//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012, 2013 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #include #include #include #include namespace ripple { JobQueue::JobQueue( int threadCount, beast::insight::Collector::ptr const& collector, beast::Journal journal, Logs& logs, perf::PerfLog& perfLog) : m_journal(journal) , m_lastJob(0) , m_invalidJobData(JobTypes::instance().getInvalid(), collector, logs) , m_processCount(0) , m_workers(*this, &perfLog, "JobQueue", threadCount) , perfLog_(perfLog) , m_collector(collector) { JLOG(m_journal.info()) << "Using " << threadCount << " threads"; hook = m_collector->make_hook(std::bind(&JobQueue::collect, this)); job_count = m_collector->make_gauge("job_count"); { std::lock_guard lock(m_mutex); for (auto const& x : JobTypes::instance()) { JobTypeInfo const& jt = x.second; // And create dynamic information for all jobs auto const result(m_jobData.emplace( std::piecewise_construct, std::forward_as_tuple(jt.type()), std::forward_as_tuple(jt, m_collector, logs))); assert(result.second == true); (void)result.second; } } } JobQueue::~JobQueue() { // Must unhook before destroying hook = beast::insight::Hook(); } void JobQueue::collect() { std::lock_guard lock(m_mutex); job_count = m_jobSet.size(); } bool JobQueue::addRefCountedJob( JobType type, std::string const& name, JobFunction const& func) { assert(type != jtINVALID); auto iter(m_jobData.find(type)); assert(iter != m_jobData.end()); if (iter == m_jobData.end()) return false; JLOG(m_journal.debug()) << __func__ << " : Adding job : " << name << " : " << type; JobTypeData& data(iter->second); // FIXME: Workaround incorrect client shutdown ordering // do not add jobs to a queue with no threads assert( (type >= jtCLIENT && type <= jtCLIENT_WEBSOCKET) || m_workers.getNumberOfThreads() > 0); { std::lock_guard lock(m_mutex); auto result = m_jobSet.emplace(type, name, ++m_lastJob, data.load(), func); auto const& job = *result.first; JobType const type(job.getType()); assert(type != jtINVALID); assert(m_jobSet.find(job) != m_jobSet.end()); perfLog_.jobQueue(type); JobTypeData& data(getJobTypeData(type)); if (data.waiting + data.running < getJobLimit(type)) { m_workers.addTask(); } else { // defer the task until we go below the limit ++data.deferred; } ++data.waiting; } return true; } int JobQueue::getJobCount(JobType t) const { std::lock_guard lock(m_mutex); JobDataMap::const_iterator c = m_jobData.find(t); return (c == m_jobData.end()) ? 0 : c->second.waiting; } int JobQueue::getJobCountTotal(JobType t) const { std::lock_guard lock(m_mutex); JobDataMap::const_iterator c = m_jobData.find(t); return (c == m_jobData.end()) ? 0 : (c->second.waiting + c->second.running); } int JobQueue::getJobCountGE(JobType t) const { // return the number of jobs at this priority level or greater int ret = 0; std::lock_guard lock(m_mutex); for (auto const& x : m_jobData) { if (x.first >= t) ret += x.second.waiting; } return ret; } std::unique_ptr JobQueue::makeLoadEvent(JobType t, std::string const& name) { JobDataMap::iterator iter(m_jobData.find(t)); assert(iter != m_jobData.end()); if (iter == m_jobData.end()) return {}; return std::make_unique(iter->second.load(), name, true); } void JobQueue::addLoadEvents(JobType t, int count, std::chrono::milliseconds elapsed) { if (isStopped()) LogicError("JobQueue::addLoadEvents() called after JobQueue stopped"); JobDataMap::iterator iter(m_jobData.find(t)); assert(iter != m_jobData.end()); iter->second.load().addSamples(count, elapsed); } bool JobQueue::isOverloaded() { return std::any_of(m_jobData.begin(), m_jobData.end(), [](auto& entry) { return entry.second.load().isOver(); }); } Json::Value JobQueue::getJson(int c) { using namespace std::chrono_literals; Json::Value ret(Json::objectValue); ret["threads"] = m_workers.getNumberOfThreads(); Json::Value priorities = Json::arrayValue; std::lock_guard lock(m_mutex); for (auto& x : m_jobData) { assert(x.first != jtINVALID); if (x.first == jtGENERIC) continue; JobTypeData& data(x.second); LoadMonitor::Stats stats(data.stats()); int waiting(data.waiting); int running(data.running); if ((stats.count != 0) || (waiting != 0) || (stats.latencyPeak != 0ms) || (running != 0)) { Json::Value& pri = priorities.append(Json::objectValue); pri["job_type"] = data.name(); if (stats.isOverloaded) pri["over_target"] = true; if (waiting != 0) pri["waiting"] = waiting; if (stats.count != 0) pri["per_second"] = static_cast(stats.count); if (stats.latencyPeak != 0ms) pri["peak_time"] = static_cast(stats.latencyPeak.count()); if (stats.latencyAvg != 0ms) pri["avg_time"] = static_cast(stats.latencyAvg.count()); if (running != 0) pri["in_progress"] = running; } } ret["job_types"] = priorities; return ret; } void JobQueue::rendezvous() { std::unique_lock lock(m_mutex); cv_.wait(lock, [this] { return m_processCount == 0 && m_jobSet.empty(); }); } JobTypeData& JobQueue::getJobTypeData(JobType type) { JobDataMap::iterator c(m_jobData.find(type)); assert(c != m_jobData.end()); // NIKB: This is ugly and I hate it. We must remove jtINVALID completely // and use something sane. if (c == m_jobData.end()) return m_invalidJobData; return c->second; } void JobQueue::stop() { stopping_ = true; using namespace std::chrono_literals; jobCounter_.join("JobQueue", 1s, m_journal); { // After the JobCounter is joined, all jobs have finished executing // (i.e. returned from `Job::doJob`) and no more are being accepted, // but there may still be some threads between the return of // `Job::doJob` and the return of `JobQueue::processTask`. That is why // we must wait on the condition variable to make these assertions. std::unique_lock lock(m_mutex); cv_.wait( lock, [this] { return m_processCount == 0 && m_jobSet.empty(); }); assert(m_processCount == 0); assert(m_jobSet.empty()); assert(nSuspend_ == 0); stopped_ = true; } } bool JobQueue::isStopped() const { return stopped_; } void JobQueue::getNextJob(Job& job) { assert(!m_jobSet.empty()); std::set::const_iterator iter; for (iter = m_jobSet.begin(); iter != m_jobSet.end(); ++iter) { JobType const type = iter->getType(); assert(type != jtINVALID); JobTypeData& data(getJobTypeData(type)); assert(data.running <= getJobLimit(type)); // Run this job if we're running below the limit. if (data.running < getJobLimit(data.type())) { assert(data.waiting > 0); --data.waiting; ++data.running; break; } } assert(iter != m_jobSet.end()); job = *iter; m_jobSet.erase(iter); } void JobQueue::finishJob(JobType type) { assert(type != jtINVALID); JobTypeData& data = getJobTypeData(type); // Queue a deferred task if possible if (data.deferred > 0) { assert(data.running + data.waiting >= getJobLimit(type)); --data.deferred; m_workers.addTask(); } --data.running; } void JobQueue::processTask(int instance) { JobType type; { using namespace std::chrono; Job::clock_type::time_point const start_time(Job::clock_type::now()); { Job job; { std::lock_guard lock(m_mutex); getNextJob(job); ++m_processCount; } type = job.getType(); JobTypeData& data(getJobTypeData(type)); JLOG(m_journal.trace()) << "Doing " << data.name() << "job"; // The amount of time that the job was in the queue auto const q_time = ceil(start_time - job.queue_time()); perfLog_.jobStart(type, q_time, start_time, instance); job.doJob(); // The amount of time it took to execute the job auto const x_time = ceil(Job::clock_type::now() - start_time); if (x_time >= 10ms || q_time >= 10ms) { getJobTypeData(type).dequeue.notify(q_time); getJobTypeData(type).execute.notify(x_time); } perfLog_.jobFinish(type, x_time, instance); } } { std::lock_guard lock(m_mutex); // Job should be destroyed before stopping // otherwise destructors with side effects can access // parent objects that are already destroyed. finishJob(type); if (--m_processCount == 0 && m_jobSet.empty()) cv_.notify_all(); } // Note that when Job::~Job is called, the last reference // to the associated LoadEvent object (in the Job) may be destroyed. } int JobQueue::getJobLimit(JobType type) { JobTypeInfo const& j(JobTypes::instance().get(type)); assert(j.type() != jtINVALID); return j.limit(); } } // namespace ripple