/
|
||||
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(
|
||||
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
|
||||
10 -
|
||||
1;
|
||||
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{2}, 2, Number{1414213562373095049, -18}},
|
||||
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
|
||||
@@ -1136,17 +1001,17 @@ public:
|
||||
{Number{0}, 5, Number{0}},
|
||||
{Number{5625, -4}, 2, Number{75, -2}}});
|
||||
auto const cLarge = std::to_array<Case>({
|
||||
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
|
||||
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
|
||||
2,
|
||||
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
|
||||
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
|
||||
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
|
||||
2,
|
||||
Number{
|
||||
false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
|
||||
{Number{Number::largestMantissa},
|
||||
{Number{Number::maxRep},
|
||||
2,
|
||||
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
|
||||
{Number{Number::largestMantissa},
|
||||
{Number{Number::maxRep},
|
||||
4,
|
||||
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
|
||||
});
|
||||
@@ -1196,9 +1061,6 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
auto const maxInternalMantissa =
|
||||
power(10, Number::mantissaLog()) * 10 - 1;
|
||||
|
||||
auto const cSmall = std::to_array<Number>({
|
||||
Number{2},
|
||||
Number{2'000'000},
|
||||
@@ -1208,10 +1070,7 @@ public:
|
||||
Number{5, -1},
|
||||
Number{0},
|
||||
Number{5625, -4},
|
||||
Number{Number::largestMantissa},
|
||||
maxInternalMantissa,
|
||||
Number{Number::minMantissa(), 0, Number::unchecked{}},
|
||||
Number{Number::maxMantissa(), 0, Number::unchecked{}},
|
||||
Number{Number::maxRep},
|
||||
});
|
||||
test(cSmall);
|
||||
bool caught = false;
|
||||
@@ -1577,20 +1436,20 @@ public:
|
||||
case MantissaRange::large:
|
||||
// Test the edges
|
||||
// ((exponent < -(28)) || (exponent > -(8)))))
|
||||
test(Number::min(), "922337203685477581e-32768");
|
||||
test(Number::min(), "1e-32750");
|
||||
test(Number::max(), "9223372036854775807e32768");
|
||||
test(Number::lowest(), "-9223372036854775807e32768");
|
||||
{
|
||||
NumberRoundModeGuard mg(Number::towards_zero);
|
||||
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
|
||||
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
|
||||
test(
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
"9223372036854775807");
|
||||
"9999999999999999990");
|
||||
test(
|
||||
Number{true, maxMantissa, 0, Number::normalized{}},
|
||||
"-9223372036854775807");
|
||||
"-9999999999999999990");
|
||||
|
||||
test(
|
||||
Number{std::numeric_limits<std::int64_t>::max(), 0},
|
||||
@@ -1831,7 +1690,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() > 0);
|
||||
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
Number const maxInt64{Number::maxRep};
|
||||
BEAST_EXPECT(maxInt64.exponent() > 0);
|
||||
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
|
||||
BEAST_EXPECT(
|
||||
@@ -1851,7 +1710,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() <= 0);
|
||||
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
Number const maxInt64{Number::maxRep};
|
||||
BEAST_EXPECT(maxInt64.exponent() <= 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
|
||||
BEAST_EXPECT(
|
||||
@@ -1859,47 +1718,16 @@ public:
|
||||
|
||||
NumberRoundModeGuard mg(Number::towards_zero);
|
||||
|
||||
{
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(static_cast<std::int64_t>(
|
||||
power(10, Number::mantissaLog()))) *
|
||||
10 -
|
||||
1;
|
||||
|
||||
// Rounds down to fit under 2^63
|
||||
Number const max =
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}};
|
||||
// No alterations by the accessors
|
||||
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
|
||||
BEAST_EXPECT(max.exponent() == 1);
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT(
|
||||
(power(max, 2) ==
|
||||
Number{
|
||||
false,
|
||||
maxInternalMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}}));
|
||||
}
|
||||
|
||||
{
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
Number const max =
|
||||
Number{false, maxMantissa, 0, Number::normalized{}};
|
||||
// No alterations by the accessors
|
||||
BEAST_EXPECT(max.mantissa() == maxMantissa);
|
||||
BEAST_EXPECT(max.exponent() == 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT(
|
||||
(power(max, 2) ==
|
||||
Number{
|
||||
false,
|
||||
85'070'591'730'234'615'84,
|
||||
19,
|
||||
Number::normalized{}}));
|
||||
}
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
Number const max =
|
||||
Number{false, maxMantissa, 0, Number::normalized{}};
|
||||
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
|
||||
BEAST_EXPECT(max.exponent() == 1);
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT((
|
||||
power(max, 2) ==
|
||||
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -1928,9 +1928,12 @@ loanMakePayment(
|
||||
|
||||
// -------------------------------------------------------------
|
||||
// overpayment handling
|
||||
auto const roundedAmount =
|
||||
roundToAsset(asset, amount, loanScale, Number::towards_zero);
|
||||
if (paymentType == LoanPaymentType::overpayment &&
|
||||
loan->isFlag(lsfLoanOverpayment) && paymentRemainingProxy > 0 &&
|
||||
totalPaid < amount && numPayments < loanMaximumPaymentsPerTransaction)
|
||||
totalPaid < roundedAmount &&
|
||||
numPayments < loanMaximumPaymentsPerTransaction)
|
||||
{
|
||||
TenthBips32 const overpaymentInterestRate{
|
||||
loan->at(sfOverpaymentInterestRate)};
|
||||
@@ -1940,7 +1943,7 @@ loanMakePayment(
|
||||
// totalValueOutstanding, because that would have been processed as
|
||||
// another normal payment. But cap it just in case.
|
||||
Number const overpayment =
|
||||
std::min(amount - totalPaid, *totalValueOutstandingProxy);
|
||||
std::min(roundedAmount - totalPaid, *totalValueOutstandingProxy);
|
||||
|
||||
detail::ExtendedPaymentComponents const overpaymentComponents =
|
||||
detail::computeOverpaymentComponents(
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
#include <xrpl/protocol/STTakesAsset.h>
|
||||
#include <xrpl/protocol/TxFlags.h>
|
||||
|
||||
#include <algorithm>
|
||||
#include <bit>
|
||||
|
||||
namespace ripple {
|
||||
@@ -430,9 +431,10 @@ LoanPay::doApply()
|
||||
// Vault object state changes
|
||||
view.update(vaultSle);
|
||||
|
||||
Number const assetsAvailableBefore = *assetsAvailableProxy;
|
||||
Number const assetsTotalBefore = *assetsTotalProxy;
|
||||
#if !NDEBUG
|
||||
{
|
||||
Number const assetsAvailableBefore = *assetsAvailableProxy;
|
||||
Number const pseudoAccountBalanceBefore = accountHolds(
|
||||
view,
|
||||
vaultPseudoAccount,
|
||||
@@ -456,17 +458,6 @@ LoanPay::doApply()
|
||||
"rippled::LoanPay::doApply",
|
||||
"assets available must not be greater than assets outstanding");
|
||||
|
||||
if (*assetsAvailableProxy > *assetsTotalProxy)
|
||||
{
|
||||
// LCOV_EXCL_START
|
||||
JLOG(j_.fatal()) << "Vault assets available must not be greater "
|
||||
"than assets outstanding. Available: "
|
||||
<< *assetsAvailableProxy
|
||||
<< ", Total: " << *assetsTotalProxy;
|
||||
return tecINTERNAL;
|
||||
// LCOV_EXCL_STOP
|
||||
}
|
||||
|
||||
JLOG(j_.debug()) << "total paid to vault raw: " << totalPaidToVaultRaw
|
||||
<< ", total paid to vault rounded: "
|
||||
<< totalPaidToVaultRounded
|
||||
@@ -493,10 +484,70 @@ LoanPay::doApply()
|
||||
associateAsset(*vaultSle, asset);
|
||||
|
||||
// Duplicate some checks after rounding
|
||||
Number const assetsAvailableAfter = *assetsAvailableProxy;
|
||||
Number const assetsTotalAfter = *assetsTotalProxy;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
*assetsAvailableProxy <= *assetsTotalProxy,
|
||||
assetsAvailableAfter <= *assetsTotalProxy,
|
||||
"xrpl::LoanPay::doApply",
|
||||
"assets available must not be greater than assets outstanding");
|
||||
if (assetsAvailableAfter == assetsAvailableBefore)
|
||||
{
|
||||
// An unchanged assetsAvailable indicates that the amount paid to the
|
||||
// vault was zero, or rounded to zero. That should be impossible, but I
|
||||
// can't rule it out for extreme edge cases, so fail gracefully if it
|
||||
// happens.
|
||||
//
|
||||
// LCOV_EXCL_START
|
||||
JLOG(j_.warn()) << "LoanPay: Vault assets available unchanged after "
|
||||
"rounding: Before: "
|
||||
<< assetsAvailableBefore
|
||||
<< ", After: " << assetsAvailableAfter;
|
||||
return tecPRECISION_LOSS;
|
||||
// LCOV_EXCL_STOP
|
||||
}
|
||||
if (paymentParts->valueChange != beast::zero &&
|
||||
assetsTotalAfter == assetsTotalBefore)
|
||||
{
|
||||
// Non-zero valueChange with an unchanged assetsTotal indicates that the
|
||||
// actual value change rounded to zero. That should be impossible, but I
|
||||
// can't rule it out for extreme edge cases, so fail gracefully if it
|
||||
// happens.
|
||||
//
|
||||
// LCOV_EXCL_START
|
||||
JLOG(j_.warn())
|
||||
<< "LoanPay: Vault assets expected change, but unchanged after "
|
||||
"rounding: Before: "
|
||||
<< assetsTotalBefore << ", After: " << assetsTotalAfter
|
||||
<< ", ValueChange: " << paymentParts->valueChange;
|
||||
return tecPRECISION_LOSS;
|
||||
// LCOV_EXCL_STOP
|
||||
}
|
||||
if (paymentParts->valueChange == beast::zero &&
|
||||
assetsTotalAfter != assetsTotalBefore)
|
||||
{
|
||||
// A change in assetsTotal when there was no valueChange indicates that
|
||||
// something really weird happened. That should be flat out impossible.
|
||||
//
|
||||
// LCOV_EXCL_START
|
||||
JLOG(j_.warn()) << "LoanPay: Vault assets changed unexpectedly after "
|
||||
"rounding: Before: "
|
||||
<< assetsTotalBefore << ", After: " << assetsTotalAfter
|
||||
<< ", ValueChange: " << paymentParts->valueChange;
|
||||
return tecINTERNAL;
|
||||
// LCOV_EXCL_STOP
|
||||
}
|
||||
if (assetsAvailableAfter > *assetsTotalProxy)
|
||||
{
|
||||
// Assets available are not allowed to be larger than assets total.
|
||||
// LCOV_EXCL_START
|
||||
JLOG(j_.fatal())
|
||||
<< "LoanPay: Vault assets available must not be greater "
|
||||
"than assets outstanding. Available: "
|
||||
<< assetsAvailableAfter << ", Total: " << *assetsTotalProxy;
|
||||
return tecINTERNAL;
|
||||
// LCOV_EXCL_STOP
|
||||
}
|
||||
|
||||
#if !NDEBUG
|
||||
auto const accountBalanceBefore = accountHolds(
|
||||
@@ -568,7 +619,6 @@ LoanPay::doApply()
|
||||
return ter;
|
||||
|
||||
#if !NDEBUG
|
||||
Number const assetsAvailableAfter = *assetsAvailableProxy;
|
||||
Number const pseudoAccountBalanceAfter = accountHolds(
|
||||
view,
|
||||
vaultPseudoAccount,
|
||||
@@ -609,12 +659,98 @@ LoanPay::doApply()
|
||||
ahIGNORE_AUTH,
|
||||
j_,
|
||||
SpendableHandling::shFULL_BALANCE);
|
||||
auto const balanceScale = [&]() {
|
||||
// This is so ugly.
|
||||
std::vector<int> exponents;
|
||||
|
||||
for (auto const& a : {
|
||||
accountBalanceBefore,
|
||||
vaultBalanceBefore,
|
||||
brokerBalanceBefore,
|
||||
accountBalanceAfter,
|
||||
vaultBalanceAfter,
|
||||
brokerBalanceAfter,
|
||||
})
|
||||
{
|
||||
// Exclude zeroes
|
||||
if (a != beast::zero)
|
||||
exponents.push_back(a.exponent());
|
||||
}
|
||||
auto [min, max] =
|
||||
std::minmax_element(exponents.begin(), exponents.end());
|
||||
// IOU rounding can be interesting. Give a margin of error that reflects
|
||||
// the orders of magnitude between the extremes.
|
||||
if (!asset.integral() && *max < STAmount::cMaxOffset * 3 / 4)
|
||||
*max += *max - *min;
|
||||
return std::min(*max, STAmount::cMaxOffset);
|
||||
}();
|
||||
|
||||
auto const accountBalanceBeforeRounded =
|
||||
roundToScale(accountBalanceBefore, balanceScale);
|
||||
auto const vaultBalanceBeforeRounded =
|
||||
roundToScale(vaultBalanceBefore, balanceScale);
|
||||
auto const brokerBalanceBeforeRounded =
|
||||
roundToScale(brokerBalanceBefore, balanceScale);
|
||||
|
||||
auto const totalBalanceBefore =
|
||||
accountBalanceBefore + vaultBalanceBefore + brokerBalanceBefore;
|
||||
auto const totalBalanceBeforeRounded =
|
||||
roundToScale(totalBalanceBefore, balanceScale);
|
||||
|
||||
JLOG(j_.trace()) << "Before: account "
|
||||
<< Number(accountBalanceBeforeRounded) << " ("
|
||||
<< Number(accountBalanceBefore) << ")"
|
||||
<< ", vault " << Number(vaultBalanceBeforeRounded) << " ("
|
||||
<< Number(vaultBalanceBefore) << ")"
|
||||
<< ", broker " << Number(brokerBalanceBeforeRounded)
|
||||
<< " (" << Number(brokerBalanceBefore) << ")"
|
||||
<< ", total " << Number(totalBalanceBeforeRounded) << " ("
|
||||
<< Number(totalBalanceBefore) << ")";
|
||||
|
||||
auto const accountBalanceAfterRounded =
|
||||
roundToScale(accountBalanceAfter, balanceScale);
|
||||
auto const vaultBalanceAfterRounded =
|
||||
roundToScale(vaultBalanceAfter, balanceScale);
|
||||
auto const brokerBalanceAfterRounded =
|
||||
roundToScale(brokerBalanceAfter, balanceScale);
|
||||
|
||||
auto const totalBalanceAfter =
|
||||
accountBalanceAfter + vaultBalanceAfter + brokerBalanceAfter;
|
||||
auto const totalBalanceAfterRounded =
|
||||
roundToScale(totalBalanceAfter, balanceScale);
|
||||
|
||||
JLOG(j_.trace()) << "After: account " << Number(accountBalanceAfterRounded)
|
||||
<< " (" << Number(accountBalanceAfter) << ")"
|
||||
<< ", vault " << Number(vaultBalanceAfterRounded) << " ("
|
||||
<< Number(vaultBalanceAfter) << ")"
|
||||
<< ", broker " << Number(brokerBalanceAfterRounded) << " ("
|
||||
<< Number(brokerBalanceAfter) << ")"
|
||||
<< ", total " << Number(totalBalanceAfterRounded) << " ("
|
||||
<< Number(totalBalanceAfter) << ")";
|
||||
|
||||
auto const accountBalanceChange =
|
||||
accountBalanceAfter - accountBalanceBefore;
|
||||
auto const vaultBalanceChange = vaultBalanceAfter - vaultBalanceBefore;
|
||||
auto const brokerBalanceChange = brokerBalanceAfter - brokerBalanceBefore;
|
||||
|
||||
auto const totalBalanceChange = roundToScale(
|
||||
accountBalanceChange + vaultBalanceChange + brokerBalanceChange,
|
||||
balanceScale);
|
||||
|
||||
JLOG(j_.trace()) << "Changes: account " << to_string(accountBalanceChange)
|
||||
<< ", vault " << to_string(vaultBalanceChange)
|
||||
<< ", broker " << to_string(brokerBalanceChange)
|
||||
<< ", total " << to_string(totalBalanceChange);
|
||||
|
||||
// Rounding for IOUs can be weird, so check a few different ways to show
|
||||
// that funds are conserved.
|
||||
XRPL_ASSERT_PARTS(
|
||||
accountBalanceBefore + vaultBalanceBefore + brokerBalanceBefore ==
|
||||
accountBalanceAfter + vaultBalanceAfter + brokerBalanceAfter,
|
||||
totalBalanceBefore == totalBalanceAfter ||
|
||||
totalBalanceBeforeRounded == totalBalanceAfterRounded ||
|
||||
totalBalanceChange == beast::zero,
|
||||
"ripple::LoanPay::doApply",
|
||||
"funds are conserved (with rounding)");
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
accountBalanceAfter >= beast::zero,
|
||||
"ripple::LoanPay::doApply",
|
||||
|
||||
Reference in New Issue
Block a user