Files
xahaud/src/ripple/core/impl/JobQueue.cpp
John Freeman c2a08a1f26 Simplify the Job Queue:
This is a refactor aimed at cleaning up and simplifying the existing
job queue.

As of now, all jobs are cancelled at the same time and in the same
way, so this commit removes the per-job cancellation token. If the
need for such support is demonstrated, support can be re-added.

* Revise documentation for ClosureCounter and Workers.
* Simplify code, removing unnecessary function arguments and
  deduplicating expressions
* Restructure job handlers to no longer need to pass a job's
  handle to the job.
2022-03-01 11:25:03 -08:00

413 lines
11 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <ripple/basics/PerfLog.h>
#include <ripple/basics/contract.h>
#include <ripple/core/JobQueue.h>
#include <mutex>
namespace ripple {
JobQueue::JobQueue(
int threadCount,
beast::insight::Collector::ptr const& collector,
beast::Journal journal,
Logs& logs,
perf::PerfLog& perfLog)
: m_journal(journal)
, m_lastJob(0)
, m_invalidJobData(JobTypes::instance().getInvalid(), collector, logs)
, m_processCount(0)
, m_workers(*this, &perfLog, "JobQueue", threadCount)
, perfLog_(perfLog)
, m_collector(collector)
{
JLOG(m_journal.info()) << "Using " << threadCount << " threads";
hook = m_collector->make_hook(std::bind(&JobQueue::collect, this));
job_count = m_collector->make_gauge("job_count");
{
std::lock_guard lock(m_mutex);
for (auto const& x : JobTypes::instance())
{
JobTypeInfo const& jt = x.second;
// And create dynamic information for all jobs
auto const result(m_jobData.emplace(
std::piecewise_construct,
std::forward_as_tuple(jt.type()),
std::forward_as_tuple(jt, m_collector, logs)));
assert(result.second == true);
(void)result.second;
}
}
}
JobQueue::~JobQueue()
{
// Must unhook before destroying
hook = beast::insight::Hook();
}
void
JobQueue::collect()
{
std::lock_guard lock(m_mutex);
job_count = m_jobSet.size();
}
bool
JobQueue::addRefCountedJob(
JobType type,
std::string const& name,
JobFunction const& func)
{
assert(type != jtINVALID);
auto iter(m_jobData.find(type));
assert(iter != m_jobData.end());
if (iter == m_jobData.end())
return false;
JLOG(m_journal.debug())
<< __func__ << " : Adding job : " << name << " : " << type;
JobTypeData& data(iter->second);
// FIXME: Workaround incorrect client shutdown ordering
// do not add jobs to a queue with no threads
assert(
(type >= jtCLIENT && type <= jtCLIENT_WEBSOCKET) ||
m_workers.getNumberOfThreads() > 0);
{
std::lock_guard lock(m_mutex);
auto result =
m_jobSet.emplace(type, name, ++m_lastJob, data.load(), func);
auto const& job = *result.first;
JobType const type(job.getType());
assert(type != jtINVALID);
assert(m_jobSet.find(job) != m_jobSet.end());
perfLog_.jobQueue(type);
JobTypeData& data(getJobTypeData(type));
if (data.waiting + data.running < getJobLimit(type))
{
m_workers.addTask();
}
else
{
// defer the task until we go below the limit
++data.deferred;
}
++data.waiting;
}
return true;
}
int
JobQueue::getJobCount(JobType t) const
{
std::lock_guard lock(m_mutex);
JobDataMap::const_iterator c = m_jobData.find(t);
return (c == m_jobData.end()) ? 0 : c->second.waiting;
}
int
JobQueue::getJobCountTotal(JobType t) const
{
std::lock_guard lock(m_mutex);
JobDataMap::const_iterator c = m_jobData.find(t);
return (c == m_jobData.end()) ? 0 : (c->second.waiting + c->second.running);
}
int
JobQueue::getJobCountGE(JobType t) const
{
// return the number of jobs at this priority level or greater
int ret = 0;
std::lock_guard lock(m_mutex);
for (auto const& x : m_jobData)
{
if (x.first >= t)
ret += x.second.waiting;
}
return ret;
}
std::unique_ptr<LoadEvent>
JobQueue::makeLoadEvent(JobType t, std::string const& name)
{
JobDataMap::iterator iter(m_jobData.find(t));
assert(iter != m_jobData.end());
if (iter == m_jobData.end())
return {};
return std::make_unique<LoadEvent>(iter->second.load(), name, true);
}
void
JobQueue::addLoadEvents(JobType t, int count, std::chrono::milliseconds elapsed)
{
if (isStopped())
LogicError("JobQueue::addLoadEvents() called after JobQueue stopped");
JobDataMap::iterator iter(m_jobData.find(t));
assert(iter != m_jobData.end());
iter->second.load().addSamples(count, elapsed);
}
bool
JobQueue::isOverloaded()
{
return std::any_of(m_jobData.begin(), m_jobData.end(), [](auto& entry) {
return entry.second.load().isOver();
});
}
Json::Value
JobQueue::getJson(int c)
{
using namespace std::chrono_literals;
Json::Value ret(Json::objectValue);
ret["threads"] = m_workers.getNumberOfThreads();
Json::Value priorities = Json::arrayValue;
std::lock_guard lock(m_mutex);
for (auto& x : m_jobData)
{
assert(x.first != jtINVALID);
if (x.first == jtGENERIC)
continue;
JobTypeData& data(x.second);
LoadMonitor::Stats stats(data.stats());
int waiting(data.waiting);
int running(data.running);
if ((stats.count != 0) || (waiting != 0) ||
(stats.latencyPeak != 0ms) || (running != 0))
{
Json::Value& pri = priorities.append(Json::objectValue);
pri["job_type"] = data.name();
if (stats.isOverloaded)
pri["over_target"] = true;
if (waiting != 0)
pri["waiting"] = waiting;
if (stats.count != 0)
pri["per_second"] = static_cast<int>(stats.count);
if (stats.latencyPeak != 0ms)
pri["peak_time"] = static_cast<int>(stats.latencyPeak.count());
if (stats.latencyAvg != 0ms)
pri["avg_time"] = static_cast<int>(stats.latencyAvg.count());
if (running != 0)
pri["in_progress"] = running;
}
}
ret["job_types"] = priorities;
return ret;
}
void
JobQueue::rendezvous()
{
std::unique_lock<std::mutex> lock(m_mutex);
cv_.wait(lock, [this] { return m_processCount == 0 && m_jobSet.empty(); });
}
JobTypeData&
JobQueue::getJobTypeData(JobType type)
{
JobDataMap::iterator c(m_jobData.find(type));
assert(c != m_jobData.end());
// NIKB: This is ugly and I hate it. We must remove jtINVALID completely
// and use something sane.
if (c == m_jobData.end())
return m_invalidJobData;
return c->second;
}
void
JobQueue::stop()
{
stopping_ = true;
using namespace std::chrono_literals;
jobCounter_.join("JobQueue", 1s, m_journal);
{
// After the JobCounter is joined, all jobs have finished executing
// (i.e. returned from `Job::doJob`) and no more are being accepted,
// but there may still be some threads between the return of
// `Job::doJob` and the return of `JobQueue::processTask`. That is why
// we must wait on the condition variable to make these assertions.
std::unique_lock<std::mutex> lock(m_mutex);
cv_.wait(
lock, [this] { return m_processCount == 0 && m_jobSet.empty(); });
assert(m_processCount == 0);
assert(m_jobSet.empty());
assert(nSuspend_ == 0);
stopped_ = true;
}
}
bool
JobQueue::isStopped() const
{
return stopped_;
}
void
JobQueue::getNextJob(Job& job)
{
assert(!m_jobSet.empty());
std::set<Job>::const_iterator iter;
for (iter = m_jobSet.begin(); iter != m_jobSet.end(); ++iter)
{
JobType const type = iter->getType();
assert(type != jtINVALID);
JobTypeData& data(getJobTypeData(type));
assert(data.running <= getJobLimit(type));
// Run this job if we're running below the limit.
if (data.running < getJobLimit(data.type()))
{
assert(data.waiting > 0);
--data.waiting;
++data.running;
break;
}
}
assert(iter != m_jobSet.end());
job = *iter;
m_jobSet.erase(iter);
}
void
JobQueue::finishJob(JobType type)
{
assert(type != jtINVALID);
JobTypeData& data = getJobTypeData(type);
// Queue a deferred task if possible
if (data.deferred > 0)
{
assert(data.running + data.waiting >= getJobLimit(type));
--data.deferred;
m_workers.addTask();
}
--data.running;
}
void
JobQueue::processTask(int instance)
{
JobType type;
{
using namespace std::chrono;
Job::clock_type::time_point const start_time(Job::clock_type::now());
{
Job job;
{
std::lock_guard lock(m_mutex);
getNextJob(job);
++m_processCount;
}
type = job.getType();
JobTypeData& data(getJobTypeData(type));
JLOG(m_journal.trace()) << "Doing " << data.name() << "job";
// The amount of time that the job was in the queue
auto const q_time =
ceil<microseconds>(start_time - job.queue_time());
perfLog_.jobStart(type, q_time, start_time, instance);
job.doJob();
// The amount of time it took to execute the job
auto const x_time =
ceil<microseconds>(Job::clock_type::now() - start_time);
if (x_time >= 10ms || q_time >= 10ms)
{
getJobTypeData(type).dequeue.notify(q_time);
getJobTypeData(type).execute.notify(x_time);
}
perfLog_.jobFinish(type, x_time, instance);
}
}
{
std::lock_guard lock(m_mutex);
// Job should be destroyed before stopping
// otherwise destructors with side effects can access
// parent objects that are already destroyed.
finishJob(type);
if (--m_processCount == 0 && m_jobSet.empty())
cv_.notify_all();
}
// Note that when Job::~Job is called, the last reference
// to the associated LoadEvent object (in the Job) may be destroyed.
}
int
JobQueue::getJobLimit(JobType type)
{
JobTypeInfo const& j(JobTypes::instance().get(type));
assert(j.type() != jtINVALID);
return j.limit();
}
} // namespace ripple