Files
rippled/include/xrpl/basics/CanProcess.h
Ed Hennis 51f427c4e8 Reduce duplicate peer traffic for ledger data (#5126)
- Drop duplicate outgoing TMGetLedger messages per peer
  - Allow a retry after 30s in case of peer or network congestion.
  - Addresses RIPD-1870
  - (Changes levelization. That is not desirable, and will need to be fixed.)
- Drop duplicate incoming TMGetLedger messages per peer
  - Allow a retry after 15s in case of peer or network congestion.
  - The requestCookie is ignored when computing the hash, thus increasing
    the chances of detecting duplicate messages.
  - With duplicate messages, keep track of the different requestCookies
    (or lack of cookie). When work is finally done for a given request,
    send the response to all the peers that are waiting on the request,
    sending one message per peer, including all the cookies and
    a "directResponse" flag indicating the data is intended for the
    sender, too.
  - Addresses RIPD-1871
- Drop duplicate incoming TMLedgerData messages
  - Addresses RIPD-1869
- Improve logging related to ledger acquisition
- Class "CanProcess" to keep track of processing of distinct items

---------

Co-authored-by: Valentin Balaschenko <13349202+vlntb@users.noreply.github.com>
2025-02-24 20:52:41 +00:00

135 lines
4.5 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2024 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_BASICS_CANPROCESS_H_INCLUDED
#define RIPPLE_BASICS_CANPROCESS_H_INCLUDED
#include <functional>
#include <mutex>
#include <set>
/** RAII class to check if an Item is already being processed on another thread,
* as indicated by it's presence in a Collection.
*
* If the Item is not in the Collection, it will be added under lock in the
* ctor, and removed under lock in the dtor. The object will be considered
* "usable" and evaluate to `true`.
*
* If the Item is in the Collection, no changes will be made to the collection,
* and the CanProcess object will be considered "unusable".
*
* It's up to the caller to decide what "usable" and "unusable" mean. (e.g.
* Process or skip a block of code, or set a flag.)
*
* The current use is to avoid lock contention that would be involved in
* processing something associated with the Item.
*
* Examples:
*
* void IncomingLedgers::acquireAsync(LedgerHash const& hash, ...)
* {
* if (CanProcess check{acquiresMutex_, pendingAcquires_, hash})
* {
* acquire(hash, ...);
* }
* }
*
* bool
* NetworkOPsImp::recvValidation(
* std::shared_ptr<STValidation> const& val,
* std::string const& source)
* {
* CanProcess check(
* validationsMutex_, pendingValidations_, val->getLedgerHash());
* BypassAccept bypassAccept =
* check ? BypassAccept::no : BypassAccept::yes;
* handleNewValidation(app_, val, source, bypassAccept, m_journal);
* }
*
*/
class CanProcess
{
public:
template <class Mutex, class Collection, class Item>
CanProcess(Mutex& mtx, Collection& collection, Item const& item)
: cleanup_(insert(mtx, collection, item))
{
}
~CanProcess()
{
if (cleanup_)
cleanup_();
}
explicit
operator bool() const
{
return static_cast<bool>(cleanup_);
}
private:
template <bool useIterator, class Mutex, class Collection, class Item>
std::function<void()>
doInsert(Mutex& mtx, Collection& collection, Item const& item)
{
std::unique_lock<Mutex> lock(mtx);
// TODO: Use structured binding once LLVM 16 is the minimum supported
// version. See also: https://github.com/llvm/llvm-project/issues/48582
// https://github.com/llvm/llvm-project/commit/127bf44385424891eb04cff8e52d3f157fc2cb7c
auto const insertResult = collection.insert(item);
auto const it = insertResult.first;
if (!insertResult.second)
return {};
if constexpr (useIterator)
return [&, it]() {
std::unique_lock<Mutex> lock(mtx);
collection.erase(it);
};
else
return [&]() {
std::unique_lock<Mutex> lock(mtx);
collection.erase(item);
};
}
// Generic insert() function doesn't use iterators because they may get
// invalidated
template <class Mutex, class Collection, class Item>
std::function<void()>
insert(Mutex& mtx, Collection& collection, Item const& item)
{
return doInsert<false>(mtx, collection, item);
}
// Specialize insert() for std::set, which does not invalidate iterators for
// insert and erase
template <class Mutex, class Item>
std::function<void()>
insert(Mutex& mtx, std::set<Item>& collection, Item const& item)
{
return doInsert<true>(mtx, collection, item);
}
// If set, then the item is "usable"
std::function<void()> cleanup_;
};
#endif