Files
xrpl-dev-portal/content/tutorials/get-started/get-started-using-python.md
mDuo13 554a3732d4 Migrate content syntax via script
The changes in this commit were auto-generated by running

tool/migrate.sh

Following this commit, the Dactyl build no longer works but the Redocly
build (mostly) should.
2024-01-31 16:09:41 -08:00

11 KiB

html, parent, blurb, cta_text, top_nav_name, top_nav_grouping, labels, showcase_icon
html parent blurb cta_text top_nav_name top_nav_grouping labels showcase_icon
get-started-using-python.html python.html Build a Python app that interacts with the XRP Ledger. Build an XRP Ledger-connected app Python Get Started
Development
assets/img/logos/python.svg

Get Started Using Python

This tutorial walks you through the basics of building an XRP Ledger-connected application using xrpl-py, a pure Python library built to interact with the XRP Ledger using native Python models and methods.

This tutorial is intended for beginners and should take no longer than 30 minutes to complete.

Learning Goals

In this tutorial, you'll learn:

  • The basic building blocks of XRP Ledger-based applications.
  • How to connect to the XRP Ledger using xrpl-py.
  • How to get an account on the Testnet using xrpl-py.
  • How to use the xrpl-py library to look up information about an account on the XRP Ledger.
  • How to put these steps together to create a Python app.

Requirements

The xrpl-py library supports Python 3.7 and later.

Installation

The xrpl-py library is available on PyPI. Install with pip:

pip3 install xrpl-py

Start Building

When you're working with the XRP Ledger, there are a few things you'll need to manage, whether you're adding XRP to your account, integrating with the decentralized exchange, or issuing tokens. This tutorial walks you through basic patterns common to getting started with all of these use cases and provides sample code for implementing them.

Here are the basic steps you'll need to cover for almost any XRP Ledger project:

  1. Connect to the XRP Ledger.
  2. Get an account.
  3. Query the XRP Ledger.

1. Connect to the XRP Ledger

To make queries and submit transactions, you need to connect to the XRP Ledger. To do this with xrpl-py, use the xrp.clients module:

{% code-snippet file="/_code-samples/get-started/py/get-acct-info.py" from="# Define the network client" before="# Create a wallet using the testnet faucet:" language="py" /%}

Connect to the production XRP Ledger

The sample code in the previous section shows you how to connect to the Testnet, which is a parallel network for testing where the money has no real value. When you're ready to integrate with the production XRP Ledger, you'll need to connect to the Mainnet. You can do that in two ways:

2. Get account

To store value and execute transactions on the XRP Ledger, you need an account: a set of keys and an address that's been funded with enough XRP to meet the account reserve. The address is the identifier of your account and you use the private key to sign transactions that you submit to the XRP Ledger.

For testing and development purposes, you can use the XRP Faucets to generate keys and fund the account on the Testnet or Devnet. For production purposes, you should take care to store your keys and set up a secure signing method. Another difference in production is that XRP has real worth, so you can't get it for free from a faucet.

To create and fund an account on the Testnet, xrpl-py provides the generate_faucet_wallet method:

{% code-snippet file="/_code-samples/get-started/py/get-acct-info.py" from="# Create a wallet using the testnet faucet:" before="# Create an account str from the wallet" language="py" /%}

This method returns a Wallet instance:

print(test_wallet)

# print output

public_key:: 022FA613294CD13FFEA759D0185007DBE763331910509EF8F1635B4F84FA08AEE3
private_key:: -HIDDEN-
classic_address: raaFKKmgf6CRZttTVABeTcsqzRQ51bNR6Q

Using the account

In this tutorial we only query details about the generated account from the XRP Ledger, but you can use the values in the Wallet instance to prepare, sign, and submit transactions with xrpl-py.

Prepare

To prepare the transaction:

{% code-snippet file="/_code-samples/get-started/py/prepare-payment.py" from="# Prepare payment" before="# print prepared payment" language="py" /%}

Sign and submit

To sign and submit the transaction:

{% code-snippet file="/_code-samples/get-started/py/prepare-payment.py" from="# Sign and submit the transaction" before="# Print tx response" language="py" /%}

Derive an X-address

You can use xrpl-py's xrpl.core.addresscodec module to derive an X-address from the Wallet.address field:

{% code-snippet file="/_code-samples/get-started/py/get-acct-info.py" from="# Derive an x-address from the classic address:" before="# Look up info about your account" language="py" /%}

The X-address format packs the address and destination tag into a more user-friendly value.

3. Query the XRP Ledger

You can query the XRP Ledger to get information about a specific account, a specific transaction, the state of a current or a historical ledger, and the XRP Ledger's decentralized exchange. You need to make these queries, among other reasons, to look up account info to follow best practices for reliable transaction submission.

Here, we use xrpl-py's xrpl.account module to look up information about the account we got in the previous step.

{% code-snippet file="/_code-samples/get-started/py/get-acct-info.py" from="# Look up info about your account" language="py" /%}

4. Putting it all together

Using these building blocks, we can create a Python app that:

  1. Gets an account on the Testnet.
  2. Connects to the XRP Ledger.
  3. Looks up and prints information about the account you created.

{% code-snippet file="/_code-samples/get-started/py/get-acct-info.py" language="python" /%}

To run the app, you can copy and paste the code into an editor or IDE and run it from there. Or you could download the file from the XRP Ledger Dev Portal repo and run it locally:

git clone git@github.com:XRPLF/xrpl-dev-portal.git
cd xrpl-dev-portal/content/_code-samples/get-started/py/get-acct-info.py
python3 get-acct-info.py

You should see output similar to this example:

Classic address:

 rnQLnSEA1YFMABnCMrkMWFKxnqW6sQ8EWk
X-address:

 T7dRN2ktZGYSTyEPWa9SyDevrwS5yDca4m7xfXTGM3bqff8
response.status:  ResponseStatus.SUCCESS
{
    "account_data": {
        "Account": "rnQLnSEA1YFMABnCMrkMWFKxnqW6sQ8EWk",
        "Balance": "1000000000",
        "Flags": 0,
        "LedgerEntryType": "AccountRoot",
        "OwnerCount": 0,
        "PreviousTxnID": "5A5203AFF41503539D11ADC41BE4185761C5B78B7ED382E6D001ADE83A59B8DC",
        "PreviousTxnLgrSeq": 16126889,
        "Sequence": 16126889,
        "index": "CAD0F7EF3AB91DA7A952E09D4AF62C943FC1EEE41BE926D632DDB34CAA2E0E8F"
    },
    "ledger_current_index": 16126890,
    "queue_data": {
        "txn_count": 0
    },
    "validated": false
}

Interpreting the response

The response fields that you want to inspect in most cases are:

  • account_data.Sequence — This is the sequence number of the next valid transaction for the account. You need to specify the sequence number when you prepare transactions. With xrpl-py, you can use the get_next_valid_seq_number to get this automatically from the XRP Ledger. See an example of this usage in the project README.

  • account_data.Balance — This is the account's balance of [XRP, in drops][]. You can use this to confirm that you have enough XRP to send (if you're making a payment) and to meet the current transaction cost for a given transaction.

  • validated — Indicates whether the returned data is from a validated ledger. When inspecting transactions, it's important to confirm that the results are final before further processing the transaction. If validated is true then you know for sure the results won't change. For more information about best practices for transaction processing, see Reliable Transaction Submission.

For a detailed description of every response field, see account_info.

Keep on building

Now that you know how to use xrpl-py to connect to the XRP Ledger, get an account, and look up information about it, you can also use xrpl-py to:

{% raw-partial file="/_snippets/common-links.md" /%}