rippled
Loading...
Searching...
No Matches
TxQ.cpp
1#include <xrpld/app/ledger/OpenLedger.h>
2#include <xrpld/app/main/Application.h>
3#include <xrpld/app/misc/TxQ.h>
4#include <xrpld/app/tx/apply.h>
5
6#include <xrpl/basics/mulDiv.h>
7#include <xrpl/protocol/Feature.h>
8#include <xrpl/protocol/jss.h>
9#include <xrpl/protocol/st.h>
10
11#include <algorithm>
12#include <limits>
13#include <numeric>
14
15namespace ripple {
16
18
19static FeeLevel64
20getFeeLevelPaid(ReadView const& view, STTx const& tx)
21{
22 auto const [baseFee, effectiveFeePaid] = [&view, &tx]() {
23 XRPAmount baseFee = calculateBaseFee(view, tx);
24 XRPAmount feePaid = tx[sfFee].xrp();
25
26 // If baseFee is 0 then the cost of a basic transaction is free, but we
27 // need the effective fee level to be non-zero.
28 XRPAmount const mod = [&view, &tx, baseFee]() {
29 if (baseFee.signum() > 0)
30 return XRPAmount{0};
31 auto def = calculateDefaultBaseFee(view, tx);
32 return def.signum() == 0 ? XRPAmount{1} : def;
33 }();
34 return std::pair{baseFee + mod, feePaid + mod};
35 }();
36
37 XRPL_ASSERT(baseFee.signum() > 0, "ripple::getFeeLevelPaid : positive fee");
38 if (effectiveFeePaid.signum() <= 0 || baseFee.signum() <= 0)
39 {
40 return FeeLevel64(0);
41 }
42
43 return mulDiv(effectiveFeePaid, TxQ::baseLevel, baseFee)
45}
46
49{
50 if (!tx.isFieldPresent(sfLastLedgerSequence))
51 return std::nullopt;
52 return tx.getFieldU32(sfLastLedgerSequence);
53}
54
55static FeeLevel64
56increase(FeeLevel64 level, std::uint32_t increasePercent)
57{
58 return mulDiv(level, 100 + increasePercent, 100)
60}
61
63
66 Application& app,
67 ReadView const& view,
68 bool timeLeap,
69 TxQ::Setup const& setup)
70{
72 auto const txBegin = view.txs.begin();
73 auto const txEnd = view.txs.end();
74 auto const size = std::distance(txBegin, txEnd);
75 feeLevels.reserve(size);
76 std::for_each(txBegin, txEnd, [&](auto const& tx) {
77 feeLevels.push_back(getFeeLevelPaid(view, *tx.first));
78 });
79 std::sort(feeLevels.begin(), feeLevels.end());
80 XRPL_ASSERT(
81 size == feeLevels.size(),
82 "ripple::TxQ::FeeMetrics::update : fee levels size");
83
84 JLOG((timeLeap ? j_.warn() : j_.debug()))
85 << "Ledger " << view.info().seq << " has " << size << " transactions. "
86 << "Ledgers are processing " << (timeLeap ? "slowly" : "as expected")
87 << ". Expected transactions is currently " << txnsExpected_
88 << " and multiplier is " << escalationMultiplier_;
89
90 if (timeLeap)
91 {
92 // Ledgers are taking to long to process,
93 // so clamp down on limits.
94 auto const cutPct = 100 - setup.slowConsensusDecreasePercent;
95 // upperLimit must be >= minimumTxnCount_ or std::clamp can give
96 // unexpected results
97 auto const upperLimit = std::max<std::uint64_t>(
98 mulDiv(txnsExpected_, cutPct, 100).value_or(ripple::muldiv_max),
101 mulDiv(size, cutPct, 100).value_or(ripple::muldiv_max),
103 upperLimit);
104 recentTxnCounts_.clear();
105 }
106 else if (size > txnsExpected_ || size > targetTxnCount_)
107 {
108 recentTxnCounts_.push_back(
109 mulDiv(size, 100 + setup.normalConsensusIncreasePercent, 100)
111 auto const iter =
113 BOOST_ASSERT(iter != recentTxnCounts_.end());
114 auto const next = [&] {
115 // Grow quickly: If the max_element is >= the
116 // current size limit, use it.
117 if (*iter >= txnsExpected_)
118 return *iter;
119 // Shrink slowly: If the max_element is < the
120 // current size limit, use a limit that is
121 // 90% of the way from max_element to the
122 // current size limit.
123 return (txnsExpected_ * 9 + *iter) / 10;
124 }();
125 // Ledgers are processing in a timely manner,
126 // so keep the limit high, but don't let it
127 // grow without bound.
129 }
130
131 if (!size)
132 {
134 }
135 else
136 {
137 // In the case of an odd number of elements, this
138 // evaluates to the middle element; for an even
139 // number of elements, it will add the two elements
140 // on either side of the "middle" and average them.
142 (feeLevels[size / 2] + feeLevels[(size - 1) / 2] + FeeLevel64{1}) /
143 2;
146 }
147 JLOG(j_.debug()) << "Expected transactions updated to " << txnsExpected_
148 << " and multiplier updated to " << escalationMultiplier_;
149
150 return size;
151}
152
155{
156 // Transactions in the open ledger so far
157 auto const current = view.txCount();
158
159 auto const target = snapshot.txnsExpected;
160 auto const multiplier = snapshot.escalationMultiplier;
161
162 // Once the open ledger bypasses the target,
163 // escalate the fee quickly.
164 if (current > target)
165 {
166 // Compute escalated fee level
167 // Don't care about the overflow flag
168 return mulDiv(multiplier, current * current, target * target)
169 .value_or(static_cast<FeeLevel64>(ripple::muldiv_max));
170 }
171
172 return baseLevel;
173}
174
175namespace detail {
176
177constexpr static std::pair<bool, std::uint64_t>
179{
180 // sum(n = 1->x) : n * n = x(x + 1)(2x + 1) / 6
181
182 // We expect that size_t == std::uint64_t but, just in case, guarantee
183 // we lose no bits.
184 std::uint64_t x{xIn};
185
186 // If x is anywhere on the order of 2^^21, it's going
187 // to completely dominate the computation and is likely
188 // enough to overflow that we're just going to assume
189 // it does. If we have anywhere near 2^^21 transactions
190 // in a ledger, this is the least of our problems.
191 if (x >= (1 << 21))
193 return {true, (x * (x + 1) * (2 * x + 1)) / 6};
194}
195
196// Unit tests for sumOfSquares()
197static_assert(sumOfFirstSquares(1).first == true);
198static_assert(sumOfFirstSquares(1).second == 1);
199
200static_assert(sumOfFirstSquares(2).first == true);
201static_assert(sumOfFirstSquares(2).second == 5);
202
203static_assert(sumOfFirstSquares(0x1FFFFF).first == true, "");
204static_assert(sumOfFirstSquares(0x1FFFFF).second == 0x2AAAA8AAAAB00000ul, "");
205
206static_assert(sumOfFirstSquares(0x200000).first == false, "");
207static_assert(
208 sumOfFirstSquares(0x200000).second ==
210 "");
211
212} // namespace detail
213
216 Snapshot const& snapshot,
217 OpenView const& view,
218 std::size_t extraCount,
219 std::size_t seriesSize)
220{
221 /* Transactions in the open ledger so far.
222 AKA Transactions that will be in the open ledger when
223 the first tx in the series is attempted.
224 */
225 auto const current = view.txCount() + extraCount;
226 /* Transactions that will be in the open ledger when
227 the last tx in the series is attempted.
228 */
229 auto const last = current + seriesSize - 1;
230
231 auto const target = snapshot.txnsExpected;
232 auto const multiplier = snapshot.escalationMultiplier;
233
234 XRPL_ASSERT(
235 current > target,
236 "ripple::TxQ::FeeMetrics::escalatedSeriesFeeLevel : current over "
237 "target");
238
239 /* Calculate (apologies for the terrible notation)
240 sum(n = current -> last) : multiplier * n * n / (target * target)
241 multiplier / (target * target) * (sum(n = current -> last) : n * n)
242 multiplier / (target * target) * ((sum(n = 1 -> last) : n * n) -
243 (sum(n = 1 -> current - 1) : n * n))
244 */
245 auto const sumNlast = detail::sumOfFirstSquares(last);
246 auto const sumNcurrent = detail::sumOfFirstSquares(current - 1);
247 // because `last` is bigger, if either sum overflowed, then
248 // `sumNlast` definitely overflowed. Also the odds of this
249 // are nearly nil.
250 if (!sumNlast.first)
251 return {sumNlast.first, FeeLevel64{sumNlast.second}};
252 auto const totalFeeLevel = mulDiv(
253 multiplier, sumNlast.second - sumNcurrent.second, target * target);
254
255 return {totalFeeLevel.has_value(), *totalFeeLevel};
256}
257
259
261 std::shared_ptr<STTx const> const& txn_,
262 TxID const& txID_,
263 FeeLevel64 feeLevel_,
264 ApplyFlags const flags_,
265 PreflightResult const& pfresult_)
266 : txn(txn_)
267 , feeLevel(feeLevel_)
268 , txID(txID_)
269 , account(txn_->getAccountID(sfAccount))
270 , lastValid(getLastLedgerSequence(*txn_))
271 , seqProxy(txn_->getSeqProxy())
272 , retriesRemaining(retriesAllowed)
273 , flags(flags_)
274 , pfresult(pfresult_)
275{
276}
277
280{
281 // If the rules or flags change, preflight again
282 XRPL_ASSERT(
283 pfresult, "ripple::TxQ::MaybeTx::apply : preflight result is set");
284 NumberSO stNumberSO{view.rules().enabled(fixUniversalNumber)};
285
286 if (pfresult->rules != view.rules() || pfresult->flags != flags)
287 {
288 JLOG(j.debug()) << "Queued transaction " << txID
289 << " rules or flags have changed. Flags from "
290 << pfresult->flags << " to " << flags;
291
292 pfresult.emplace(
293 preflight(app, view.rules(), pfresult->tx, flags, pfresult->j));
294 }
295
296 auto pcresult = preclaim(*pfresult, app, view);
297
298 return doApply(pcresult, app, view);
299}
300
302 : TxQAccount(txn->getAccountID(sfAccount))
303{
304}
305
306TxQ::TxQAccount::TxQAccount(AccountID const& account_) : account(account_)
307{
308}
309
310TxQ::TxQAccount::TxMap::const_iterator
312{
313 // Find the entry that is greater than or equal to the new transaction,
314 // then decrement the iterator.
315 auto sameOrPrevIter = transactions.lower_bound(seqProx);
316 if (sameOrPrevIter != transactions.begin())
317 --sameOrPrevIter;
318 return sameOrPrevIter;
319}
320
323{
324 auto const seqProx = txn.seqProxy;
325
326 auto result = transactions.emplace(seqProx, std::move(txn));
327 XRPL_ASSERT(
328 result.second, "ripple::TxQ::TxQAccount::add : emplace succeeded");
329 XRPL_ASSERT(
330 &result.first->second != &txn,
331 "ripple::TxQ::TxQAccount::add : transaction moved");
332
333 return result.first->second;
334}
335
336bool
338{
339 return transactions.erase(seqProx) != 0;
340}
341
343
345 : setup_(setup), j_(j), feeMetrics_(setup, j), maxSize_(std::nullopt)
346{
347}
348
350{
351 byFee_.clear();
352}
353
354template <size_t fillPercentage>
355bool
357{
358 static_assert(
359 fillPercentage > 0 && fillPercentage <= 100, "Invalid fill percentage");
360 return maxSize_ && byFee_.size() >= (*maxSize_ * fillPercentage / 100);
361}
362
363TER
365 STTx const& tx,
366 ApplyFlags const flags,
367 OpenView const& view,
368 std::shared_ptr<SLE const> const& sleAccount,
369 AccountMap::iterator const& accountIter,
370 std::optional<TxQAccount::TxMap::iterator> const& replacementIter,
371 std::lock_guard<std::mutex> const& lock)
372{
373 // PreviousTxnID is deprecated and should never be used.
374 // AccountTxnID is not supported by the transaction
375 // queue yet, but should be added in the future.
376 // tapFAIL_HARD transactions are never held
377 if (tx.isFieldPresent(sfPreviousTxnID) ||
378 tx.isFieldPresent(sfAccountTxnID) || (flags & tapFAIL_HARD))
379 return telCAN_NOT_QUEUE;
380
381 {
382 // To be queued and relayed, the transaction needs to
383 // promise to stick around for long enough that it has
384 // a realistic chance of getting into a ledger.
385 auto const lastValid = getLastLedgerSequence(tx);
386 if (lastValid &&
387 *lastValid < view.info().seq + setup_.minimumLastLedgerBuffer)
388 return telCAN_NOT_QUEUE;
389 }
390
391 // Allow if the account is not in the queue at all.
392 if (accountIter == byAccount_.end())
393 return tesSUCCESS;
394
395 // Allow this tx to replace another one.
396 if (replacementIter)
397 return tesSUCCESS;
398
399 // Allow if there are fewer than the limit.
400 TxQAccount const& txQAcct = accountIter->second;
402 return tesSUCCESS;
403
404 // If we get here the queue limit is exceeded. Only allow if this
405 // transaction fills the _first_ sequence hole for the account.
406 auto const txSeqProx = tx.getSeqProxy();
407 if (txSeqProx.isTicket())
408 // Tickets always follow sequence-based transactions, so a ticket
409 // cannot unblock a sequence-based transaction.
411
412 // This is the next queuable sequence-based SeqProxy for the account.
413 SeqProxy const nextQueuable = nextQueuableSeqImpl(sleAccount, lock);
414 if (txSeqProx != nextQueuable)
415 // The provided transaction does not fill the next open sequence gap.
417
418 // Make sure they are not just topping off the account's queued
419 // sequence-based transactions.
420 if (auto const nextTxIter = txQAcct.transactions.upper_bound(nextQueuable);
421 nextTxIter != txQAcct.transactions.end() && nextTxIter->first.isSeq())
422 // There is a next transaction and it is sequence based. They are
423 // filling a real gap. Allow it.
424 return tesSUCCESS;
425
427}
428
429auto
430TxQ::erase(TxQ::FeeMultiSet::const_iterator_type candidateIter)
431 -> FeeMultiSet::iterator_type
432{
433 auto& txQAccount = byAccount_.at(candidateIter->account);
434 auto const seqProx = candidateIter->seqProxy;
435 auto const newCandidateIter = byFee_.erase(candidateIter);
436 // Now that the candidate has been removed from the
437 // intrusive list remove it from the TxQAccount
438 // so the memory can be freed.
439 [[maybe_unused]] auto const found = txQAccount.remove(seqProx);
440 XRPL_ASSERT(found, "ripple::TxQ::erase : account removed");
441
442 return newCandidateIter;
443}
444
445auto
446TxQ::eraseAndAdvance(TxQ::FeeMultiSet::const_iterator_type candidateIter)
447 -> FeeMultiSet::iterator_type
448{
449 auto& txQAccount = byAccount_.at(candidateIter->account);
450 auto const accountIter =
451 txQAccount.transactions.find(candidateIter->seqProxy);
452 XRPL_ASSERT(
453 accountIter != txQAccount.transactions.end(),
454 "ripple::TxQ::eraseAndAdvance : account found");
455
456 // Note that sequence-based transactions must be applied in sequence order
457 // from smallest to largest. But ticket-based transactions can be
458 // applied in any order.
459 XRPL_ASSERT(
460 candidateIter->seqProxy.isTicket() ||
461 accountIter == txQAccount.transactions.begin(),
462 "ripple::TxQ::eraseAndAdvance : ticket or sequence");
463 XRPL_ASSERT(
464 byFee_.iterator_to(accountIter->second) == candidateIter,
465 "ripple::TxQ::eraseAndAdvance : found in byFee");
466 auto const accountNextIter = std::next(accountIter);
467
468 // Check if the next transaction for this account is earlier in the queue,
469 // which means we skipped it earlier, and need to try it again.
470 auto const feeNextIter = std::next(candidateIter);
471 bool const useAccountNext =
472 accountNextIter != txQAccount.transactions.end() &&
473 accountNextIter->first > candidateIter->seqProxy &&
474 (feeNextIter == byFee_.end() ||
475 byFee_.value_comp()(accountNextIter->second, *feeNextIter));
476
477 auto const candidateNextIter = byFee_.erase(candidateIter);
478 txQAccount.transactions.erase(accountIter);
479
480 return useAccountNext ? byFee_.iterator_to(accountNextIter->second)
481 : candidateNextIter;
482}
483
484auto
486 TxQ::TxQAccount& txQAccount,
487 TxQ::TxQAccount::TxMap::const_iterator begin,
488 TxQ::TxQAccount::TxMap::const_iterator end) -> TxQAccount::TxMap::iterator
489{
490 for (auto it = begin; it != end; ++it)
491 {
492 byFee_.erase(byFee_.iterator_to(it->second));
493 }
494 return txQAccount.transactions.erase(begin, end);
495}
496
497ApplyResult
499 Application& app,
500 OpenView& view,
501 STTx const& tx,
502 TxQ::AccountMap::iterator const& accountIter,
503 TxQAccount::TxMap::iterator beginTxIter,
504 FeeLevel64 feeLevelPaid,
505 PreflightResult const& pfresult,
506 std::size_t const txExtraCount,
507 ApplyFlags flags,
508 FeeMetrics::Snapshot const& metricsSnapshot,
510{
511 SeqProxy const tSeqProx{tx.getSeqProxy()};
512 XRPL_ASSERT(
513 beginTxIter != accountIter->second.transactions.end(),
514 "ripple::TxQ::tryClearAccountQueueUpThruTx : non-empty accounts input");
515
516 // This check is only concerned with the range from
517 // [aSeqProxy, tSeqProxy)
518 auto endTxIter = accountIter->second.transactions.lower_bound(tSeqProx);
519 auto const dist = std::distance(beginTxIter, endTxIter);
520
521 auto const requiredTotalFeeLevel = FeeMetrics::escalatedSeriesFeeLevel(
522 metricsSnapshot, view, txExtraCount, dist + 1);
523 // If the computation for the total manages to overflow (however extremely
524 // unlikely), then there's no way we can confidently verify if the queue
525 // can be cleared.
526 if (!requiredTotalFeeLevel.first)
527 return {telINSUF_FEE_P, false};
528
529 auto const totalFeeLevelPaid = std::accumulate(
530 beginTxIter,
531 endTxIter,
532 feeLevelPaid,
533 [](auto const& total, auto const& txn) {
534 return total + txn.second.feeLevel;
535 });
536
537 // This transaction did not pay enough, so fall back to the normal process.
538 if (totalFeeLevelPaid < requiredTotalFeeLevel.second)
539 return {telINSUF_FEE_P, false};
540
541 // This transaction paid enough to clear out the queue.
542 // Attempt to apply the queued transactions.
543 for (auto it = beginTxIter; it != endTxIter; ++it)
544 {
545 auto txResult = it->second.apply(app, view, j);
546 // Succeed or fail, use up a retry, because if the overall
547 // process fails, we want the attempt to count. If it all
548 // succeeds, the MaybeTx will be destructed, so it'll be
549 // moot.
550 --it->second.retriesRemaining;
551 it->second.lastResult = txResult.ter;
552
553 // In TxQ::apply we note that it's possible for a transaction with
554 // a ticket to both be in the queue and in the ledger. And, while
555 // we're in TxQ::apply, it's too expensive to filter those out.
556 //
557 // So here in tryClearAccountQueueUpThruTx we just received a batch of
558 // queued transactions. And occasionally one of those is a ticketed
559 // transaction that is both in the queue and in the ledger. When
560 // that happens the queued transaction returns tefNO_TICKET.
561 //
562 // The transaction that returned tefNO_TICKET can never succeed
563 // and we'd like to get it out of the queue as soon as possible.
564 // The easiest way to do that from here is to treat the transaction
565 // as though it succeeded and attempt to clear the remaining
566 // transactions in the account queue. Then, if clearing the account
567 // is successful, we will have removed any ticketed transactions
568 // that can never succeed.
569 if (txResult.ter == tefNO_TICKET)
570 continue;
571
572 if (!txResult.applied)
573 {
574 // Transaction failed to apply. Fall back to the normal process.
575 return {txResult.ter, false};
576 }
577 }
578 // Apply the current tx. Because the state of the view has been changed
579 // by the queued txs, we also need to preclaim again.
580 auto const txResult = doApply(preclaim(pfresult, app, view), app, view);
581
582 if (txResult.applied)
583 {
584 // All of the queued transactions applied, so remove them from the
585 // queue.
586 endTxIter = erase(accountIter->second, beginTxIter, endTxIter);
587 // If `tx` is replacing a queued tx, delete that one, too.
588 if (endTxIter != accountIter->second.transactions.end() &&
589 endTxIter->first == tSeqProx)
590 erase(accountIter->second, endTxIter, std::next(endTxIter));
591 }
592
593 return txResult;
594}
595
596// Overview of considerations for when a transaction is accepted into the TxQ:
597//
598// These rules apply to the transactions in the queue owned by a single
599// account. Briefly, the primary considerations are:
600//
601// 1. Is the new transaction blocking?
602// 2. Is there an expiration gap in the account's sequence-based transactions?
603// 3. Does the new transaction replace one that is already in the TxQ?
604// 4. Is the transaction's sequence or ticket value acceptable for this account?
605// 5. Is the transaction likely to claim a fee?
606// 6. Is the queue full?
607//
608// Here are more details.
609//
610// 1. A blocking transaction is one that would change the validity of following
611// transactions for the issuing account. Examples of blocking transactions
612// include SetRegularKey and SignerListSet.
613//
614// A blocking transaction can only be added to the queue for an account if:
615//
616// a. The queue for that account is empty, or
617//
618// b. The blocking transaction replaces the only transaction in the
619// account's queue.
620//
621// While a blocker is in the account's queue no additional transactions
622// can be added to the queue.
623//
624// As a consequence, any blocker is always alone in the account's queue.
625//
626// 2. Transactions are given unique identifiers using either Sequence numbers
627// or Tickets. In general, sequence numbers in the queue are expected to
628// start with the account root sequence and increment from there. There
629// are two exceptions:
630//
631// a. Sequence holes left by ticket creation. If a transaction creates
632// more than one ticket, then the account sequence number will jump
633// by the number of tickets created. These holes are fine.
634//
635// b. Sequence gaps left by transaction expiration. If transactions stay
636// in the queue long enough they may expire. If that happens it leaves
637// gaps in the sequence numbers held by the queue. These gaps are
638// important because, if left in place, they will block any later
639// sequence-based transactions in the queue from working. Remember,
640// for any given account sequence numbers must be used consecutively
641// (with the exception of ticket-induced holes).
642//
643// 3. Transactions in the queue may be replaced. If a transaction in the
644// queue has the same SeqProxy as the incoming transaction, then the
645// transaction in the queue will be replaced if the following conditions
646// are met:
647//
648// a. The replacement must provide a fee that is at least 1.25 times the
649// fee of the transaction it is replacing.
650//
651// b. If the transaction being replaced has a sequence number, then
652// the transaction may not be after any expiration-based sequence
653// gaps in the account's queue.
654//
655// c. A replacement that is a blocker is only allowed if the transaction
656// it replaces is the only transaction in the account's queue.
657//
658// 4. The transaction that is not a replacement must have an acceptable
659// sequence or ticket ID:
660//
661// Sequence: For a given account's queue configuration there is at most
662// one sequence number that is acceptable to the queue for that account.
663// The rules are:
664//
665// a. If there are no sequence-based transactions in the queue and the
666// candidate transaction has a sequence number, that value must match
667// the account root's sequence.
668//
669// b. If there are sequence-based transactions in the queue for that
670// account and there are no expiration-based gaps, then the candidate's
671// sequence number must belong at the end of the list of sequences.
672//
673// c. If there are expiration-based gaps in the sequence-based
674// transactions in the account's queue, then the candidate's sequence
675// value must go precisely at the front of the first gap.
676//
677// Ticket: If there are no blockers or sequence gaps in the account's
678// queue, then there are many tickets that are acceptable to the queue
679// for that account. The rules are:
680//
681// a. If there are no blockers in the account's queue and the ticket
682// required by the transaction is in the ledger then the transaction
683// may be added to the account's queue.
684//
685// b. If there is a ticket-based blocker in the account's queue then
686// that blocker can be replaced.
687//
688// Note that it is not sufficient for the transaction that would create
689// the necessary ticket to be in the account's queue. The required ticket
690// must already be in the ledger. This avoids problems that can occur if
691// a ticket-creating transaction enters the queue but expires out of the
692// queue before its tickets are created.
693//
694// 5. The transaction must be likely to claim a fee. In general that is
695// checked by having preclaim return a tes or tec code.
696//
697// Extra work is done here to account for funds that other transactions
698// in the queue remove from the account.
699//
700// 6. The queue must not be full.
701//
702// a. Each account can queue up to a maximum of 10 transactions. Beyond
703// that transactions are rejected. There is an exception for this case
704// when filling expiration-based sequence gaps.
705//
706// b. The entire queue also has a (dynamic) maximum size. Transactions
707// beyond that limit are rejected.
708//
711 Application& app,
712 OpenView& view,
714 ApplyFlags flags,
716{
717 NumberSO stNumberSO{view.rules().enabled(fixUniversalNumber)};
718
719 // See if the transaction is valid, properly formed,
720 // etc. before doing potentially expensive queue
721 // replace and multi-transaction operations.
722 auto const pfresult = preflight(app, view.rules(), *tx, flags, j);
723 if (pfresult.ter != tesSUCCESS)
724 return {pfresult.ter, false};
725
726 // See if the transaction paid a high enough fee that it can go straight
727 // into the ledger.
728 if (auto directApplied = tryDirectApply(app, view, tx, flags, j))
729 return *directApplied;
730
731 // If we get past tryDirectApply() without returning then we expect
732 // one of the following to occur:
733 //
734 // o We will decide the transaction is unlikely to claim a fee.
735 // o The transaction paid a high enough fee that fee averaging will apply.
736 // o The transaction will be queued.
737
738 // If the account is not currently in the ledger, don't queue its tx.
739 auto const account = (*tx)[sfAccount];
740 Keylet const accountKey{keylet::account(account)};
741 auto const sleAccount = view.read(accountKey);
742 if (!sleAccount)
743 return {terNO_ACCOUNT, false};
744
745 // If the transaction needs a Ticket is that Ticket in the ledger?
746 SeqProxy const acctSeqProx = SeqProxy::sequence((*sleAccount)[sfSequence]);
747 SeqProxy const txSeqProx = tx->getSeqProxy();
748 if (txSeqProx.isTicket() &&
749 !view.exists(keylet::ticket(account, txSeqProx)))
750 {
751 if (txSeqProx.value() < acctSeqProx.value())
752 // The ticket number is low enough that it should already be
753 // in the ledger if it were ever going to exist.
754 return {tefNO_TICKET, false};
755
756 // We don't queue transactions that use Tickets unless
757 // we can find the Ticket in the ledger.
758 return {terPRE_TICKET, false};
759 }
760
762
763 // accountIter is not const because it may be updated further down.
764 AccountMap::iterator accountIter = byAccount_.find(account);
765 bool const accountIsInQueue = accountIter != byAccount_.end();
766
767 // _If_ the account is in the queue, then ignore any sequence-based
768 // queued transactions that slipped into the ledger while we were not
769 // watching. This does actually happen in the wild, but it's uncommon.
770 //
771 // Note that we _don't_ ignore queued ticket-based transactions that
772 // slipped into the ledger while we were not watching. It would be
773 // desirable to do so, but the measured cost was too high since we have
774 // to individually check each queued ticket against the ledger.
775 struct TxIter
776 {
777 TxIter(
778 TxQAccount::TxMap::iterator first_,
779 TxQAccount::TxMap::iterator end_)
780 : first(first_), end(end_)
781 {
782 }
783
784 TxQAccount::TxMap::iterator first;
785 TxQAccount::TxMap::iterator end;
786 };
787
788 std::optional<TxIter> const txIter =
789 [accountIter,
790 accountIsInQueue,
791 acctSeqProx]() -> std::optional<TxIter> {
792 if (!accountIsInQueue)
793 return {};
794
795 // Find the first transaction in the queue that we might apply.
796 TxQAccount::TxMap& acctTxs = accountIter->second.transactions;
797 TxQAccount::TxMap::iterator const firstIter =
798 acctTxs.lower_bound(acctSeqProx);
799
800 if (firstIter == acctTxs.end())
801 // Even though there may be transactions in the queue, there are
802 // none that we should pay attention to.
803 return {};
804
805 return {TxIter{firstIter, acctTxs.end()}};
806 }();
807
808 auto const acctTxCount{
809 !txIter ? 0 : std::distance(txIter->first, txIter->end)};
810
811 // Is tx a blocker? If so there are very limited conditions when it
812 // is allowed in the TxQ:
813 // 1. If the account's queue is empty or
814 // 2. If the blocker replaces the only entry in the account's queue.
815 auto const transactionID = tx->getTransactionID();
816 if (pfresult.consequences.isBlocker())
817 {
818 if (acctTxCount > 1)
819 {
820 // A blocker may not be co-resident with other transactions in
821 // the account's queue.
822 JLOG(j_.trace())
823 << "Rejecting blocker transaction " << transactionID
824 << ". Account has other queued transactions.";
825 return {telCAN_NOT_QUEUE_BLOCKS, false};
826 }
827 if (acctTxCount == 1 && (txSeqProx != txIter->first->first))
828 {
829 // The blocker is not replacing the lone queued transaction.
830 JLOG(j_.trace())
831 << "Rejecting blocker transaction " << transactionID
832 << ". Blocker does not replace lone queued transaction.";
833 return {telCAN_NOT_QUEUE_BLOCKS, false};
834 }
835 }
836
837 // If the transaction is intending to replace a transaction in the queue
838 // identify the one that might be replaced.
839 auto replacedTxIter = [accountIsInQueue, &accountIter, txSeqProx]()
841 if (accountIsInQueue)
842 {
843 TxQAccount& txQAcct = accountIter->second;
844 if (auto const existingIter = txQAcct.transactions.find(txSeqProx);
845 existingIter != txQAcct.transactions.end())
846 return existingIter;
847 }
848 return {};
849 }();
850
851 // We may need the base fee for multiple transactions or transaction
852 // replacement, so just pull it up now.
853 auto const metricsSnapshot = feeMetrics_.getSnapshot();
854 auto const feeLevelPaid = getFeeLevelPaid(view, *tx);
855 auto const requiredFeeLevel =
856 getRequiredFeeLevel(view, flags, metricsSnapshot, lock);
857
858 // Is there a blocker already in the account's queue? If so, don't
859 // allow additional transactions in the queue.
860 if (acctTxCount > 0)
861 {
862 // Allow tx to replace a blocker. Otherwise, if there's a
863 // blocker, we can't queue tx.
864 //
865 // We only need to check if txIter->first is a blocker because we
866 // require that a blocker be alone in the account's queue.
867 if (acctTxCount == 1 &&
868 txIter->first->second.consequences().isBlocker() &&
869 (txIter->first->first != txSeqProx))
870 {
871 return {telCAN_NOT_QUEUE_BLOCKED, false};
872 }
873
874 // Is there a transaction for the same account with the same
875 // SeqProxy already in the queue? If so we may replace the
876 // existing entry with this new transaction.
877 if (replacedTxIter)
878 {
879 // We are attempting to replace a transaction in the queue.
880 //
881 // Is the current transaction's fee higher than
882 // the queued transaction's fee + a percentage
883 TxQAccount::TxMap::iterator const& existingIter = *replacedTxIter;
884 auto requiredRetryLevel = increase(
885 existingIter->second.feeLevel, setup_.retrySequencePercent);
886 JLOG(j_.trace())
887 << "Found transaction in queue for account " << account
888 << " with " << txSeqProx << " new txn fee level is "
889 << feeLevelPaid << ", old txn fee level is "
890 << existingIter->second.feeLevel
891 << ", new txn needs fee level of " << requiredRetryLevel;
892 if (feeLevelPaid > requiredRetryLevel)
893 {
894 // Continue, leaving the queued transaction marked for removal.
895 // DO NOT REMOVE if the new tx fails, because there may
896 // be other txs dependent on it in the queue.
897 JLOG(j_.trace()) << "Removing transaction from queue "
898 << existingIter->second.txID << " in favor of "
899 << transactionID;
900 }
901 else
902 {
903 // Drop the current transaction
904 JLOG(j_.trace())
905 << "Ignoring transaction " << transactionID
906 << " in favor of queued " << existingIter->second.txID;
907 return {telCAN_NOT_QUEUE_FEE, false};
908 }
909 }
910 }
911
912 struct MultiTxn
913 {
914 ApplyViewImpl applyView;
915 OpenView openView;
916
917 MultiTxn(OpenView& view, ApplyFlags flags)
918 : applyView(&view, flags), openView(&applyView)
919 {
920 }
921 };
922
924
925 if (acctTxCount == 0)
926 {
927 // There are no queued transactions for this account. If the
928 // transaction has a sequence make sure it's valid (tickets
929 // are checked elsewhere).
930 if (txSeqProx.isSeq())
931 {
932 if (acctSeqProx > txSeqProx)
933 return {tefPAST_SEQ, false};
934 if (acctSeqProx < txSeqProx)
935 return {terPRE_SEQ, false};
936 }
937 }
938 else
939 {
940 // There are probably other transactions in the queue for this
941 // account. Make sure the new transaction can work with the others
942 // in the queue.
943 TxQAccount const& txQAcct = accountIter->second;
944
945 if (acctSeqProx > txSeqProx)
946 return {tefPAST_SEQ, false};
947
948 // Determine if we need a multiTxn object. Assuming the account
949 // is in the queue, there are two situations where we need to
950 // build multiTx:
951 // 1. If there are two or more transactions in the account's queue, or
952 // 2. If the account has a single queue entry, we may still need
953 // multiTxn, but only if that lone entry will not be replaced by tx.
954 bool requiresMultiTxn = false;
955 if (acctTxCount > 1 || !replacedTxIter)
956 {
957 // If the transaction is queueable, create the multiTxn
958 // object to hold the info we need to adjust for prior txns.
959 TER const ter{canBeHeld(
960 *tx,
961 flags,
962 view,
963 sleAccount,
964 accountIter,
965 replacedTxIter,
966 lock)};
967 if (!isTesSuccess(ter))
968 return {ter, false};
969
970 requiresMultiTxn = true;
971 }
972
973 if (requiresMultiTxn)
974 {
975 // See if adding this entry to the queue makes sense.
976 //
977 // o Transactions with sequences should start with the
978 // account's Sequence.
979 //
980 // o Additional transactions with Sequences should
981 // follow preceding sequence-based transactions with no
982 // gaps (except for those required by CreateTicket
983 // transactions).
984
985 // Find the entry in the queue that precedes the new
986 // transaction, if one does.
987 TxQAccount::TxMap::const_iterator const prevIter =
988 txQAcct.getPrevTx(txSeqProx);
989
990 // Does the new transaction go to the front of the queue?
991 // This can happen if:
992 // o A transaction in the queue with a Sequence expired, or
993 // o The current first thing in the queue has a Ticket and
994 // * The tx has a Ticket that precedes it or
995 // * txSeqProx == acctSeqProx.
996 XRPL_ASSERT(
997 prevIter != txIter->end, "ripple::TxQ::apply : not end");
998 if (prevIter == txIter->end || txSeqProx < prevIter->first)
999 {
1000 // The first Sequence number in the queue must be the
1001 // account's sequence.
1002 if (txSeqProx.isSeq())
1003 {
1004 if (txSeqProx < acctSeqProx)
1005 return {tefPAST_SEQ, false};
1006 else if (txSeqProx > acctSeqProx)
1007 return {terPRE_SEQ, false};
1008 }
1009 }
1010 else if (!replacedTxIter)
1011 {
1012 // The current transaction is not replacing a transaction
1013 // in the queue. So apparently there's a transaction in
1014 // front of this one in the queue. Make sure the current
1015 // transaction fits in proper sequence order with the
1016 // previous transaction or is a ticket.
1017 if (txSeqProx.isSeq() &&
1018 nextQueuableSeqImpl(sleAccount, lock) != txSeqProx)
1019 return {telCAN_NOT_QUEUE, false};
1020 }
1021
1022 // Sum fees and spending for all of the queued transactions
1023 // so we know how much to remove from the account balance
1024 // for the trial preclaim.
1025 XRPAmount potentialSpend = beast::zero;
1026 XRPAmount totalFee = beast::zero;
1027 for (auto iter = txIter->first; iter != txIter->end; ++iter)
1028 {
1029 // If we're replacing this transaction don't include
1030 // the replaced transaction's XRP spend. Otherwise add
1031 // it to potentialSpend.
1032 if (iter->first != txSeqProx)
1033 {
1034 totalFee += iter->second.consequences().fee();
1035 potentialSpend +=
1036 iter->second.consequences().potentialSpend();
1037 }
1038 else if (std::next(iter) != txIter->end)
1039 {
1040 // The fee for the candidate transaction _should_ be
1041 // counted if it's replacing a transaction in the middle
1042 // of the queue.
1043 totalFee += pfresult.consequences.fee();
1044 potentialSpend += pfresult.consequences.potentialSpend();
1045 }
1046 }
1047
1048 /* Check if the total fees in flight are greater
1049 than the account's current balance, or the
1050 minimum reserve. If it is, then there's a risk
1051 that the fees won't get paid, so drop this
1052 transaction with a telCAN_NOT_QUEUE_BALANCE result.
1053 Assume: Minimum account reserve is 20 XRP.
1054 Example 1: If I have 1,000,000 XRP, I can queue
1055 a transaction with a 1,000,000 XRP fee. In
1056 the meantime, some other transaction may
1057 lower my balance (eg. taking an offer). When
1058 the transaction executes, I will either
1059 spend the 1,000,000 XRP, or the transaction
1060 will get stuck in the queue with a
1061 `terINSUF_FEE_B`.
1062 Example 2: If I have 1,000,000 XRP, and I queue
1063 10 transactions with 0.1 XRP fee, I have 1 XRP
1064 in flight. I can now queue another tx with a
1065 999,999 XRP fee. When the first 10 execute,
1066 they're guaranteed to pay their fee, because
1067 nothing can eat into my reserve. The last
1068 transaction, again, will either spend the
1069 999,999 XRP, or get stuck in the queue.
1070 Example 3: If I have 1,000,000 XRP, and I queue
1071 7 transactions with 3 XRP fee, I have 21 XRP
1072 in flight. I can not queue any more transactions,
1073 no matter how small or large the fee.
1074 Transactions stuck in the queue are mitigated by
1075 LastLedgerSeq and MaybeTx::retriesRemaining.
1076 */
1077 auto const balance = (*sleAccount)[sfBalance].xrp();
1078 /* Get the minimum possible account reserve. If it
1079 is at least 10 * the base fee, and fees exceed
1080 this amount, the transaction can't be queued.
1081
1082 Currently typical fees are several orders
1083 of magnitude smaller than any current or expected
1084 future reserve. This calculation is simpler than
1085 trying to figure out the potential changes to
1086 the ownerCount that may occur to the account
1087 as a result of these transactions, and removes
1088 any need to account for other transactions that
1089 may affect the owner count while these are queued.
1090
1091 However, in case the account reserve is on a
1092 comparable scale to the base fee, ignore the
1093 reserve. Only check the account balance.
1094 */
1095 auto const reserve = view.fees().reserve;
1096 auto const base = view.fees().base;
1097 if (totalFee >= balance ||
1098 (reserve > 10 * base && totalFee >= reserve))
1099 {
1100 // Drop the current transaction
1101 JLOG(j_.trace()) << "Ignoring transaction " << transactionID
1102 << ". Total fees in flight too high.";
1103 return {telCAN_NOT_QUEUE_BALANCE, false};
1104 }
1105
1106 // Create the test view from the current view.
1107 multiTxn.emplace(view, flags);
1108
1109 auto const sleBump = multiTxn->applyView.peek(accountKey);
1110 if (!sleBump)
1111 return {tefINTERNAL, false};
1112
1113 // Subtract the fees and XRP spend from all of the other
1114 // transactions in the queue. That prevents a transaction
1115 // inserted in the middle from fouling up later transactions.
1116 auto const potentialTotalSpend = totalFee +
1117 std::min(balance - std::min(balance, reserve), potentialSpend);
1118 XRPL_ASSERT(
1119 potentialTotalSpend > XRPAmount{0} ||
1120 (potentialTotalSpend == XRPAmount{0} &&
1121 multiTxn->applyView.fees().base == 0),
1122 "ripple::TxQ::apply : total spend check");
1123 sleBump->setFieldAmount(sfBalance, balance - potentialTotalSpend);
1124 // The transaction's sequence/ticket will be valid when the other
1125 // transactions in the queue have been processed. If the tx has a
1126 // sequence, set the account to match it. If it has a ticket, use
1127 // the next queueable sequence, which is the closest approximation
1128 // to the most successful case.
1129 sleBump->at(sfSequence) = txSeqProx.isSeq()
1130 ? txSeqProx.value()
1131 : nextQueuableSeqImpl(sleAccount, lock).value();
1132 }
1133 }
1134
1135 // See if the transaction is likely to claim a fee.
1136 //
1137 // We assume that if the transaction survives preclaim(), then it
1138 // is likely to claim a fee. However we can't allow preclaim to
1139 // check the sequence/ticket. Transactions in the queue may be
1140 // responsible for increasing the sequence, and mocking those up
1141 // is non-trivially expensive.
1142 //
1143 // Note that earlier code has already verified that the sequence/ticket
1144 // is valid. So we use a special entry point that runs all of the
1145 // preclaim checks with the exception of the sequence check.
1146 auto const pcresult =
1147 preclaim(pfresult, app, multiTxn ? multiTxn->openView : view);
1148 if (!pcresult.likelyToClaimFee)
1149 return {pcresult.ter, false};
1150
1151 // Too low of a fee should get caught by preclaim
1152 XRPL_ASSERT(feeLevelPaid >= baseLevel, "ripple::TxQ::apply : minimum fee");
1153
1154 JLOG(j_.trace()) << "Transaction " << transactionID << " from account "
1155 << account << " has fee level of " << feeLevelPaid
1156 << " needs at least " << requiredFeeLevel
1157 << " to get in the open ledger, which has "
1158 << view.txCount() << " entries.";
1159
1160 /* Quick heuristic check to see if it's worth checking that this tx has
1161 a high enough fee to clear all the txs in front of it in the queue.
1162 1) Transaction is trying to get into the open ledger.
1163 2) Transaction must be Sequence-based.
1164 3) Must be an account already in the queue.
1165 4) Must be have passed the multiTxn checks (tx is not the next
1166 account seq, the skipped seqs are in the queue, the reserve
1167 doesn't get exhausted, etc).
1168 5) The next transaction must not have previously tried and failed
1169 to apply to an open ledger.
1170 6) Tx must be paying more than just the required fee level to
1171 get itself into the queue.
1172 7) Fee level must be escalated above the default (if it's not,
1173 then the first tx _must_ have failed to process in `accept`
1174 for some other reason. Tx is allowed to queue in case
1175 conditions change, but don't waste the effort to clear).
1176 */
1177 if (txSeqProx.isSeq() && txIter && multiTxn.has_value() &&
1178 txIter->first->second.retriesRemaining == MaybeTx::retriesAllowed &&
1179 feeLevelPaid > requiredFeeLevel && requiredFeeLevel > baseLevel)
1180 {
1181 OpenView sandbox(open_ledger, &view, view.rules());
1182
1183 auto result = tryClearAccountQueueUpThruTx(
1184 app,
1185 sandbox,
1186 *tx,
1187 accountIter,
1188 txIter->first,
1189 feeLevelPaid,
1190 pfresult,
1191 view.txCount(),
1192 flags,
1193 metricsSnapshot,
1194 j);
1195 if (result.applied)
1196 {
1197 sandbox.apply(view);
1198 /* Can't erase (*replacedTxIter) here because success
1199 implies that it has already been deleted.
1200 */
1201 return result;
1202 }
1203 }
1204
1205 // If `multiTxn` has a value, then `canBeHeld` has already been verified
1206 if (!multiTxn)
1207 {
1208 TER const ter{canBeHeld(
1209 *tx, flags, view, sleAccount, accountIter, replacedTxIter, lock)};
1210 if (!isTesSuccess(ter))
1211 {
1212 // Bail, transaction cannot be held
1213 JLOG(j_.trace())
1214 << "Transaction " << transactionID << " cannot be held";
1215 return {ter, false};
1216 }
1217 }
1218
1219 // If the queue is full, decide whether to drop the current
1220 // transaction or the last transaction for the account with
1221 // the lowest fee.
1222 if (!replacedTxIter && isFull())
1223 {
1224 auto lastRIter = byFee_.rbegin();
1225 while (lastRIter != byFee_.rend() && lastRIter->account == account)
1226 {
1227 ++lastRIter;
1228 }
1229 if (lastRIter == byFee_.rend())
1230 {
1231 // The only way this condition can happen is if the entire
1232 // queue is filled with transactions from this account. This
1233 // is impossible with default settings - minimum queue size
1234 // is 2000, and an account can only have 10 transactions
1235 // queued. However, it can occur if settings are changed,
1236 // and there is unit test coverage.
1237 JLOG(j_.info())
1238 << "Queue is full, and transaction " << transactionID
1239 << " would kick a transaction from the same account ("
1240 << account << ") out of the queue.";
1241 return {telCAN_NOT_QUEUE_FULL, false};
1242 }
1243 auto const& endAccount = byAccount_.at(lastRIter->account);
1244 auto endEffectiveFeeLevel = [&]() {
1245 // Compute the average of all the txs for the endAccount,
1246 // but only if the last tx in the queue has a lower fee
1247 // level than this candidate tx.
1248 if (lastRIter->feeLevel > feeLevelPaid ||
1249 endAccount.transactions.size() == 1)
1250 return lastRIter->feeLevel;
1251
1253 auto endTotal = std::accumulate(
1254 endAccount.transactions.begin(),
1255 endAccount.transactions.end(),
1257 [&](auto const& total,
1258 auto const& txn) -> std::pair<FeeLevel64, FeeLevel64> {
1259 // Check for overflow.
1260 auto next =
1261 txn.second.feeLevel / endAccount.transactions.size();
1262 auto mod =
1263 txn.second.feeLevel % endAccount.transactions.size();
1264 if (total.first >= max - next || total.second >= max - mod)
1265 return {max, FeeLevel64{0}};
1266
1267 return {total.first + next, total.second + mod};
1268 });
1269 return endTotal.first +
1270 endTotal.second / endAccount.transactions.size();
1271 }();
1272 if (feeLevelPaid > endEffectiveFeeLevel)
1273 {
1274 // The queue is full, and this transaction is more
1275 // valuable, so kick out the cheapest transaction.
1276 auto dropRIter = endAccount.transactions.rbegin();
1277 XRPL_ASSERT(
1278 dropRIter->second.account == lastRIter->account,
1279 "ripple::TxQ::apply : cheapest transaction found");
1280 JLOG(j_.info())
1281 << "Removing last item of account " << lastRIter->account
1282 << " from queue with average fee of " << endEffectiveFeeLevel
1283 << " in favor of " << transactionID << " with fee of "
1284 << feeLevelPaid;
1285 erase(byFee_.iterator_to(dropRIter->second));
1286 }
1287 else
1288 {
1289 JLOG(j_.info())
1290 << "Queue is full, and transaction " << transactionID
1291 << " fee is lower than end item's account average fee";
1292 return {telCAN_NOT_QUEUE_FULL, false};
1293 }
1294 }
1295
1296 // Hold the transaction in the queue.
1297 if (replacedTxIter)
1298 {
1299 replacedTxIter = removeFromByFee(replacedTxIter, tx);
1300 }
1301
1302 if (!accountIsInQueue)
1303 {
1304 // Create a new TxQAccount object and add the byAccount lookup.
1305 [[maybe_unused]] bool created = false;
1306 std::tie(accountIter, created) =
1307 byAccount_.emplace(account, TxQAccount(tx));
1308 XRPL_ASSERT(created, "ripple::TxQ::apply : account created");
1309 }
1310 // Modify the flags for use when coming out of the queue.
1311 // These changes _may_ cause an extra `preflight`, but as long as
1312 // the `HashRouter` still knows about the transaction, the signature
1313 // will not be checked again, so the cost should be minimal.
1314
1315 // Don't allow soft failures, which can lead to retries
1316 flags &= ~tapRETRY;
1317
1318 auto& candidate = accountIter->second.add(
1319 {tx, transactionID, feeLevelPaid, flags, pfresult});
1320
1321 // Then index it into the byFee lookup.
1322 byFee_.insert(candidate);
1323 JLOG(j_.debug()) << "Added transaction " << candidate.txID
1324 << " with result " << transToken(pfresult.ter) << " from "
1325 << (accountIsInQueue ? "existing" : "new") << " account "
1326 << candidate.account << " to queue."
1327 << " Flags: " << flags;
1328
1329 return {terQUEUED, false};
1330}
1331
1332/*
1333 1. Update the fee metrics based on the fee levels of the
1334 txs in the validated ledger and whether consensus is
1335 slow.
1336 2. Adjust the maximum queue size to be enough to hold
1337 `ledgersInQueue` ledgers.
1338 3. Remove any transactions from the queue for which the
1339 `LastLedgerSequence` has passed.
1340 4. Remove any account objects that have no candidates
1341 under them.
1342
1343*/
1344void
1345TxQ::processClosedLedger(Application& app, ReadView const& view, bool timeLeap)
1346{
1347 std::lock_guard lock(mutex_);
1348
1349 feeMetrics_.update(app, view, timeLeap, setup_);
1350 auto const& snapshot = feeMetrics_.getSnapshot();
1351
1352 auto ledgerSeq = view.info().seq;
1353
1354 if (!timeLeap)
1355 maxSize_ = std::max(
1356 snapshot.txnsExpected * setup_.ledgersInQueue, setup_.queueSizeMin);
1357
1358 // Remove any queued candidates whose LastLedgerSequence has gone by.
1359 for (auto candidateIter = byFee_.begin(); candidateIter != byFee_.end();)
1360 {
1361 if (candidateIter->lastValid && *candidateIter->lastValid <= ledgerSeq)
1362 {
1363 byAccount_.at(candidateIter->account).dropPenalty = true;
1364 candidateIter = erase(candidateIter);
1365 }
1366 else
1367 {
1368 ++candidateIter;
1369 }
1370 }
1371
1372 // Remove any TxQAccounts that don't have candidates
1373 // under them
1374 for (auto txQAccountIter = byAccount_.begin();
1375 txQAccountIter != byAccount_.end();)
1376 {
1377 if (txQAccountIter->second.empty())
1378 txQAccountIter = byAccount_.erase(txQAccountIter);
1379 else
1380 ++txQAccountIter;
1381 }
1382}
1383
1384/*
1385 How the txs are moved from the queue to the new open ledger.
1386
1387 1. Iterate over the txs from highest fee level to lowest.
1388 For each tx:
1389 a) Is this the first tx in the queue for this account?
1390 No: Skip this tx. We'll come back to it later.
1391 Yes: Continue to the next sub-step.
1392 b) Is the tx fee level less than the current required
1393 fee level?
1394 Yes: Stop iterating. Continue to the next step.
1395 No: Try to apply the transaction. Did it apply?
1396 Yes: Take it out of the queue. Continue with
1397 the next appropriate candidate (see below).
1398 No: Did it get a tef, tem, or tel, or has it
1399 retried `MaybeTx::retriesAllowed`
1400 times already?
1401 Yes: Take it out of the queue. Continue
1402 with the next appropriate candidate
1403 (see below).
1404 No: Leave it in the queue, track the retries,
1405 and continue iterating.
1406 2. Return indicator of whether the open ledger was modified.
1407
1408 "Appropriate candidate" is defined as the tx that has the
1409 highest fee level of:
1410 * the tx for the current account with the next sequence.
1411 * the next tx in the queue, simply ordered by fee.
1412*/
1413bool
1414TxQ::accept(Application& app, OpenView& view)
1415{
1416 /* Move transactions from the queue from largest fee level to smallest.
1417 As we add more transactions, the required fee level will increase.
1418 Stop when the transaction fee level gets lower than the required fee
1419 level.
1420 */
1421
1422 auto ledgerChanged = false;
1423
1424 std::lock_guard lock(mutex_);
1425
1426 auto const metricsSnapshot = feeMetrics_.getSnapshot();
1427
1428 for (auto candidateIter = byFee_.begin(); candidateIter != byFee_.end();)
1429 {
1430 auto& account = byAccount_.at(candidateIter->account);
1431 auto const beginIter = account.transactions.begin();
1432 if (candidateIter->seqProxy.isSeq() &&
1433 candidateIter->seqProxy > beginIter->first)
1434 {
1435 // There is a sequence transaction at the front of the queue and
1436 // candidate has a later sequence, so skip this candidate. We
1437 // need to process sequence-based transactions in sequence order.
1438 JLOG(j_.trace())
1439 << "Skipping queued transaction " << candidateIter->txID
1440 << " from account " << candidateIter->account
1441 << " as it is not the first.";
1442 candidateIter++;
1443 continue;
1444 }
1445 auto const requiredFeeLevel =
1446 getRequiredFeeLevel(view, tapNONE, metricsSnapshot, lock);
1447 auto const feeLevelPaid = candidateIter->feeLevel;
1448 JLOG(j_.trace()) << "Queued transaction " << candidateIter->txID
1449 << " from account " << candidateIter->account
1450 << " has fee level of " << feeLevelPaid
1451 << " needs at least " << requiredFeeLevel;
1452 if (feeLevelPaid >= requiredFeeLevel)
1453 {
1454 JLOG(j_.trace()) << "Applying queued transaction "
1455 << candidateIter->txID << " to open ledger.";
1456
1457 auto const [txnResult, didApply, _metadata] =
1458 candidateIter->apply(app, view, j_);
1459
1460 if (didApply)
1461 {
1462 // Remove the candidate from the queue
1463 JLOG(j_.debug())
1464 << "Queued transaction " << candidateIter->txID
1465 << " applied successfully with " << transToken(txnResult)
1466 << ". Remove from queue.";
1467
1468 candidateIter = eraseAndAdvance(candidateIter);
1469 ledgerChanged = true;
1470 }
1471 else if (
1472 isTefFailure(txnResult) || isTemMalformed(txnResult) ||
1473 candidateIter->retriesRemaining <= 0)
1474 {
1475 if (candidateIter->retriesRemaining <= 0)
1476 account.retryPenalty = true;
1477 else
1478 account.dropPenalty = true;
1479 JLOG(j_.debug()) << "Queued transaction " << candidateIter->txID
1480 << " failed with " << transToken(txnResult)
1481 << ". Remove from queue.";
1482 candidateIter = eraseAndAdvance(candidateIter);
1483 }
1484 else
1485 {
1486 JLOG(j_.debug()) << "Queued transaction " << candidateIter->txID
1487 << " failed with " << transToken(txnResult)
1488 << ". Leave in queue."
1489 << " Applied: " << didApply
1490 << ". Flags: " << candidateIter->flags;
1491 if (account.retryPenalty && candidateIter->retriesRemaining > 2)
1492 candidateIter->retriesRemaining = 1;
1493 else
1494 --candidateIter->retriesRemaining;
1495 candidateIter->lastResult = txnResult;
1496 if (account.dropPenalty && account.transactions.size() > 1 &&
1497 isFull<95>())
1498 {
1499 // The queue is close to full, this account has multiple
1500 // txs queued, and this account has had a transaction
1501 // fail.
1502 if (candidateIter->seqProxy.isTicket())
1503 {
1504 // Since the failed transaction has a ticket, order
1505 // doesn't matter. Drop this one.
1506 JLOG(j_.info())
1507 << "Queue is nearly full, and transaction "
1508 << candidateIter->txID << " failed with "
1509 << transToken(txnResult)
1510 << ". Removing ticketed tx from account "
1511 << account.account;
1512 candidateIter = eraseAndAdvance(candidateIter);
1513 }
1514 else
1515 {
1516 // Even though we're giving this transaction another
1517 // chance, chances are it won't recover. To avoid
1518 // making things worse, drop the _last_ transaction for
1519 // this account.
1520 auto dropRIter = account.transactions.rbegin();
1521 XRPL_ASSERT(
1522 dropRIter->second.account == candidateIter->account,
1523 "ripple::TxQ::accept : account check");
1524
1525 JLOG(j_.info())
1526 << "Queue is nearly full, and transaction "
1527 << candidateIter->txID << " failed with "
1528 << transToken(txnResult)
1529 << ". Removing last item from account "
1530 << account.account;
1531 auto endIter = byFee_.iterator_to(dropRIter->second);
1532 if (endIter != candidateIter)
1533 erase(endIter);
1534 ++candidateIter;
1535 }
1536 }
1537 else
1538 ++candidateIter;
1539 }
1540 }
1541 else
1542 {
1543 break;
1544 }
1545 }
1546
1547 // All transactions that can be moved out of the queue into the open
1548 // ledger have been. Rebuild the queue using the open ledger's
1549 // parent hash, so that transactions paying the same fee are
1550 // reordered.
1551 LedgerHash const& parentHash = view.info().parentHash;
1552 if (parentHash == parentHash_)
1553 JLOG(j_.warn()) << "Parent ledger hash unchanged from " << parentHash;
1554 else
1555 parentHash_ = parentHash;
1556
1557 [[maybe_unused]] auto const startingSize = byFee_.size();
1558 // byFee_ doesn't "own" the candidate objects inside it, so it's
1559 // perfectly safe to wipe it and start over, repopulating from
1560 // byAccount_.
1561 //
1562 // In the absence of a "re-sort the list in place" function, this
1563 // was the fastest method tried to repopulate the list.
1564 // Other methods included: create a new list and moving items over one at a
1565 // time, create a new list and merge the old list into it.
1566 byFee_.clear();
1567
1568 MaybeTx::parentHashComp = parentHash;
1569
1570 for (auto& [_, account] : byAccount_)
1571 {
1572 for (auto& [_, candidate] : account.transactions)
1573 {
1574 byFee_.insert(candidate);
1575 }
1576 }
1577 XRPL_ASSERT(
1578 byFee_.size() == startingSize,
1579 "ripple::TxQ::accept : byFee size match");
1580
1581 return ledgerChanged;
1582}
1583
1584// Public entry point for nextQueuableSeq().
1585//
1586// Acquires a lock and calls the implementation.
1588TxQ::nextQueuableSeq(std::shared_ptr<SLE const> const& sleAccount) const
1589{
1590 std::lock_guard<std::mutex> lock(mutex_);
1591 return nextQueuableSeqImpl(sleAccount, lock);
1592}
1593
1594// The goal is to return a SeqProxy for a sequence that will fill the next
1595// available hole in the queue for the passed in account.
1596//
1597// If there are queued transactions for the account then the first viable
1598// sequence number, that is not used by a transaction in the queue, must
1599// be found and returned.
1601TxQ::nextQueuableSeqImpl(
1602 std::shared_ptr<SLE const> const& sleAccount,
1603 std::lock_guard<std::mutex> const&) const
1604{
1605 // If the account is not in the ledger or a non-account was passed
1606 // then return zero. We have no idea.
1607 if (!sleAccount || sleAccount->getType() != ltACCOUNT_ROOT)
1608 return SeqProxy::sequence(0);
1609
1610 SeqProxy const acctSeqProx = SeqProxy::sequence((*sleAccount)[sfSequence]);
1611
1612 // If the account is not in the queue then acctSeqProx is good enough.
1613 auto const accountIter = byAccount_.find((*sleAccount)[sfAccount]);
1614 if (accountIter == byAccount_.end() ||
1615 accountIter->second.transactions.empty())
1616 return acctSeqProx;
1617
1618 TxQAccount::TxMap const& acctTxs = accountIter->second.transactions;
1619
1620 // Ignore any sequence-based queued transactions that slipped into the
1621 // ledger while we were not watching. This does actually happen in the
1622 // wild, but it's uncommon.
1623 TxQAccount::TxMap::const_iterator txIter = acctTxs.lower_bound(acctSeqProx);
1624
1625 if (txIter == acctTxs.end() || !txIter->first.isSeq() ||
1626 txIter->first != acctSeqProx)
1627 // Either...
1628 // o There are no queued sequence-based transactions equal to or
1629 // following acctSeqProx or
1630 // o acctSeqProx is not currently in the queue.
1631 // So acctSeqProx is as good as it gets.
1632 return acctSeqProx;
1633
1634 // There are sequence-based transactions queued that follow acctSeqProx.
1635 // Locate the first opening to put a transaction into.
1636 SeqProxy attempt = txIter->second.consequences().followingSeq();
1637 while (++txIter != acctTxs.cend())
1638 {
1639 if (attempt < txIter->first)
1640 break;
1641
1642 attempt = txIter->second.consequences().followingSeq();
1643 }
1644 return attempt;
1645}
1646
1648TxQ::getRequiredFeeLevel(
1649 OpenView& view,
1650 ApplyFlags flags,
1651 FeeMetrics::Snapshot const& metricsSnapshot,
1652 std::lock_guard<std::mutex> const& lock) const
1653{
1654 return FeeMetrics::scaleFeeLevel(metricsSnapshot, view);
1655}
1656
1658TxQ::tryDirectApply(
1659 Application& app,
1660 OpenView& view,
1662 ApplyFlags flags,
1664{
1665 auto const account = (*tx)[sfAccount];
1666 auto const sleAccount = view.read(keylet::account(account));
1667
1668 // Don't attempt to direct apply if the account is not in the ledger.
1669 if (!sleAccount)
1670 return {};
1671
1672 SeqProxy const acctSeqProx = SeqProxy::sequence((*sleAccount)[sfSequence]);
1673 SeqProxy const txSeqProx = tx->getSeqProxy();
1674
1675 // Can only directly apply if the transaction sequence matches the account
1676 // sequence or if the transaction uses a ticket.
1677 if (txSeqProx.isSeq() && txSeqProx != acctSeqProx)
1678 return {};
1679
1680 FeeLevel64 const requiredFeeLevel = [this, &view, flags]() {
1681 std::lock_guard lock(mutex_);
1682 return getRequiredFeeLevel(
1683 view, flags, feeMetrics_.getSnapshot(), lock);
1684 }();
1685
1686 // If the transaction's fee is high enough we may be able to put the
1687 // transaction straight into the ledger.
1688 FeeLevel64 const feeLevelPaid = getFeeLevelPaid(view, *tx);
1689
1690 if (feeLevelPaid >= requiredFeeLevel)
1691 {
1692 // Attempt to apply the transaction directly.
1693 auto const transactionID = tx->getTransactionID();
1694 JLOG(j_.trace()) << "Applying transaction " << transactionID
1695 << " to open ledger.";
1696
1697 auto const [txnResult, didApply, metadata] =
1698 ripple::apply(app, view, *tx, flags, j);
1699
1700 JLOG(j_.trace()) << "New transaction " << transactionID
1701 << (didApply ? " applied successfully with "
1702 : " failed with ")
1703 << transToken(txnResult);
1704
1705 if (didApply)
1706 {
1707 // If the applied transaction replaced a transaction in the
1708 // queue then remove the replaced transaction.
1709 std::lock_guard lock(mutex_);
1710
1711 AccountMap::iterator accountIter = byAccount_.find(account);
1712 if (accountIter != byAccount_.end())
1713 {
1714 TxQAccount& txQAcct = accountIter->second;
1715 if (auto const existingIter =
1716 txQAcct.transactions.find(txSeqProx);
1717 existingIter != txQAcct.transactions.end())
1718 {
1719 removeFromByFee(existingIter, tx);
1720 }
1721 }
1722 }
1723 return ApplyResult{txnResult, didApply, metadata};
1724 }
1725 return {};
1726}
1727
1729TxQ::removeFromByFee(
1730 std::optional<TxQAccount::TxMap::iterator> const& replacedTxIter,
1732{
1733 if (replacedTxIter && tx)
1734 {
1735 // If the transaction we're holding replaces a transaction in the
1736 // queue, remove the transaction that is being replaced.
1737 auto deleteIter = byFee_.iterator_to((*replacedTxIter)->second);
1738 XRPL_ASSERT(
1739 deleteIter != byFee_.end(),
1740 "ripple::TxQ::removeFromByFee : found in byFee");
1741 XRPL_ASSERT(
1742 &(*replacedTxIter)->second == &*deleteIter,
1743 "ripple::TxQ::removeFromByFee : matching transaction");
1744 XRPL_ASSERT(
1745 deleteIter->seqProxy == tx->getSeqProxy(),
1746 "ripple::TxQ::removeFromByFee : matching sequence");
1747 XRPL_ASSERT(
1748 deleteIter->account == (*tx)[sfAccount],
1749 "ripple::TxQ::removeFromByFee : matching account");
1750
1751 erase(deleteIter);
1752 }
1753 return std::nullopt;
1754}
1755
1757TxQ::getMetrics(OpenView const& view) const
1758{
1759 Metrics result;
1760
1761 std::lock_guard lock(mutex_);
1762
1763 auto const snapshot = feeMetrics_.getSnapshot();
1764
1765 result.txCount = byFee_.size();
1766 result.txQMaxSize = maxSize_;
1767 result.txInLedger = view.txCount();
1768 result.txPerLedger = snapshot.txnsExpected;
1769 result.referenceFeeLevel = baseLevel;
1770 result.minProcessingFeeLevel =
1771 isFull() ? byFee_.rbegin()->feeLevel + FeeLevel64{1} : baseLevel;
1772 result.medFeeLevel = snapshot.escalationMultiplier;
1773 result.openLedgerFeeLevel = FeeMetrics::scaleFeeLevel(snapshot, view);
1774
1775 return result;
1776}
1777
1779TxQ::getTxRequiredFeeAndSeq(
1780 OpenView const& view,
1781 std::shared_ptr<STTx const> const& tx) const
1782{
1783 auto const account = (*tx)[sfAccount];
1784
1785 std::lock_guard lock(mutex_);
1786
1787 auto const snapshot = feeMetrics_.getSnapshot();
1788 auto const baseFee = calculateBaseFee(view, *tx);
1789 auto const fee = FeeMetrics::scaleFeeLevel(snapshot, view);
1790
1791 auto const sle = view.read(keylet::account(account));
1792
1793 std::uint32_t const accountSeq = sle ? (*sle)[sfSequence] : 0;
1794 std::uint32_t const availableSeq = nextQueuableSeqImpl(sle, lock).value();
1795 return {
1796 mulDiv(fee, baseFee, baseLevel)
1798 accountSeq,
1799 availableSeq};
1800}
1801
1803TxQ::getAccountTxs(AccountID const& account) const
1804{
1806
1807 std::lock_guard lock(mutex_);
1808
1809 AccountMap::const_iterator const accountIter{byAccount_.find(account)};
1810
1811 if (accountIter == byAccount_.end() ||
1812 accountIter->second.transactions.empty())
1813 return result;
1814
1815 result.reserve(accountIter->second.transactions.size());
1816 for (auto const& tx : accountIter->second.transactions)
1817 {
1818 result.emplace_back(tx.second.getTxDetails());
1819 }
1820 return result;
1821}
1822
1824TxQ::getTxs() const
1825{
1827
1828 std::lock_guard lock(mutex_);
1829
1830 result.reserve(byFee_.size());
1831
1832 for (auto const& tx : byFee_)
1833 result.emplace_back(tx.getTxDetails());
1834
1835 return result;
1836}
1837
1839TxQ::doRPC(Application& app) const
1840{
1841 auto const view = app.openLedger().current();
1842 if (!view)
1843 {
1844 BOOST_ASSERT(false);
1845 return {};
1846 }
1847
1848 auto const metrics = getMetrics(*view);
1849
1851
1852 auto& levels = ret[jss::levels] = Json::objectValue;
1853
1854 ret[jss::ledger_current_index] = view->info().seq;
1855 ret[jss::expected_ledger_size] = std::to_string(metrics.txPerLedger);
1856 ret[jss::current_ledger_size] = std::to_string(metrics.txInLedger);
1857 ret[jss::current_queue_size] = std::to_string(metrics.txCount);
1858 if (metrics.txQMaxSize)
1859 ret[jss::max_queue_size] = std::to_string(*metrics.txQMaxSize);
1860
1861 levels[jss::reference_level] = to_string(metrics.referenceFeeLevel);
1862 levels[jss::minimum_level] = to_string(metrics.minProcessingFeeLevel);
1863 levels[jss::median_level] = to_string(metrics.medFeeLevel);
1864 levels[jss::open_ledger_level] = to_string(metrics.openLedgerFeeLevel);
1865
1866 auto const baseFee = view->fees().base;
1867 // If the base fee is 0 drops, but escalation has kicked in, treat the
1868 // base fee as if it is 1 drop, which makes the rest of the math
1869 // work.
1870 auto const effectiveBaseFee = [&baseFee, &metrics]() {
1871 if (!baseFee && metrics.openLedgerFeeLevel != metrics.referenceFeeLevel)
1872 return XRPAmount{1};
1873 return baseFee;
1874 }();
1875 auto& drops = ret[jss::drops] = Json::Value();
1876
1877 drops[jss::base_fee] = to_string(baseFee);
1878 drops[jss::median_fee] = to_string(toDrops(metrics.medFeeLevel, baseFee));
1879 drops[jss::minimum_fee] = to_string(toDrops(
1880 metrics.minProcessingFeeLevel,
1881 metrics.txCount >= metrics.txQMaxSize ? effectiveBaseFee : baseFee));
1882 auto openFee = toDrops(metrics.openLedgerFeeLevel, effectiveBaseFee);
1883 if (effectiveBaseFee &&
1884 toFeeLevel(openFee, effectiveBaseFee) < metrics.openLedgerFeeLevel)
1885 openFee += 1;
1886 drops[jss::open_ledger_fee] = to_string(openFee);
1887
1888 return ret;
1889}
1890
1892
1894setup_TxQ(Config const& config)
1895{
1896 TxQ::Setup setup;
1897 auto const& section = config.section("transaction_queue");
1898 set(setup.ledgersInQueue, "ledgers_in_queue", section);
1899 set(setup.queueSizeMin, "minimum_queue_size", section);
1900 set(setup.retrySequencePercent, "retry_sequence_percent", section);
1902 "minimum_escalation_multiplier",
1903 section);
1904 set(setup.minimumTxnInLedger, "minimum_txn_in_ledger", section);
1906 "minimum_txn_in_ledger_standalone",
1907 section);
1908 set(setup.targetTxnInLedger, "target_txn_in_ledger", section);
1909 std::uint32_t max;
1910 if (set(max, "maximum_txn_in_ledger", section))
1911 {
1912 if (max < setup.minimumTxnInLedger)
1913 {
1914 Throw<std::runtime_error>(
1915 "The minimum number of low-fee transactions allowed "
1916 "per ledger (minimum_txn_in_ledger) exceeds "
1917 "the maximum number of low-fee transactions allowed per "
1918 "ledger (maximum_txn_in_ledger).");
1919 }
1920 if (max < setup.minimumTxnInLedgerSA)
1921 {
1922 Throw<std::runtime_error>(
1923 "The minimum number of low-fee transactions allowed "
1924 "per ledger (minimum_txn_in_ledger_standalone) exceeds "
1925 "the maximum number of low-fee transactions allowed per "
1926 "ledger (maximum_txn_in_ledger).");
1927 }
1928
1929 setup.maximumTxnInLedger.emplace(max);
1930 }
1931
1932 /* The math works as expected for any value up to and including
1933 MAXINT, but put a reasonable limit on this percentage so that
1934 the factor can't be configured to render escalation effectively
1935 moot. (There are other ways to do that, including
1936 minimum_txn_in_ledger.)
1937 */
1939 "normal_consensus_increase_percent",
1940 section);
1943
1944 /* If this percentage is outside of the 0-100 range, the results
1945 are nonsensical (uint overflows happen, so the limit grows
1946 instead of shrinking). 0 is not recommended.
1947 */
1949 "slow_consensus_decrease_percent",
1950 section);
1953
1954 set(setup.maximumTxnPerAccount, "maximum_txn_per_account", section);
1955 set(setup.minimumLastLedgerBuffer, "minimum_last_ledger_buffer", section);
1956
1957 setup.standAlone = config.standalone();
1958 return setup;
1959}
1960
1961} // namespace ripple
T accumulate(T... args)
T at(T... args)
T begin(T... args)
T clamp(T... args)
Represents a JSON value.
Definition json_value.h:131
A generic endpoint for log messages.
Definition Journal.h:41
Stream debug() const
Definition Journal.h:309
Stream info() const
Definition Journal.h:315
Stream trace() const
Severity stream access functions.
Definition Journal.h:303
Stream warn() const
Definition Journal.h:321
virtual OpenLedger & openLedger()=0
Editable, discardable view that can build metadata for one tx.
Section & section(std::string const &name)
Returns the section with the given name.
bool standalone() const
Definition Config.h:317
RAII class to set and restore the Number switchover.
Definition IOUAmount.h:192
std::shared_ptr< OpenView const > current() const
Returns a view to the current open ledger.
Writable ledger view that accumulates state and tx changes.
Definition OpenView.h:46
std::size_t txCount() const
Return the number of tx inserted since creation.
Definition OpenView.cpp:103
LedgerInfo const & info() const override
Returns information about the ledger.
Definition OpenView.cpp:119
bool exists(Keylet const &k) const override
Determine if a state item exists.
Definition OpenView.cpp:137
Rules const & rules() const override
Returns the tx processing rules.
Definition OpenView.cpp:131
std::shared_ptr< SLE const > read(Keylet const &k) const override
Return the state item associated with a key.
Definition OpenView.cpp:150
Fees const & fees() const override
Returns the fees for the base ledger.
Definition OpenView.cpp:125
void apply(TxsRawView &to) const
Apply changes.
Definition OpenView.cpp:109
A view into a ledger.
Definition ReadView.h:32
virtual LedgerInfo const & info() const =0
Returns information about the ledger.
bool enabled(uint256 const &feature) const
Returns true if a feature is enabled.
Definition Rules.cpp:111
std::uint32_t getFieldU32(SField const &field) const
Definition STObject.cpp:596
bool isFieldPresent(SField const &field) const
Definition STObject.cpp:465
SeqProxy getSeqProxy() const
Definition STTx.cpp:197
A type that represents either a sequence value or a ticket value.
Definition SeqProxy.h:37
static constexpr SeqProxy sequence(std::uint32_t v)
Factory function to return a sequence-based SeqProxy.
Definition SeqProxy.h:57
constexpr bool isSeq() const
Definition SeqProxy.h:69
constexpr std::uint32_t value() const
Definition SeqProxy.h:63
constexpr bool isTicket() const
Definition SeqProxy.h:75
std::size_t txnsExpected_
Number of transactions expected per ledger.
Definition TxQ.h:371
beast::Journal const j_
Journal.
Definition TxQ.h:379
static FeeLevel64 scaleFeeLevel(Snapshot const &snapshot, OpenView const &view)
Use the number of transactions in the current open ledger to compute the fee level a transaction must...
Definition TxQ.cpp:154
std::size_t const minimumTxnCount_
Minimum value of txnsExpected.
Definition TxQ.h:362
static std::pair< bool, FeeLevel64 > escalatedSeriesFeeLevel(Snapshot const &snapshot, OpenView const &view, std::size_t extraCount, std::size_t seriesSize)
Computes the total fee level for all transactions in a series.
Definition TxQ.cpp:215
Snapshot getSnapshot() const
Get the current Snapshot.
Definition TxQ.h:436
std::optional< std::size_t > const maximumTxnCount_
Maximum value of txnsExpected.
Definition TxQ.h:367
std::size_t const targetTxnCount_
Number of transactions per ledger that fee escalation "works towards".
Definition TxQ.h:365
boost::circular_buffer< std::size_t > recentTxnCounts_
Recent history of transaction counts that exceed the targetTxnCount_.
Definition TxQ.h:374
std::size_t update(Application &app, ReadView const &view, bool timeLeap, TxQ::Setup const &setup)
Updates fee metrics based on the transactions in the ReadView for use in fee escalation calculations.
Definition TxQ.cpp:65
FeeLevel64 escalationMultiplier_
Based on the median fee of the LCL.
Definition TxQ.h:377
Represents a transaction in the queue which may be applied later to the open ledger.
Definition TxQ.h:495
SeqProxy const seqProxy
Transaction SeqProxy number (sfSequence or sfTicketSequence field).
Definition TxQ.h:516
ApplyResult apply(Application &app, OpenView &view, beast::Journal j)
Attempt to apply the queued transaction to the open ledger.
Definition TxQ.cpp:279
MaybeTx(std::shared_ptr< STTx const > const &, TxID const &txID, FeeLevel64 feeLevel, ApplyFlags const flags, PreflightResult const &pfresult)
Constructor.
Definition TxQ.cpp:260
static constexpr int retriesAllowed
Starting retry count for newly queued transactions.
Definition TxQ.h:561
static LedgerHash parentHashComp
The hash of the parent ledger.
Definition TxQ.h:571
Used to represent an account to the queue, and stores the transactions queued for that account by Seq...
Definition TxQ.h:647
TxQAccount(std::shared_ptr< STTx const > const &txn)
Construct from a transaction.
Definition TxQ.cpp:301
TxMap transactions
Sequence number will be used as the key.
Definition TxQ.h:654
std::size_t getTxnCount() const
Return the number of transactions currently queued for this account.
Definition TxQ.h:678
TxMap::const_iterator getPrevTx(SeqProxy seqProx) const
Find the entry in transactions that precedes seqProx, if one does.
Definition TxQ.cpp:311
bool remove(SeqProxy seqProx)
Remove the candidate with given SeqProxy value from this account.
Definition TxQ.cpp:337
MaybeTx & add(MaybeTx &&)
Add a transaction candidate to this account for queuing.
Definition TxQ.cpp:322
std::optional< size_t > maxSize_
Maximum number of transactions allowed in the queue based on the current metrics.
Definition TxQ.h:770
FeeMultiSet::iterator_type erase(FeeMultiSet::const_iterator_type)
Erase and return the next entry in byFee_ (lower fee level)
FeeMultiSet byFee_
The queue itself: the collection of transactions ordered by fee level.
Definition TxQ.h:756
beast::Journal const j_
Journal.
Definition TxQ.h:744
TER canBeHeld(STTx const &, ApplyFlags const, OpenView const &, std::shared_ptr< SLE const > const &sleAccount, AccountMap::iterator const &, std::optional< TxQAccount::TxMap::iterator > const &, std::lock_guard< std::mutex > const &lock)
Checks if the indicated transaction fits the conditions for being stored in the queue.
Definition TxQ.cpp:364
std::mutex mutex_
Most queue operations are done under the master lock, but use this mutex for the RPC "fee" command,...
Definition TxQ.h:780
AccountMap byAccount_
All of the accounts which currently have any transactions in the queue.
Definition TxQ.h:763
SeqProxy nextQueuableSeqImpl(std::shared_ptr< SLE const > const &sleAccount, std::lock_guard< std::mutex > const &) const
Definition TxQ.cpp:1601
ApplyResult tryClearAccountQueueUpThruTx(Application &app, OpenView &view, STTx const &tx, AccountMap::iterator const &accountIter, TxQAccount::TxMap::iterator, FeeLevel64 feeLevelPaid, PreflightResult const &pfresult, std::size_t const txExtraCount, ApplyFlags flags, FeeMetrics::Snapshot const &metricsSnapshot, beast::Journal j)
All-or-nothing attempt to try to apply the queued txs for accountIter up to and including tx.
Definition TxQ.cpp:498
bool isFull() const
Is the queue at least fillPercentage full?
Definition TxQ.cpp:356
FeeMultiSet::iterator_type eraseAndAdvance(FeeMultiSet::const_iterator_type)
Erase and return the next entry for the account (if fee level is higher), or next entry in byFee_ (lo...
Definition TxQ.cpp:446
FeeMetrics feeMetrics_
Tracks the current state of the queue.
Definition TxQ.h:750
virtual ~TxQ()
Destructor.
Definition TxQ.cpp:349
FeeLevel64 getRequiredFeeLevel(OpenView &view, ApplyFlags flags, FeeMetrics::Snapshot const &metricsSnapshot, std::lock_guard< std::mutex > const &lock) const
Definition TxQ.cpp:1648
TxQ(Setup const &setup, beast::Journal j)
Constructor.
Definition TxQ.cpp:344
static constexpr FeeLevel64 baseLevel
Fee level for single-signed reference transaction.
Definition TxQ.h:45
Setup const setup_
Setup parameters used to control the behavior of the queue.
Definition TxQ.h:742
std::optional< ApplyResult > tryDirectApply(Application &app, OpenView &view, std::shared_ptr< STTx const > const &tx, ApplyFlags flags, beast::Journal j)
Definition TxQ.cpp:1658
ApplyResult apply(Application &app, OpenView &view, std::shared_ptr< STTx const > const &tx, ApplyFlags flags, beast::Journal j)
Add a new transaction to the open ledger, hold it in the queue, or reject it.
Definition TxQ.cpp:710
constexpr int signum() const noexcept
Return the sign of the amount.
Definition XRPAmount.h:151
static constexpr std::size_t size()
Definition base_uint.h:507
T distance(T... args)
T emplace_back(T... args)
T emplace(T... args)
T end(T... args)
T find(T... args)
T for_each(T... args)
T is_same_v
T lower_bound(T... args)
T max_element(T... args)
T max(T... args)
T min(T... args)
@ objectValue
object value (collection of name/value pairs).
Definition json_value.h:27
static constexpr std::pair< bool, std::uint64_t > sumOfFirstSquares(std::size_t xIn)
Definition TxQ.cpp:178
Keylet account(AccountID const &id) noexcept
AccountID root.
Definition Indexes.cpp:165
static ticket_t const ticket
Definition Indexes.h:152
Use hash_* containers for keys that do not need a cryptographically secure hashing algorithm.
Definition algorithm.h:6
constexpr struct ripple::open_ledger_t open_ledger
TxQ::Setup setup_TxQ(Config const &config)
Build a TxQ::Setup object from application configuration.
Definition TxQ.cpp:1894
PreflightResult preflight(Application &app, Rules const &rules, STTx const &tx, ApplyFlags flags, beast::Journal j)
Gate a transaction based on static information.
static FeeLevel64 increase(FeeLevel64 level, std::uint32_t increasePercent)
Definition TxQ.cpp:56
@ telCAN_NOT_QUEUE_BLOCKED
Definition TER.h:43
@ telINSUF_FEE_P
Definition TER.h:38
@ telCAN_NOT_QUEUE_FULL
Definition TER.h:45
@ telCAN_NOT_QUEUE
Definition TER.h:40
@ telCAN_NOT_QUEUE_BALANCE
Definition TER.h:41
@ telCAN_NOT_QUEUE_FEE
Definition TER.h:44
@ telCAN_NOT_QUEUE_BLOCKS
Definition TER.h:42
ApplyResult doApply(PreclaimResult const &preclaimResult, Application &app, OpenView &view)
Apply a prechecked transaction to an OpenView.
auto constexpr muldiv_max
Definition mulDiv.h:9
XRPAmount calculateBaseFee(ReadView const &view, STTx const &tx)
Compute only the expected base fee for a transaction.
PreclaimResult preclaim(PreflightResult const &preflightResult, Application &app, OpenView const &view)
Gate a transaction based on static ledger information.
bool set(T &target, std::string const &name, Section const &section)
Set a value from a configuration Section If the named value is not found or doesn't parse as a T,...
@ current
This was a new validation and was added.
static FeeLevel64 getFeeLevelPaid(ReadView const &view, STTx const &tx)
Definition TxQ.cpp:20
@ tefPAST_SEQ
Definition TER.h:156
@ tefNO_TICKET
Definition TER.h:166
@ tefINTERNAL
Definition TER.h:154
bool isTefFailure(TER x) noexcept
Definition TER.h:647
std::string transToken(TER code)
Definition TER.cpp:245
FeeLevel64 toFeeLevel(XRPAmount const &drops, XRPAmount const &baseFee)
Definition TxQ.h:851
void erase(STObject &st, TypedField< U > const &f)
Remove a field in an STObject.
Definition STExchange.h:153
FeeLevel< std::uint64_t > FeeLevel64
Definition Units.h:433
@ tesSUCCESS
Definition TER.h:226
bool isTesSuccess(TER x) noexcept
Definition TER.h:659
ApplyResult apply(Application &app, OpenView &view, STTx const &tx, ApplyFlags flags, beast::Journal journal)
Apply a transaction to an OpenView.
Definition apply.cpp:127
bool isTemMalformed(TER x) noexcept
Definition TER.h:641
XRPAmount toDrops(FeeLevel< T > const &level, XRPAmount baseFee)
Definition TxQ.h:844
std::optional< std::uint64_t > mulDiv(std::uint64_t value, std::uint64_t mul, std::uint64_t div)
Return value*mul/div accurately.
@ tapFAIL_HARD
Definition ApplyView.h:16
@ tapNONE
Definition ApplyView.h:12
static std::optional< LedgerIndex > getLastLedgerSequence(STTx const &tx)
Definition TxQ.cpp:48
@ transactionID
transaction plus signature to give transaction ID
@ terNO_ACCOUNT
Definition TER.h:198
@ terPRE_SEQ
Definition TER.h:202
@ terQUEUED
Definition TER.h:206
@ terPRE_TICKET
Definition TER.h:207
XRPAmount calculateDefaultBaseFee(ReadView const &view, STTx const &tx)
Return the minimum fee that an "ordinary" transaction would pay.
STL namespace.
T next(T... args)
T has_value(T... args)
T push_back(T... args)
T reserve(T... args)
T size(T... args)
T sort(T... args)
XRPAmount base
XRPAmount reserve
A pair of SHAMap key and LedgerEntryType.
Definition Keylet.h:20
TER const ter
Intermediate transaction result.
Definition applySteps.h:204
Describes the results of the preflight check.
Definition applySteps.h:144
iterator end() const
Definition ReadView.cpp:44
iterator begin() const
Definition ReadView.cpp:38
Snapshot of the externally relevant FeeMetrics fields at any given time.
Definition TxQ.h:424
std::size_t const txnsExpected
Definition TxQ.h:428
FeeLevel64 const escalationMultiplier
Definition TxQ.h:431
Structure returned by TxQ::getMetrics, expressed in reference fee level units.
Definition TxQ.h:146
FeeLevel64 minProcessingFeeLevel
Minimum fee level for a transaction to be considered for the open ledger or the queue.
Definition TxQ.h:162
FeeLevel64 openLedgerFeeLevel
Minimum fee level to get into the current open ledger, bypassing the queue.
Definition TxQ.h:167
std::size_t txPerLedger
Number of transactions expected per ledger.
Definition TxQ.h:157
std::optional< std::size_t > txQMaxSize
Max transactions currently allowed in queue.
Definition TxQ.h:153
FeeLevel64 referenceFeeLevel
Reference transaction fee level.
Definition TxQ.h:159
std::size_t txInLedger
Number of transactions currently in the open ledger.
Definition TxQ.h:155
std::size_t txCount
Number of transactions in the queue.
Definition TxQ.h:151
FeeLevel64 medFeeLevel
Median fee level of the last ledger.
Definition TxQ.h:164
Structure used to customize TxQ behavior.
Definition TxQ.h:51
std::uint32_t slowConsensusDecreasePercent
When consensus takes longer than appropriate, the expected ledger size is updated to the lesser of th...
Definition TxQ.h:127
std::uint32_t minimumTxnInLedger
Minimum number of transactions to allow into the ledger before escalation, regardless of the prior le...
Definition TxQ.h:84
std::uint32_t maximumTxnPerAccount
Maximum number of transactions that can be queued by one account.
Definition TxQ.h:129
FeeLevel64 minimumEscalationMultiplier
Minimum value of the escalation multiplier, regardless of the prior ledger's median fee level.
Definition TxQ.h:81
std::size_t queueSizeMin
The smallest limit the queue is allowed.
Definition TxQ.h:68
std::optional< std::uint32_t > maximumTxnInLedger
Optional maximum allowed value of transactions per ledger before fee escalation kicks in.
Definition TxQ.h:101
std::uint32_t targetTxnInLedger
Number of transactions per ledger that fee escalation "works towards".
Definition TxQ.h:90
std::uint32_t retrySequencePercent
Extra percentage required on the fee level of a queued transaction to replace that transaction with a...
Definition TxQ.h:78
std::uint32_t minimumLastLedgerBuffer
Minimum difference between the current ledger sequence and a transaction's LastLedgerSequence for the...
Definition TxQ.h:136
std::uint32_t minimumTxnInLedgerSA
Like minimumTxnInLedger for standalone mode.
Definition TxQ.h:87
std::size_t ledgersInQueue
Number of ledgers' worth of transactions to allow in the queue.
Definition TxQ.h:62
bool standAlone
Use standalone mode behavior.
Definition TxQ.h:138
std::uint32_t normalConsensusIncreasePercent
When the ledger has more transactions than "expected", and performance is humming along nicely,...
Definition TxQ.h:113
T tie(T... args)
T to_string(T... args)
T upper_bound(T... args)
T value_or(T... args)