Files
rippled/include/xrpl/protocol/SecretKey.h
Bart 1d42c4f6de refactor: Remove unnecessary copyright notices already covered by LICENSE.md (#5929)
Per XLS-0095, we are taking steps to rename ripple(d) to xrpl(d).

This change specifically removes all copyright notices referencing Ripple, XRPLF, and certain affiliated contributors upon mutual agreement, so the notice in the LICENSE.md file applies throughout. Copyright notices referencing external contributions remain as-is. Duplicate verbiage is also removed.
2025-11-04 08:33:42 +00:00

168 lines
3.6 KiB
C++

#ifndef XRPL_PROTOCOL_SECRETKEY_H_INCLUDED
#define XRPL_PROTOCOL_SECRETKEY_H_INCLUDED
#include <xrpl/basics/Buffer.h>
#include <xrpl/basics/Slice.h>
#include <xrpl/protocol/KeyType.h>
#include <xrpl/protocol/PublicKey.h>
#include <xrpl/protocol/Seed.h>
#include <xrpl/protocol/tokens.h>
#include <array>
#include <cstring>
#include <string>
namespace ripple {
/** A secret key. */
class SecretKey
{
private:
std::uint8_t buf_[32];
public:
using const_iterator = std::uint8_t const*;
SecretKey() = delete;
SecretKey(SecretKey const&) = default;
SecretKey&
operator=(SecretKey const&) = default;
~SecretKey();
SecretKey(std::array<std::uint8_t, 32> const& data);
SecretKey(Slice const& slice);
std::uint8_t const*
data() const
{
return buf_;
}
std::size_t
size() const
{
return sizeof(buf_);
}
/** Convert the secret key to a hexadecimal string.
@note The operator<< function is deliberately omitted
to avoid accidental exposure of secret key material.
*/
std::string
to_string() const;
const_iterator
begin() const noexcept
{
return buf_;
}
const_iterator
cbegin() const noexcept
{
return buf_;
}
const_iterator
end() const noexcept
{
return buf_ + sizeof(buf_);
}
const_iterator
cend() const noexcept
{
return buf_ + sizeof(buf_);
}
};
inline bool
operator==(SecretKey const& lhs, SecretKey const& rhs)
{
return lhs.size() == rhs.size() &&
std::memcmp(lhs.data(), rhs.data(), rhs.size()) == 0;
}
inline bool
operator!=(SecretKey const& lhs, SecretKey const& rhs)
{
return !(lhs == rhs);
}
//------------------------------------------------------------------------------
/** Parse a secret key */
template <>
std::optional<SecretKey>
parseBase58(TokenType type, std::string const& s);
inline std::string
toBase58(TokenType type, SecretKey const& sk)
{
return encodeBase58Token(type, sk.data(), sk.size());
}
/** Create a secret key using secure random numbers. */
SecretKey
randomSecretKey();
/** Generate a new secret key deterministically. */
SecretKey
generateSecretKey(KeyType type, Seed const& seed);
/** Derive the public key from a secret key. */
PublicKey
derivePublicKey(KeyType type, SecretKey const& sk);
/** Generate a key pair deterministically.
This algorithm is specific to Ripple:
For secp256k1 key pairs, the seed is converted
to a Generator and used to compute the key pair
corresponding to ordinal 0 for the generator.
*/
std::pair<PublicKey, SecretKey>
generateKeyPair(KeyType type, Seed const& seed);
/** Create a key pair using secure random numbers. */
std::pair<PublicKey, SecretKey>
randomKeyPair(KeyType type);
/** Generate a signature for a message digest.
This can only be used with secp256k1 since Ed25519's
security properties come, in part, from how the message
is hashed.
*/
/** @{ */
Buffer
signDigest(PublicKey const& pk, SecretKey const& sk, uint256 const& digest);
inline Buffer
signDigest(KeyType type, SecretKey const& sk, uint256 const& digest)
{
return signDigest(derivePublicKey(type, sk), sk, digest);
}
/** @} */
/** Generate a signature for a message.
With secp256k1 signatures, the data is first hashed with
SHA512-Half, and the resulting digest is signed.
*/
/** @{ */
Buffer
sign(PublicKey const& pk, SecretKey const& sk, Slice const& message);
inline Buffer
sign(KeyType type, SecretKey const& sk, Slice const& message)
{
return sign(derivePublicKey(type, sk), sk, message);
}
/** @} */
} // namespace ripple
#endif