Files
rippled/modules/ripple_data/crypto/ripple_CKeyECIES.cpp
2013-06-07 15:24:39 -07:00

291 lines
8.8 KiB
C++

// ECIES uses elliptic curve keys to send an encrypted message.
// A shared secret is generated from one public key and one private key.
// The same key results regardless of which key is public and which private.
// Anonymous messages can be sent by generating an ephemeral public/private
// key pair, using that private key with the recipient's public key to
// encrypt and publishing the ephemeral public key. Non-anonymous messages
// can be sent by using your own private key with the recipient's public key.
// A random IV is used to encrypt the message and an HMAC is used to ensure
// message integrity. If you need timestamps or need to tell the recipient
// which key to use (his, yours, or ephemeral) you must add that data.
// (Obviously, key information can't go in the encrypted portion anyway.)
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) IV (unencrypted)
// 2) Encrypted: HMAC of original plaintext
// 3) Encrypted: Original plaintext
// 4) Encrypted: Rest of block/padding
// ECIES operations throw on any error such as a corrupt message or incorrect
// key. They *must* be called in try/catch blocks.
// Algorithmic choices:
#define ECIES_KEY_HASH SHA512 // Hash used to expand shared secret
#define ECIES_KEY_LENGTH (512/8) // Size of expanded shared secret
#define ECIES_MIN_SEC (128/8) // The minimum equivalent security
#define ECIES_ENC_ALGO EVP_aes_256_cbc() // Encryption algorithm
#define ECIES_ENC_KEY_TYPE uint256 // Type used to hold shared secret
#define ECIES_ENC_KEY_SIZE (256/8) // Encryption key size
#define ECIES_ENC_BLK_SIZE (128/8) // Encryption block size
#define ECIES_ENC_IV_TYPE uint128 // Type used to hold IV
#define ECIES_HMAC_ALGO EVP_sha256() // HMAC algorithm
#define ECIES_HMAC_KEY_TYPE uint256 // Type used to hold HMAC key
#define ECIES_HMAC_KEY_SIZE (256/8) // Size of HMAC key
#define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC value
#define ECIES_HMAC_SIZE (256/8) // Size of HMAC value
void CKey::getECIESSecret(CKey& otherKey, ECIES_ENC_KEY_TYPE& enc_key, ECIES_HMAC_KEY_TYPE& hmac_key)
{ // Retrieve a secret generated from an EC key pair. At least one private key must be known.
if (!pkey || !otherKey.pkey)
throw std::runtime_error("missing key");
EC_KEY *pubkey, *privkey;
if (EC_KEY_get0_private_key(pkey))
{
privkey = pkey;
pubkey = otherKey.pkey;
}
else if (EC_KEY_get0_private_key(otherKey.pkey))
{
privkey = otherKey.pkey;
pubkey = pkey;
}
else throw std::runtime_error("no private key");
unsigned char rawbuf[512];
int buflen = ECDH_compute_key(rawbuf, 512, EC_KEY_get0_public_key(pubkey), privkey, NULL);
if (buflen < ECIES_MIN_SEC)
throw std::runtime_error("ecdh key failed");
unsigned char hbuf[ECIES_KEY_LENGTH];
ECIES_KEY_HASH(rawbuf, buflen, hbuf);
memset(rawbuf, 0, ECIES_HMAC_KEY_SIZE);
assert((ECIES_ENC_KEY_SIZE + ECIES_HMAC_KEY_SIZE) >= ECIES_KEY_LENGTH);
memcpy(enc_key.begin(), hbuf, ECIES_ENC_KEY_SIZE);
memcpy(hmac_key.begin(), hbuf + ECIES_ENC_KEY_SIZE, ECIES_HMAC_KEY_SIZE);
memset(hbuf, 0, ECIES_KEY_LENGTH);
}
static ECIES_HMAC_TYPE makeHMAC(const ECIES_HMAC_KEY_TYPE& secret, Blob const& data)
{
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
if (HMAC_Init_ex(&ctx, secret.begin(), ECIES_HMAC_KEY_SIZE, ECIES_HMAC_ALGO, NULL) != 1)
{
HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("init hmac");
}
if (HMAC_Update(&ctx, &(data.front()), data.size()) != 1)
{
HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("update hmac");
}
ECIES_HMAC_TYPE ret;
unsigned int ml = ECIES_HMAC_SIZE;
if (HMAC_Final(&ctx, ret.begin(), &ml) != 1)
{
HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("finalize hmac");
}
assert(ml == ECIES_HMAC_SIZE);
HMAC_CTX_cleanup(&ctx);
return ret;
}
Blob CKey::encryptECIES(CKey& otherKey, Blob const& plaintext)
{
ECIES_ENC_IV_TYPE iv;
RandomNumbers::getInstance ().fillBytes (iv.begin (), ECIES_ENC_BLK_SIZE);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret(otherKey, secret, hmacKey);
ECIES_HMAC_TYPE hmac = makeHMAC(hmacKey, plaintext);
hmacKey.zero();
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
if (EVP_EncryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
{
EVP_CIPHER_CTX_cleanup(&ctx);
secret.zero();
throw std::runtime_error("init cipher ctx");
}
secret.zero();
Blob out(plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_KEY_SIZE + ECIES_ENC_BLK_SIZE, 0);
int len = 0, bytesWritten;
// output IV
memcpy(&(out.front()), iv.begin(), ECIES_ENC_BLK_SIZE);
len = ECIES_ENC_BLK_SIZE;
// Encrypt/output HMAC
bytesWritten = out.capacity() - len;
assert(bytesWritten>0);
if (EVP_EncryptUpdate(&ctx, &(out.front()) + len, &bytesWritten, hmac.begin(), ECIES_HMAC_SIZE) < 0)
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("");
}
len += bytesWritten;
// encrypt/output plaintext
bytesWritten = out.capacity() - len;
assert(bytesWritten>0);
if (EVP_EncryptUpdate(&ctx, &(out.front()) + len, &bytesWritten, &(plaintext.front()), plaintext.size()) < 0)
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("");
}
len += bytesWritten;
// finalize
bytesWritten = out.capacity() - len;
if (EVP_EncryptFinal_ex(&ctx, &(out.front()) + len, &bytesWritten) < 0)
{
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("encryption error");
}
len += bytesWritten;
// Output contains: IV, encrypted HMAC, encrypted data, encrypted padding
assert(len <= (plaintext.size() + ECIES_HMAC_SIZE + (2 * ECIES_ENC_BLK_SIZE)));
assert(len >= (plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_BLK_SIZE)); // IV, HMAC, data
out.resize(len);
EVP_CIPHER_CTX_cleanup(&ctx);
return out;
}
Blob CKey::decryptECIES(CKey& otherKey, Blob const& ciphertext)
{
// minimum ciphertext = IV + HMAC + 1 block
if (ciphertext.size() < ((2 * ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) )
throw std::runtime_error("ciphertext too short");
// extract IV
ECIES_ENC_IV_TYPE iv;
memcpy(iv.begin(), &(ciphertext.front()), ECIES_ENC_BLK_SIZE);
// begin decrypting
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret(otherKey, secret, hmacKey);
if (EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to init cipher");
}
// decrypt mac
ECIES_HMAC_TYPE hmac;
int outlen = ECIES_HMAC_SIZE;
if ( (EVP_DecryptUpdate(&ctx, hmac.begin(), &outlen,
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE + 1) != 1) || (outlen != ECIES_HMAC_SIZE) )
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract hmac");
}
// decrypt plaintext (after IV and encrypted mac)
Blob plaintext(ciphertext.size() - ECIES_HMAC_SIZE - ECIES_ENC_BLK_SIZE);
outlen = plaintext.size();
if (EVP_DecryptUpdate(&ctx, &(plaintext.front()), &outlen,
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE + ECIES_HMAC_SIZE + 1,
ciphertext.size() - ECIES_ENC_BLK_SIZE - ECIES_HMAC_SIZE - 1) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract plaintext");
}
// decrypt padding
int flen = 0;
if (EVP_DecryptFinal(&ctx, &(plaintext.front()) + outlen, &flen) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad padding");
}
plaintext.resize(flen + outlen);
// verify integrity
if (hmac != makeHMAC(hmacKey, plaintext))
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad hmac");
}
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
return plaintext;
}
bool checkECIES(void)
{
CKey senderPriv, recipientPriv, senderPub, recipientPub;
for (int i = 0; i < 30000; ++i)
{
if ((i % 100) == 0)
{ // generate new keys every 100 times
// std::cerr << "new keys" << std::endl;
senderPriv.MakeNewKey();
recipientPriv.MakeNewKey();
if (!senderPub.SetPubKey(senderPriv.GetPubKey()))
throw std::runtime_error("key error");
if (!recipientPub.SetPubKey(recipientPriv.GetPubKey()))
throw std::runtime_error("key error");
}
// generate message
Blob message(4096);
int msglen = i%3000;
RandomNumbers::getInstance ().fillBytes (&message.front(), msglen);
message.resize(msglen);
// encrypt message with sender's private key and recipient's public key
Blob ciphertext = senderPriv.encryptECIES(recipientPub, message);
// decrypt message with recipient's private key and sender's public key
Blob decrypt = recipientPriv.decryptECIES(senderPub, ciphertext);
if (decrypt != message)
{
assert(false);
return false;
}
// std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl;
}
return true;
}
// vim:ts=4