// ECIES uses elliptic curve keys to send an encrypted message. // A shared secret is generated from one public key and one private key. // The same key results regardless of which key is public and which private. // Anonymous messages can be sent by generating an ephemeral public/private // key pair, using that private key with the recipient's public key to // encrypt and publishing the ephemeral public key. Non-anonymous messages // can be sent by using your own private key with the recipient's public key. // A random IV is used to encrypt the message and an HMAC is used to ensure // message integrity. If you need timestamps or need to tell the recipient // which key to use (his, yours, or ephemeral) you must add that data. // (Obviously, key information can't go in the encrypted portion anyway.) // Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows: // 1) IV (unencrypted) // 2) Encrypted: HMAC of original plaintext // 3) Encrypted: Original plaintext // 4) Encrypted: Rest of block/padding // ECIES operations throw on any error such as a corrupt message or incorrect // key. They *must* be called in try/catch blocks. // Algorithmic choices: #define ECIES_KEY_HASH SHA512 // Hash used to expand shared secret #define ECIES_KEY_LENGTH (512/8) // Size of expanded shared secret #define ECIES_MIN_SEC (128/8) // The minimum equivalent security #define ECIES_ENC_ALGO EVP_aes_256_cbc() // Encryption algorithm #define ECIES_ENC_KEY_TYPE uint256 // Type used to hold shared secret #define ECIES_ENC_KEY_SIZE (256/8) // Encryption key size #define ECIES_ENC_BLK_SIZE (128/8) // Encryption block size #define ECIES_ENC_IV_TYPE uint128 // Type used to hold IV #define ECIES_HMAC_ALGO EVP_sha256() // HMAC algorithm #define ECIES_HMAC_KEY_TYPE uint256 // Type used to hold HMAC key #define ECIES_HMAC_KEY_SIZE (256/8) // Size of HMAC key #define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC value #define ECIES_HMAC_SIZE (256/8) // Size of HMAC value void CKey::getECIESSecret(CKey& otherKey, ECIES_ENC_KEY_TYPE& enc_key, ECIES_HMAC_KEY_TYPE& hmac_key) { // Retrieve a secret generated from an EC key pair. At least one private key must be known. if (!pkey || !otherKey.pkey) throw std::runtime_error("missing key"); EC_KEY *pubkey, *privkey; if (EC_KEY_get0_private_key(pkey)) { privkey = pkey; pubkey = otherKey.pkey; } else if (EC_KEY_get0_private_key(otherKey.pkey)) { privkey = otherKey.pkey; pubkey = pkey; } else throw std::runtime_error("no private key"); unsigned char rawbuf[512]; int buflen = ECDH_compute_key(rawbuf, 512, EC_KEY_get0_public_key(pubkey), privkey, NULL); if (buflen < ECIES_MIN_SEC) throw std::runtime_error("ecdh key failed"); unsigned char hbuf[ECIES_KEY_LENGTH]; ECIES_KEY_HASH(rawbuf, buflen, hbuf); memset(rawbuf, 0, ECIES_HMAC_KEY_SIZE); assert((ECIES_ENC_KEY_SIZE + ECIES_HMAC_KEY_SIZE) >= ECIES_KEY_LENGTH); memcpy(enc_key.begin(), hbuf, ECIES_ENC_KEY_SIZE); memcpy(hmac_key.begin(), hbuf + ECIES_ENC_KEY_SIZE, ECIES_HMAC_KEY_SIZE); memset(hbuf, 0, ECIES_KEY_LENGTH); } static ECIES_HMAC_TYPE makeHMAC(const ECIES_HMAC_KEY_TYPE& secret, Blob const& data) { HMAC_CTX ctx; HMAC_CTX_init(&ctx); if (HMAC_Init_ex(&ctx, secret.begin(), ECIES_HMAC_KEY_SIZE, ECIES_HMAC_ALGO, NULL) != 1) { HMAC_CTX_cleanup(&ctx); throw std::runtime_error("init hmac"); } if (HMAC_Update(&ctx, &(data.front()), data.size()) != 1) { HMAC_CTX_cleanup(&ctx); throw std::runtime_error("update hmac"); } ECIES_HMAC_TYPE ret; unsigned int ml = ECIES_HMAC_SIZE; if (HMAC_Final(&ctx, ret.begin(), &ml) != 1) { HMAC_CTX_cleanup(&ctx); throw std::runtime_error("finalize hmac"); } assert(ml == ECIES_HMAC_SIZE); HMAC_CTX_cleanup(&ctx); return ret; } Blob CKey::encryptECIES(CKey& otherKey, Blob const& plaintext) { ECIES_ENC_IV_TYPE iv; RandomNumbers::getInstance ().fillBytes (iv.begin (), ECIES_ENC_BLK_SIZE); ECIES_ENC_KEY_TYPE secret; ECIES_HMAC_KEY_TYPE hmacKey; getECIESSecret(otherKey, secret, hmacKey); ECIES_HMAC_TYPE hmac = makeHMAC(hmacKey, plaintext); hmacKey.zero(); EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); if (EVP_EncryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1) { EVP_CIPHER_CTX_cleanup(&ctx); secret.zero(); throw std::runtime_error("init cipher ctx"); } secret.zero(); Blob out(plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_KEY_SIZE + ECIES_ENC_BLK_SIZE, 0); int len = 0, bytesWritten; // output IV memcpy(&(out.front()), iv.begin(), ECIES_ENC_BLK_SIZE); len = ECIES_ENC_BLK_SIZE; // Encrypt/output HMAC bytesWritten = out.capacity() - len; assert(bytesWritten>0); if (EVP_EncryptUpdate(&ctx, &(out.front()) + len, &bytesWritten, hmac.begin(), ECIES_HMAC_SIZE) < 0) { EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error(""); } len += bytesWritten; // encrypt/output plaintext bytesWritten = out.capacity() - len; assert(bytesWritten>0); if (EVP_EncryptUpdate(&ctx, &(out.front()) + len, &bytesWritten, &(plaintext.front()), plaintext.size()) < 0) { EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error(""); } len += bytesWritten; // finalize bytesWritten = out.capacity() - len; if (EVP_EncryptFinal_ex(&ctx, &(out.front()) + len, &bytesWritten) < 0) { EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error("encryption error"); } len += bytesWritten; // Output contains: IV, encrypted HMAC, encrypted data, encrypted padding assert(len <= (plaintext.size() + ECIES_HMAC_SIZE + (2 * ECIES_ENC_BLK_SIZE))); assert(len >= (plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_BLK_SIZE)); // IV, HMAC, data out.resize(len); EVP_CIPHER_CTX_cleanup(&ctx); return out; } Blob CKey::decryptECIES(CKey& otherKey, Blob const& ciphertext) { // minimum ciphertext = IV + HMAC + 1 block if (ciphertext.size() < ((2 * ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) ) throw std::runtime_error("ciphertext too short"); // extract IV ECIES_ENC_IV_TYPE iv; memcpy(iv.begin(), &(ciphertext.front()), ECIES_ENC_BLK_SIZE); // begin decrypting EVP_CIPHER_CTX ctx; EVP_CIPHER_CTX_init(&ctx); ECIES_ENC_KEY_TYPE secret; ECIES_HMAC_KEY_TYPE hmacKey; getECIESSecret(otherKey, secret, hmacKey); if (EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1) { secret.zero(); hmacKey.zero(); EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error("unable to init cipher"); } // decrypt mac ECIES_HMAC_TYPE hmac; int outlen = ECIES_HMAC_SIZE; if ( (EVP_DecryptUpdate(&ctx, hmac.begin(), &outlen, &(ciphertext.front()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE + 1) != 1) || (outlen != ECIES_HMAC_SIZE) ) { secret.zero(); hmacKey.zero(); EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error("unable to extract hmac"); } // decrypt plaintext (after IV and encrypted mac) Blob plaintext(ciphertext.size() - ECIES_HMAC_SIZE - ECIES_ENC_BLK_SIZE); outlen = plaintext.size(); if (EVP_DecryptUpdate(&ctx, &(plaintext.front()), &outlen, &(ciphertext.front()) + ECIES_ENC_BLK_SIZE + ECIES_HMAC_SIZE + 1, ciphertext.size() - ECIES_ENC_BLK_SIZE - ECIES_HMAC_SIZE - 1) != 1) { secret.zero(); hmacKey.zero(); EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error("unable to extract plaintext"); } // decrypt padding int flen = 0; if (EVP_DecryptFinal(&ctx, &(plaintext.front()) + outlen, &flen) != 1) { secret.zero(); hmacKey.zero(); EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error("plaintext had bad padding"); } plaintext.resize(flen + outlen); // verify integrity if (hmac != makeHMAC(hmacKey, plaintext)) { secret.zero(); hmacKey.zero(); EVP_CIPHER_CTX_cleanup(&ctx); throw std::runtime_error("plaintext had bad hmac"); } secret.zero(); hmacKey.zero(); EVP_CIPHER_CTX_cleanup(&ctx); return plaintext; } bool checkECIES(void) { CKey senderPriv, recipientPriv, senderPub, recipientPub; for (int i = 0; i < 30000; ++i) { if ((i % 100) == 0) { // generate new keys every 100 times // std::cerr << "new keys" << std::endl; senderPriv.MakeNewKey(); recipientPriv.MakeNewKey(); if (!senderPub.SetPubKey(senderPriv.GetPubKey())) throw std::runtime_error("key error"); if (!recipientPub.SetPubKey(recipientPriv.GetPubKey())) throw std::runtime_error("key error"); } // generate message Blob message(4096); int msglen = i%3000; RandomNumbers::getInstance ().fillBytes (&message.front(), msglen); message.resize(msglen); // encrypt message with sender's private key and recipient's public key Blob ciphertext = senderPriv.encryptECIES(recipientPub, message); // decrypt message with recipient's private key and sender's public key Blob decrypt = recipientPriv.decryptECIES(senderPub, ciphertext); if (decrypt != message) { assert(false); return false; } // std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl; } return true; } // vim:ts=4