Add new functionality to enforce one or more sanity checks (invariants)
on transactions. Add tests for each new invariant check. Allow
for easily adding additional invariant checks in the future.
Also Resolves
-------------
- RIPD-1426
- RIPD-1427
- RIPD-1428
- RIPD-1429
- RIPD-1430
- RIPD-1431
- RIPD-1432
Release Notes
-------------
Creates a new ammendment named "EnforceInvariants" which must be
enabled in order for these new checks to run on each transaction.
A new JobCounter class is introduced. The JobCounter keeps
a reference count of Jobs in flight to the JobQueue. When
NetworkOPs needs to stop, in addition to other work, it calls
JobCounter::join(), which waits until all Jobs in flight
have been destroyed before returning. This ensures that all
NetworkOPs Jobs are completed before NetworkOPs declares
itself stopped().
Also, once a JobCounter is join()ed, it refuses to produce
more counted Jobs for the JobQueue. So, once all old Jobs
in flight are done, then NetworkOPs will add no additional
Jobs to the JobQueue.
Other classes besides NetworkOPs should also be able to use
JobCounter. NetworkOPs is a first test case.
Also unneeded #includes were removed from files touched for
other reasons.
This is a substantial refactor of the consensus code and also introduces
a basic consensus simulation and testing framework. The new generic/templated
version is in src/ripple/consensus and documents the current type requirements.
The version adapted for the RCL is in src/ripple/app/consensus. The testing
framework is in src/test/csf.
Minor behavioral changes/fixes include:
* Adjust close time offset even when not validating.
* Remove spurious proposing_ = false call at end of handleLCL.
* Remove unused functionality provided by checkLastValidation.
* Separate open and converge time
* Don't send a bow out if we're not proposing
* Prevent consensus stopping if NetworkOPs switches to disconnect mode while
consensus accepts a ledger
* Prevent a corner case in which Consensus::gotTxSet or Consensus::peerProposal
has the potential to update internal state while an dispatched accept job is
running.
* Distinguish external and internal calls to startNewRound. Only external
calls can reset the proposing_ state of consensus
* Sanity check on newly created strands
* Better loop detection
* Better tests (test every combination of path element pairs)
* Disallow any root issuer (even for xrp)
* Disallow compount element typs in path
* Issue was not reset when currency was XRP
* Add amendment
Add envconfig test helper for manipulating Env config via
callables. Create new common modifiers for non-admin config,
validator config and one for using different server port values.
Escrow replaces the existing SusPay implementation with improved
code that also adds hashlock support to escrow payments, making
RCL ILP enabled.
The new functionality is under the `Escrow` amendment, which
supersedes and replaces the `SusPay` amendment.
This commit also deprecates the `CryptoConditions` amendment
which is replaced by the `CryptoConditionSuite` amendment which,
once enabled, will allow use of cryptoconditions others than
hashlocks.
* `CMAKE_C_COMPILER` and `CMAKE_CXX_COMPILER` must be defined
before `project`. However, it will clear `CMAKE_BUILD_TYPE`.
Use `CACHE` variables and reorder some code to work around
these constraints.
* Also correct a couple of copy paste errors.
All uses of beast::Thread were previously removed from the code
base, so beast::Thread is removed. One piece of beast::Thread
needed to be preserved: the ability to set the current thread's
name. So there's now a beast::CurrentThreadName that allows the
current thread's name to be set and returned.
Thread naming is also cleaned up a bit. ThreadName.h and .cpp
are removed since beast::CurrentThreadName does a better job.
ThreadEntry is also removed, but its terminateHandler() is
preserved in TerminateHandler.cpp. The revised terminateHandler()
uses beast::CurrentThreadName to recover the name of the running
thread.
Finally, the NO_LOG_UNHANDLED_EXCEPTIONS #define is removed since
it was discovered that the MacOS debugger preserves the stack
of the original throw even if the terminateHandler() rethrows.
Validator lists from configured remote sites are fetched at a regular
interval. Fetched lists are expected to be in JSON format and contain the
following fields:
* "manifest": Base64-encoded serialization of a manifest containing the
validator publisher's master and signing public keys.
* "blob": Base64-encoded JSON string containing a "sequence",
"expiration" and "validators" field. "expiration" contains the Ripple
timestamp (seconds since January 1st, 2000 (00:00 UTC)) for when the
list expires. "validators" contains an array of objects with a
"validation_public_key" field.
* "signature": Hex-encoded signature of the blob using the publisher's
signing key.
* "version": 1
* "refreshInterval" (optional)
Instead of specifying a static list of trusted validators in the config
or validators file, the configuration can now include trusted validator
list publisher keys.
The trusted validator list and quorum are now reset each consensus
round using the latest validator lists and the list of recent
validations seen. The minimum validation quorum is now only
configurable via the command line.
* CMake defaults CMAKE_CXX_FLAGS_RELEASE, etc. to include defining
NDEBUG, regardless of other options set elsewhere, for most or all
generators. This change explicitly removes that flag from the relevant
variables.
* Also move the project command earlier, since it wipes out some local
changes.
This will allow code that looks at the ledger header to know what version the
SHAMap uses. This is helpful for code that rebuilds ledger binary structures
from the leaves.
Migrate tests in uniport-test.js to cpp/jtx. Handle exceptions in
WSClient and JSONRPClient constructors. Use shorter timeout
for HTTP and WS Peers when client is localhost. Add missing call to
start_timer in HTTP Peer. Add incomplete WS Upgrade request test
to prove that server timeout is working.
Cryptoconditions provide a mechanism to describe a signed message such
that multiple actors in a distributed system can all verify the same
signed message and agree on whether it matches the description. This
provides a useful primitive for event-based systems that are distributed
on the Internet since we can describe events in a standard deterministic
manner (represented by signed messages) and therefore define generic
authenticated event handlers.
The cryptoconditions specification implemented is available at:
https://tools.ietf.org/html/draft-thomas-crypto-conditions-01