mirror of
https://github.com/XRPLF/rippled.git
synced 2026-01-29 02:55:31 +00:00
Compare commits
29 Commits
ximinez/ac
...
ximinez/nu
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
822023d8a4 | ||
|
|
5ab62f4422 | ||
|
|
5d9011084c | ||
|
|
060feb4e37 | ||
|
|
295816f21d | ||
|
|
bf8db0555e | ||
|
|
c8c5207675 | ||
|
|
6334be1ff0 | ||
|
|
a9c3bb84ba | ||
|
|
ca99e40290 | ||
|
|
7612c1af0c | ||
|
|
67e40be1ab | ||
|
|
0132174a7b | ||
|
|
8773cc4bbf | ||
|
|
dabdadfff5 | ||
|
|
bfe2cd7893 | ||
|
|
0584c20f36 | ||
|
|
3ced0b27b7 | ||
|
|
f83b27f7dd | ||
|
|
cdb41b5376 | ||
|
|
f223c89a9f | ||
|
|
efe07c09f3 | ||
|
|
79cde8b199 | ||
|
|
2078ce01cf | ||
|
|
2770a9cdf3 | ||
|
|
05ef3b1ad8 | ||
|
|
7dd4dbe285 | ||
|
|
b32a5f2c08 | ||
|
|
df76002a44 |
@@ -89,6 +89,7 @@ words:
|
||||
- endmacro
|
||||
- exceptioned
|
||||
- Falco
|
||||
- fcontext
|
||||
- finalizers
|
||||
- firewalled
|
||||
- fmtdur
|
||||
@@ -101,6 +102,7 @@ words:
|
||||
- gpgcheck
|
||||
- gpgkey
|
||||
- hotwallet
|
||||
- hwaddress
|
||||
- ifndef
|
||||
- inequation
|
||||
- insuf
|
||||
@@ -213,6 +215,7 @@ words:
|
||||
- soci
|
||||
- socidb
|
||||
- sslws
|
||||
- stackful
|
||||
- statsd
|
||||
- STATSDCOLLECTOR
|
||||
- stissue
|
||||
|
||||
10
.github/scripts/strategy-matrix/generate.py
vendored
10
.github/scripts/strategy-matrix/generate.py
vendored
@@ -242,10 +242,12 @@ def generate_strategy_matrix(all: bool, config: Config) -> list:
|
||||
# names get truncated.
|
||||
# Add Address and Thread (both coupled with UB) sanitizers for specific bookworm distros.
|
||||
# GCC-Asan rippled-embedded tests are failing because of https://github.com/google/sanitizers/issues/856
|
||||
if (
|
||||
os["distro_version"] == "bookworm"
|
||||
and f"{os['compiler_name']}-{os['compiler_version']}" == "clang-20"
|
||||
):
|
||||
if os[
|
||||
"distro_version"
|
||||
] == "bookworm" and f"{os['compiler_name']}-{os['compiler_version']}" in [
|
||||
"clang-20",
|
||||
"gcc-13",
|
||||
]:
|
||||
# Add ASAN + UBSAN configuration.
|
||||
configurations.append(
|
||||
{
|
||||
|
||||
17
.github/workflows/reusable-build-test-config.yml
vendored
17
.github/workflows/reusable-build-test-config.yml
vendored
@@ -205,14 +205,18 @@ jobs:
|
||||
- name: Set sanitizer options
|
||||
if: ${{ !inputs.build_only && env.SANITIZERS_ENABLED == 'true' }}
|
||||
run: |
|
||||
echo "ASAN_OPTIONS=print_stacktrace=1:detect_container_overflow=0:suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/asan.supp" >> ${GITHUB_ENV}
|
||||
echo "TSAN_OPTIONS=second_deadlock_stack=1:halt_on_error=0:suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/tsan.supp" >> ${GITHUB_ENV}
|
||||
echo "UBSAN_OPTIONS=suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/ubsan.supp" >> ${GITHUB_ENV}
|
||||
echo "LSAN_OPTIONS=suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/lsan.supp" >> ${GITHUB_ENV}
|
||||
echo "ASAN_OPTIONS=include=${GITHUB_WORKSPACE}/sanitizers/suppressions/runtime-asan-options.txt:suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/asan.supp" >> ${GITHUB_ENV}
|
||||
echo "TSAN_OPTIONS=include=${GITHUB_WORKSPACE}/sanitizers/suppressions/runtime-tsan-options.txt:suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/tsan.supp" >> ${GITHUB_ENV}
|
||||
echo "UBSAN_OPTIONS=include=${GITHUB_WORKSPACE}/sanitizers/suppressions/runtime-ubsan-options.txt:suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/ubsan.supp" >> ${GITHUB_ENV}
|
||||
echo "LSAN_OPTIONS=include=${GITHUB_WORKSPACE}/sanitizers/suppressions/runtime-lsan-options.txt:suppressions=${GITHUB_WORKSPACE}/sanitizers/suppressions/lsan.supp" >> ${GITHUB_ENV}
|
||||
|
||||
- name: Run the separate tests
|
||||
# We continue on error here because we want to try the Embedded tests before
|
||||
# failing. This will give us details on all the failures at once.
|
||||
continue-on-error: true
|
||||
if: ${{ !inputs.build_only }}
|
||||
working-directory: ${{ env.BUILD_DIR }}
|
||||
id: separate_tests
|
||||
# Windows locks some of the build files while running tests, and parallel jobs can collide
|
||||
env:
|
||||
BUILD_TYPE: ${{ inputs.build_type }}
|
||||
@@ -231,6 +235,11 @@ jobs:
|
||||
run: |
|
||||
./xrpld --unittest --unittest-jobs "${BUILD_NPROC}"
|
||||
|
||||
# Pipeline should fail if the separate tests failed.
|
||||
- name: Check results of the SeparateTests
|
||||
if: ${{ !inputs.build_only && steps.separate_tests.outcome == 'failure' }}
|
||||
run: exit 1
|
||||
|
||||
- name: Debug failure (Linux)
|
||||
if: ${{ failure() && runner.os == 'Linux' && !inputs.build_only }}
|
||||
run: |
|
||||
|
||||
@@ -34,16 +34,16 @@ target_link_libraries(xrpl_boost
|
||||
if(Boost_COMPILER)
|
||||
target_link_libraries(xrpl_boost INTERFACE Boost::disable_autolinking)
|
||||
endif()
|
||||
if(SANITIZERS_ENABLED AND is_clang)
|
||||
# TODO: gcc does not support -fsanitize-blacklist...can we do something else
|
||||
# for gcc ?
|
||||
if(NOT Boost_INCLUDE_DIRS AND TARGET Boost::headers)
|
||||
get_target_property(Boost_INCLUDE_DIRS Boost::headers INTERFACE_INCLUDE_DIRECTORIES)
|
||||
endif()
|
||||
message(STATUS "Adding [${Boost_INCLUDE_DIRS}] to sanitizer blacklist")
|
||||
file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/san_bl.txt "src:${Boost_INCLUDE_DIRS}/*")
|
||||
target_compile_options(opts
|
||||
INTERFACE
|
||||
# ignore boost headers for sanitizing
|
||||
-fsanitize-blacklist=${CMAKE_CURRENT_BINARY_DIR}/san_bl.txt)
|
||||
endif()
|
||||
# if(SANITIZERS_ENABLED AND is_clang)
|
||||
# # TODO: gcc does not support -fsanitize-blacklist...can we do something else
|
||||
# # for gcc ?
|
||||
# if(NOT Boost_INCLUDE_DIRS AND TARGET Boost::headers)
|
||||
# get_target_property(Boost_INCLUDE_DIRS Boost::headers INTERFACE_INCLUDE_DIRECTORIES)
|
||||
# endif()
|
||||
# message(STATUS "Adding [${Boost_INCLUDE_DIRS}] to sanitizer blacklist")
|
||||
# file(WRITE ${CMAKE_CURRENT_BINARY_DIR}/san_bl.txt "src:${Boost_INCLUDE_DIRS}/*")
|
||||
# target_compile_options(opts
|
||||
# INTERFACE
|
||||
# # ignore boost headers for sanitizing
|
||||
# -fsanitize-blacklist=${CMAKE_CURRENT_BINARY_DIR}/san_bl.txt)
|
||||
# endif()
|
||||
|
||||
@@ -1,4 +1,5 @@
|
||||
import re
|
||||
import os
|
||||
|
||||
from conan.tools.cmake import CMake, CMakeToolchain, cmake_layout
|
||||
|
||||
@@ -126,6 +127,12 @@ class Xrpl(ConanFile):
|
||||
if self.settings.compiler in ["clang", "gcc"]:
|
||||
self.options["boost"].without_cobalt = True
|
||||
|
||||
# Check if environment variable exists
|
||||
if "SANITIZERS" in os.environ:
|
||||
sanitizers = os.environ["SANITIZERS"]
|
||||
if "Address" in sanitizers:
|
||||
self.default_options["fPIC"] = False
|
||||
|
||||
def requirements(self):
|
||||
# Conan 2 requires transitive headers to be specified
|
||||
transitive_headers_opt = (
|
||||
|
||||
8
docs/build/sanitizers.md
vendored
8
docs/build/sanitizers.md
vendored
@@ -89,8 +89,8 @@ cmake --build . --parallel 4
|
||||
**IMPORTANT**: ASAN with Boost produces many false positives. Use these options:
|
||||
|
||||
```bash
|
||||
export ASAN_OPTIONS="print_stacktrace=1:detect_container_overflow=0:suppressions=path/to/asan.supp:halt_on_error=0:log_path=asan.log"
|
||||
export LSAN_OPTIONS="suppressions=path/to/lsan.supp:halt_on_error=0:log_path=lsan.log"
|
||||
export ASAN_OPTIONS="include=sanitizers/suppressions/runtime-asan-options.txt:suppressions=sanitizers/suppressions/asan.supp"
|
||||
export LSAN_OPTIONS="include=sanitizers/suppressions/runtime-lsan-options.txt:suppressions=sanitizers/suppressions/lsan.supp"
|
||||
|
||||
# Run tests
|
||||
./xrpld --unittest --unittest-jobs=5
|
||||
@@ -108,7 +108,7 @@ export LSAN_OPTIONS="suppressions=path/to/lsan.supp:halt_on_error=0:log_path=lsa
|
||||
### ThreadSanitizer (TSan)
|
||||
|
||||
```bash
|
||||
export TSAN_OPTIONS="suppressions=path/to/tsan.supp halt_on_error=0 log_path=tsan.log"
|
||||
export TSAN_OPTIONS="include=sanitizers/suppressions/runtime-tsan-options.txt:suppressions=sanitizers/suppressions/tsan.supp"
|
||||
|
||||
# Run tests
|
||||
./xrpld --unittest --unittest-jobs=5
|
||||
@@ -129,7 +129,7 @@ More details [here](https://github.com/google/sanitizers/wiki/AddressSanitizerLe
|
||||
### UndefinedBehaviorSanitizer (UBSan)
|
||||
|
||||
```bash
|
||||
export UBSAN_OPTIONS="suppressions=path/to/ubsan.supp:print_stacktrace=1:halt_on_error=0:log_path=ubsan.log"
|
||||
export UBSAN_OPTIONS="include=sanitizers/suppressions/runtime-ubsan-options.txt:suppressions=sanitizers/suppressions/ubsan.supp"
|
||||
|
||||
# Run tests
|
||||
./xrpld --unittest --unittest-jobs=5
|
||||
|
||||
@@ -10,6 +10,10 @@
|
||||
#include <ostream>
|
||||
#include <string>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <boost/multiprecision/cpp_int.hpp>
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
namespace xrpl {
|
||||
|
||||
class Number;
|
||||
@@ -17,18 +21,37 @@ class Number;
|
||||
std::string
|
||||
to_string(Number const& amount);
|
||||
|
||||
/** Returns a rough estimate of log10(value).
|
||||
*
|
||||
* The return value is a pair (log, rem), where log is the estimated log10,
|
||||
* and rem is value divided by 10^log. If rem is 1, then value is an exact
|
||||
* power of ten, and log is the exact log10(value).
|
||||
*
|
||||
* This function only works for positive values.
|
||||
*/
|
||||
template <typename T>
|
||||
constexpr std::pair<int, T>
|
||||
logTenEstimate(T value)
|
||||
{
|
||||
int log = 0;
|
||||
T remainder = value;
|
||||
while (value >= 10)
|
||||
{
|
||||
if (value % 10 == 0)
|
||||
remainder = remainder / 10;
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
return {log, remainder};
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
constexpr std::optional<int>
|
||||
logTen(T value)
|
||||
{
|
||||
int log = 0;
|
||||
while (value >= 10 && value % 10 == 0)
|
||||
{
|
||||
value /= 10;
|
||||
++log;
|
||||
}
|
||||
if (value == 1)
|
||||
return log;
|
||||
auto const est = logTenEstimate(value);
|
||||
if (est.second == 1)
|
||||
return est.first;
|
||||
return std::nullopt;
|
||||
}
|
||||
|
||||
@@ -42,12 +65,10 @@ isPowerOfTen(T value)
|
||||
/** MantissaRange defines a range for the mantissa of a normalized Number.
|
||||
*
|
||||
* The mantissa is in the range [min, max], where
|
||||
* * min is a power of 10, and
|
||||
* * max = min * 10 - 1.
|
||||
*
|
||||
* The mantissa_scale enum indicates whether the range is "small" or "large".
|
||||
* This intentionally restricts the number of MantissaRanges that can be
|
||||
* instantiated to two: one for each scale.
|
||||
* used to two: one for each scale.
|
||||
*
|
||||
* The "small" scale is based on the behavior of STAmount for IOUs. It has a min
|
||||
* value of 10^15, and a max value of 10^16-1. This was sufficient for
|
||||
@@ -61,8 +82,8 @@ isPowerOfTen(T value)
|
||||
* "large" scale.
|
||||
*
|
||||
* The "large" scale is intended to represent all values that can be represented
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 10^18, and a max
|
||||
* value of 10^19-1.
|
||||
* by an STAmount - IOUs, XRP, and MPTs. It has a min value of 2^63/10+1
|
||||
* (truncated), and a max value of 2^63-1.
|
||||
*
|
||||
* Note that if the mentioned amendments are eventually retired, this class
|
||||
* should be left in place, but the "small" scale option should be removed. This
|
||||
@@ -74,28 +95,50 @@ struct MantissaRange
|
||||
enum mantissa_scale { small, large };
|
||||
|
||||
explicit constexpr MantissaRange(mantissa_scale scale_)
|
||||
: min(getMin(scale_))
|
||||
, max(min * 10 - 1)
|
||||
, log(logTen(min).value_or(-1))
|
||||
: max(getMax(scale_))
|
||||
, min(computeMin(max))
|
||||
, referenceMin(getReferenceMin(scale_, min))
|
||||
, log(computeLog(min))
|
||||
, scale(scale_)
|
||||
{
|
||||
// Since this is constexpr, if any of these throw, it won't compile
|
||||
if (min * 10 <= max)
|
||||
throw std::out_of_range("min * 10 <= max");
|
||||
if (max / 10 >= min)
|
||||
throw std::out_of_range("max / 10 >= min");
|
||||
if ((min - 1) * 10 > max)
|
||||
throw std::out_of_range("(min - 1) * 10 > max");
|
||||
// This is a little hacky
|
||||
if ((max + 10) / 10 < min)
|
||||
throw std::out_of_range("(max + 10) / 10 < min");
|
||||
}
|
||||
|
||||
rep min;
|
||||
// Explicitly delete copy and move operations
|
||||
MantissaRange(MantissaRange const&) = delete;
|
||||
MantissaRange(MantissaRange&&) = delete;
|
||||
MantissaRange&
|
||||
operator=(MantissaRange const&) = delete;
|
||||
MantissaRange&
|
||||
operator=(MantissaRange&&) = delete;
|
||||
|
||||
rep max;
|
||||
rep min;
|
||||
// This is not a great name. Used to determine if mantissas are in range,
|
||||
// but have fewer digits than max
|
||||
rep referenceMin;
|
||||
int log;
|
||||
mantissa_scale scale;
|
||||
|
||||
private:
|
||||
static constexpr rep
|
||||
getMin(mantissa_scale scale_)
|
||||
getMax(mantissa_scale scale)
|
||||
{
|
||||
switch (scale_)
|
||||
switch (scale)
|
||||
{
|
||||
case small:
|
||||
return 1'000'000'000'000'000ULL;
|
||||
return 9'999'999'999'999'999ULL;
|
||||
case large:
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
return std::numeric_limits<std::int64_t>::max();
|
||||
default:
|
||||
// Since this can never be called outside a non-constexpr
|
||||
// context, this throw assures that the build fails if an
|
||||
@@ -103,6 +146,33 @@ private:
|
||||
throw std::runtime_error("Unknown mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeMin(rep max)
|
||||
{
|
||||
return max / 10 + 1;
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
getReferenceMin(mantissa_scale scale, rep min)
|
||||
{
|
||||
switch (scale)
|
||||
{
|
||||
case large:
|
||||
return 1'000'000'000'000'000'000ULL;
|
||||
default:
|
||||
if (isPowerOfTen(min))
|
||||
return min;
|
||||
throw std::runtime_error("Unknown/bad mantissa scale");
|
||||
}
|
||||
}
|
||||
|
||||
static constexpr rep
|
||||
computeLog(rep min)
|
||||
{
|
||||
auto const estimate = logTenEstimate(min);
|
||||
return estimate.first + (estimate.second == 1 ? 0 : 1);
|
||||
}
|
||||
};
|
||||
|
||||
// Like std::integral, but only 64-bit integral types.
|
||||
@@ -110,6 +180,20 @@ template <class T>
|
||||
concept Integral64 =
|
||||
std::is_same_v<T, std::int64_t> || std::is_same_v<T, std::uint64_t>;
|
||||
|
||||
namespace detail {
|
||||
#ifdef _MSC_VER
|
||||
using uint128_t = boost::multiprecision::uint128_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
#else // !defined(_MSC_VER)
|
||||
using uint128_t = __uint128_t;
|
||||
using int128_t = __int128_t;
|
||||
#endif // !defined(_MSC_VER)
|
||||
|
||||
template <class T>
|
||||
concept UnsignedMantissa =
|
||||
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
|
||||
} // namespace detail
|
||||
|
||||
/** Number is a floating point type that can represent a wide range of values.
|
||||
*
|
||||
* It can represent all values that can be represented by an STAmount -
|
||||
@@ -137,9 +221,7 @@ concept Integral64 =
|
||||
* 1. Normalization can be disabled by using the "unchecked" ctor tag. This
|
||||
* should only be used at specific conversion points, some constexpr
|
||||
* values, and in unit tests.
|
||||
* 2. The max of the "large" range, 10^19-1, is the largest 10^X-1 value that
|
||||
* fits in an unsigned 64-bit number. (10^19-1 < 2^64-1 and
|
||||
* 10^20-1 > 2^64-1). This avoids under- and overflows.
|
||||
* 2. The max of the "large" range, 2^63-1, TODO: explain the large range.
|
||||
*
|
||||
* ---- External Interface ----
|
||||
*
|
||||
@@ -153,7 +235,7 @@ concept Integral64 =
|
||||
*
|
||||
* Note:
|
||||
* 1. 2^63-1 is between 10^18 and 10^19-1, which are the limits of the "large"
|
||||
* mantissa range.
|
||||
* mantissa range. TODO: update this explanation.
|
||||
* 2. The functions mantissa() and exponent() return the external view of the
|
||||
* Number value, specifically using a signed 63-bit mantissa. This may
|
||||
* require altering the internal representation to fit into that range
|
||||
@@ -213,8 +295,7 @@ class Number
|
||||
using rep = std::int64_t;
|
||||
using internalrep = MantissaRange::rep;
|
||||
|
||||
bool negative_{false};
|
||||
internalrep mantissa_{0};
|
||||
rep mantissa_{0};
|
||||
int exponent_{std::numeric_limits<int>::lowest()};
|
||||
|
||||
public:
|
||||
@@ -222,9 +303,11 @@ public:
|
||||
constexpr static int minExponent = -32768;
|
||||
constexpr static int maxExponent = 32768;
|
||||
|
||||
#if MAXREP
|
||||
constexpr static internalrep maxRep = std::numeric_limits<rep>::max();
|
||||
static_assert(maxRep == 9'223'372'036'854'775'807);
|
||||
static_assert(-maxRep == std::numeric_limits<rep>::min() + 1);
|
||||
#endif
|
||||
|
||||
// May need to make unchecked private
|
||||
struct unchecked
|
||||
@@ -310,8 +393,7 @@ public:
|
||||
friend constexpr bool
|
||||
operator==(Number const& x, Number const& y) noexcept
|
||||
{
|
||||
return x.negative_ == y.negative_ && x.mantissa_ == y.mantissa_ &&
|
||||
x.exponent_ == y.exponent_;
|
||||
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
|
||||
}
|
||||
|
||||
friend constexpr bool
|
||||
@@ -325,8 +407,8 @@ public:
|
||||
{
|
||||
// If the two amounts have different signs (zero is treated as positive)
|
||||
// then the comparison is true iff the left is negative.
|
||||
bool const lneg = x.negative_;
|
||||
bool const rneg = y.negative_;
|
||||
bool const lneg = x.mantissa_ < 0;
|
||||
bool const rneg = y.mantissa_ < 0;
|
||||
|
||||
if (lneg != rneg)
|
||||
return lneg;
|
||||
@@ -354,7 +436,7 @@ public:
|
||||
constexpr int
|
||||
signum() const noexcept
|
||||
{
|
||||
return negative_ ? -1 : (mantissa_ ? 1 : 0);
|
||||
return mantissa_ < 0 ? -1 : (mantissa_ ? 1 : 0);
|
||||
}
|
||||
|
||||
Number
|
||||
@@ -393,6 +475,9 @@ public:
|
||||
friend Number
|
||||
root2(Number f);
|
||||
|
||||
friend Number
|
||||
power(Number const& f, unsigned n, unsigned d);
|
||||
|
||||
// Thread local rounding control. Default is to_nearest
|
||||
enum rounding_mode { to_nearest, towards_zero, downward, upward };
|
||||
static rounding_mode
|
||||
@@ -457,22 +542,48 @@ private:
|
||||
static_assert(isPowerOfTen(smallRange.min));
|
||||
static_assert(smallRange.min == 1'000'000'000'000'000LL);
|
||||
static_assert(smallRange.max == 9'999'999'999'999'999LL);
|
||||
static_assert(smallRange.referenceMin == smallRange.min);
|
||||
static_assert(smallRange.log == 15);
|
||||
#if MAXREP
|
||||
static_assert(smallRange.min < maxRep);
|
||||
static_assert(smallRange.max < maxRep);
|
||||
#endif
|
||||
constexpr static MantissaRange largeRange{MantissaRange::large};
|
||||
static_assert(isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(largeRange.max == internalrep(9'999'999'999'999'999'999ULL));
|
||||
static_assert(!isPowerOfTen(largeRange.min));
|
||||
static_assert(largeRange.min == 922'337'203'685'477'581ULL);
|
||||
static_assert(largeRange.max == internalrep(9'223'372'036'854'775'807ULL));
|
||||
static_assert(largeRange.max == std::numeric_limits<rep>::max());
|
||||
static_assert(largeRange.referenceMin == 1'000'000'000'000'000'000ULL);
|
||||
static_assert(largeRange.log == 18);
|
||||
// There are 2 values that will not fit in largeRange without some extra
|
||||
// work
|
||||
// * 9223372036854775808
|
||||
// * 9223372036854775809
|
||||
// They both end up < min, but with a leftover. If they round up, everything
|
||||
// will be fine. If they don't, well need to bring them up into range.
|
||||
// Guard::bringIntoRange handles this situation.
|
||||
|
||||
#if MAXREP
|
||||
static_assert(largeRange.min < maxRep);
|
||||
static_assert(largeRange.max > maxRep);
|
||||
#endif
|
||||
|
||||
// The range for the mantissa when normalized.
|
||||
// Use reference_wrapper to avoid making copies, and prevent accidentally
|
||||
// changing the values inside the range.
|
||||
static thread_local std::reference_wrapper<MantissaRange const> range_;
|
||||
|
||||
// And one is needed because it needs to choose between oneSmall and
|
||||
// oneLarge based on the current range
|
||||
static Number
|
||||
one(MantissaRange const& range);
|
||||
|
||||
static Number
|
||||
root(MantissaRange const& range, Number f, unsigned d);
|
||||
|
||||
void
|
||||
normalize(MantissaRange const& range);
|
||||
|
||||
void
|
||||
normalize();
|
||||
|
||||
@@ -495,11 +606,14 @@ private:
|
||||
friend void
|
||||
doNormalize(
|
||||
bool& negative,
|
||||
T& mantissa_,
|
||||
int& exponent_,
|
||||
T& mantissa,
|
||||
int& exponent,
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa);
|
||||
|
||||
bool
|
||||
isnormal(MantissaRange const& range) const noexcept;
|
||||
|
||||
bool
|
||||
isnormal() const noexcept;
|
||||
|
||||
@@ -516,7 +630,64 @@ private:
|
||||
static internalrep
|
||||
externalToInternal(rep mantissa);
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal(MantissaRange const& range) const;
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log + 1 digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep = internalrep>
|
||||
std::tuple<bool, Rep, int>
|
||||
toInternal() const;
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <
|
||||
bool expectNormal = true,
|
||||
detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(
|
||||
bool negative,
|
||||
Rep mantissa,
|
||||
int exponent,
|
||||
MantissaRange const* pRange);
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <
|
||||
bool expectNormal = true,
|
||||
detail::UnsignedMantissa Rep = internalrep>
|
||||
void
|
||||
fromInternal(bool negative, Rep mantissa, int exponent);
|
||||
|
||||
class Guard;
|
||||
|
||||
public:
|
||||
constexpr static internalrep largestMantissa = largeRange.max;
|
||||
};
|
||||
|
||||
inline constexpr Number::Number(
|
||||
@@ -524,7 +695,8 @@ inline constexpr Number::Number(
|
||||
internalrep mantissa,
|
||||
int exponent,
|
||||
unchecked) noexcept
|
||||
: negative_(negative), mantissa_{mantissa}, exponent_{exponent}
|
||||
: mantissa_{(negative ? -1 : 1) * static_cast<rep>(mantissa)}
|
||||
, exponent_{exponent}
|
||||
{
|
||||
}
|
||||
|
||||
@@ -538,16 +710,6 @@ inline constexpr Number::Number(
|
||||
|
||||
constexpr static Number numZero{};
|
||||
|
||||
inline Number::Number(
|
||||
bool negative,
|
||||
internalrep mantissa,
|
||||
int exponent,
|
||||
normalized)
|
||||
: Number(negative, mantissa, exponent, unchecked{})
|
||||
{
|
||||
normalize();
|
||||
}
|
||||
|
||||
inline Number::Number(internalrep mantissa, int exponent, normalized)
|
||||
: Number(false, mantissa, exponent, normalized{})
|
||||
{
|
||||
@@ -570,17 +732,7 @@ inline Number::Number(rep mantissa) : Number{mantissa, 0}
|
||||
inline constexpr Number::rep
|
||||
Number::mantissa() const noexcept
|
||||
{
|
||||
auto m = mantissa_;
|
||||
if (m > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (m % 10 == 0 && m / 10 <= maxRep),
|
||||
"xrpl::Number::mantissa",
|
||||
"large normalized mantissa has no remainder");
|
||||
m /= 10;
|
||||
}
|
||||
auto const sign = negative_ ? -1 : 1;
|
||||
return sign * static_cast<Number::rep>(m);
|
||||
return mantissa_;
|
||||
}
|
||||
|
||||
/** Returns the exponent of the external view of the Number.
|
||||
@@ -591,16 +743,7 @@ Number::mantissa() const noexcept
|
||||
inline constexpr int
|
||||
Number::exponent() const noexcept
|
||||
{
|
||||
auto e = exponent_;
|
||||
if (mantissa_ > maxRep)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!isnormal() || (mantissa_ % 10 == 0 && mantissa_ / 10 <= maxRep),
|
||||
"xrpl::Number::exponent",
|
||||
"large normalized mantissa has no remainder");
|
||||
++e;
|
||||
}
|
||||
return e;
|
||||
return exponent_;
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
@@ -615,7 +758,7 @@ Number::operator-() const noexcept
|
||||
if (mantissa_ == 0)
|
||||
return Number{};
|
||||
auto x = *this;
|
||||
x.negative_ = !x.negative_;
|
||||
x.mantissa_ = -1 * x.mantissa_;
|
||||
return x;
|
||||
}
|
||||
|
||||
@@ -696,45 +839,61 @@ Number::min() noexcept
|
||||
inline Number
|
||||
Number::max() noexcept
|
||||
{
|
||||
return Number{
|
||||
false, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
return Number{false, range_.get().max, maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline Number
|
||||
Number::lowest() noexcept
|
||||
{
|
||||
return Number{
|
||||
true, std::min(range_.get().max, maxRep), maxExponent, unchecked{}};
|
||||
return Number{true, range_.get().max, maxExponent, unchecked{}};
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal(MantissaRange const& range) const noexcept
|
||||
{
|
||||
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
|
||||
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max && //
|
||||
minExponent <= exponent_ && exponent_ <= maxExponent);
|
||||
}
|
||||
|
||||
inline bool
|
||||
Number::isnormal() const noexcept
|
||||
{
|
||||
MantissaRange const& range = range_;
|
||||
auto const abs_m = mantissa_;
|
||||
return *this == Number{} ||
|
||||
(range.min <= abs_m && abs_m <= range.max &&
|
||||
(abs_m <= maxRep || abs_m % 10 == 0) && minExponent <= exponent_ &&
|
||||
exponent_ <= maxExponent);
|
||||
return isnormal(range_);
|
||||
}
|
||||
|
||||
template <Integral64 T>
|
||||
std::pair<T, int>
|
||||
Number::normalizeToRange(T minMantissa, T maxMantissa) const
|
||||
{
|
||||
bool negative = negative_;
|
||||
internalrep mantissa = mantissa_;
|
||||
bool negative = mantissa_ < 0;
|
||||
auto const sign = negative ? -1 : 1;
|
||||
internalrep mantissa = sign * mantissa_;
|
||||
int exponent = exponent_;
|
||||
|
||||
if constexpr (std::is_unsigned_v<T>)
|
||||
{
|
||||
XRPL_ASSERT_PARTS(
|
||||
!negative,
|
||||
"xrpl::Number::normalizeToRange",
|
||||
"Number is non-negative for unsigned range.");
|
||||
// To avoid logical errors in release builds, throw if the Number is
|
||||
// negative for an unsigned range.
|
||||
if (negative)
|
||||
throw std::runtime_error(
|
||||
"Number::normalizeToRange: Number is negative for "
|
||||
"unsigned range.");
|
||||
}
|
||||
Number::normalize(negative, mantissa, exponent, minMantissa, maxMantissa);
|
||||
|
||||
auto const sign = negative ? -1 : 1;
|
||||
return std::make_pair(static_cast<T>(sign * mantissa), exponent);
|
||||
// Cast mantissa to signed type first (if T is a signed type) to avoid
|
||||
// unsigned integer overflow when multiplying by negative sign
|
||||
T signedMantissa = static_cast<T>(mantissa);
|
||||
if (negative)
|
||||
signedMantissa = -signedMantissa;
|
||||
return std::make_pair(signedMantissa, exponent);
|
||||
}
|
||||
|
||||
inline constexpr Number
|
||||
|
||||
@@ -366,6 +366,7 @@ public:
|
||||
base_uint&
|
||||
operator&=(base_uint const& b)
|
||||
{
|
||||
XRPL_ASSERT(WIDTH == b.WIDTH, "input size mismatch");
|
||||
for (int i = 0; i < WIDTH; i++)
|
||||
data_[i] &= b.data_[i];
|
||||
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
#ifndef XRPL_BASICS_CONTRACT_H_INCLUDED
|
||||
#define XRPL_BASICS_CONTRACT_H_INCLUDED
|
||||
|
||||
#include <xrpl/basics/sanitizers.h>
|
||||
#include <xrpl/beast/type_name.h>
|
||||
|
||||
#include <exception>
|
||||
@@ -25,7 +26,7 @@ LogThrow(std::string const& title);
|
||||
control to the next matching exception handler, if any.
|
||||
Otherwise, std::terminate will be called.
|
||||
*/
|
||||
[[noreturn]] inline void
|
||||
[[noreturn]] inline void XRPL_NO_SANITIZE_ADDRESS
|
||||
Rethrow()
|
||||
{
|
||||
LogThrow("Re-throwing exception");
|
||||
@@ -33,7 +34,7 @@ Rethrow()
|
||||
}
|
||||
|
||||
template <class E, class... Args>
|
||||
[[noreturn]] inline void
|
||||
[[noreturn]] inline void XRPL_NO_SANITIZE_ADDRESS
|
||||
Throw(Args&&... args)
|
||||
{
|
||||
static_assert(
|
||||
|
||||
7
include/xrpl/basics/sanitizers.h
Normal file
7
include/xrpl/basics/sanitizers.h
Normal file
@@ -0,0 +1,7 @@
|
||||
// Helper to disable ASan/HwASan for specific functions
|
||||
#if defined(__GNUC__) || defined(__clang__)
|
||||
#define XRPL_NO_SANITIZE_ADDRESS \
|
||||
__attribute__((no_sanitize("address", "hwaddress")))
|
||||
#else
|
||||
#define XRPL_NO_SANITIZE_ADDRESS
|
||||
#endif
|
||||
@@ -30,6 +30,9 @@ public:
|
||||
bool sslVerify,
|
||||
beast::Journal j);
|
||||
|
||||
static void
|
||||
cleanupSSLContext();
|
||||
|
||||
static void
|
||||
get(bool bSSL,
|
||||
boost::asio::io_context& io_context,
|
||||
|
||||
@@ -233,7 +233,7 @@ std::size_t constexpr maxMPTokenMetadataLength = 1024;
|
||||
|
||||
/** The maximum amount of MPTokenIssuance */
|
||||
std::uint64_t constexpr maxMPTokenAmount = 0x7FFF'FFFF'FFFF'FFFFull;
|
||||
static_assert(Number::maxRep >= maxMPTokenAmount);
|
||||
static_assert(Number::largestMantissa >= maxMPTokenAmount);
|
||||
|
||||
/** The maximum length of Data payload */
|
||||
std::size_t constexpr maxDataPayloadLength = 256;
|
||||
|
||||
@@ -568,6 +568,10 @@ STAmount::fromNumber(A const& a, Number const& number)
|
||||
return STAmount{asset, intValue, 0, negative};
|
||||
}
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
working.signum() >= 0,
|
||||
"ripple::STAmount::fromNumber",
|
||||
"non-negative Number to normalize");
|
||||
auto const [mantissa, exponent] =
|
||||
working.normalizeToRange(cMinValue, cMaxValue);
|
||||
|
||||
|
||||
@@ -24,7 +24,7 @@ systemName()
|
||||
/** Number of drops in the genesis account. */
|
||||
constexpr XRPAmount INITIAL_XRP{100'000'000'000 * DROPS_PER_XRP};
|
||||
static_assert(INITIAL_XRP.drops() == 100'000'000'000'000'000);
|
||||
static_assert(Number::maxRep >= INITIAL_XRP.drops());
|
||||
static_assert(Number::largestMantissa >= INITIAL_XRP.drops());
|
||||
|
||||
/** Returns true if the amount does not exceed the initial XRP in existence. */
|
||||
inline bool
|
||||
|
||||
@@ -1,29 +1,29 @@
|
||||
# The idea is to empty this file gradually by fixing the underlying issues and removing suppressions.
|
||||
# The idea is to empty this file gradually by fixing the underlying issues and removing suppresions.
|
||||
#
|
||||
# ASAN_OPTIONS="print_stacktrace=1:detect_container_overflow=0:suppressions=sanitizers/suppressions/asan.supp:halt_on_error=0"
|
||||
# ASAN_OPTIONS="suppressions=sanitizers/suppressions/asan.supp:halt_on_error=0:detect_stack_use_after_return=0"
|
||||
#
|
||||
# The detect_container_overflow=0 option disables false positives from:
|
||||
# - Boost intrusive containers (slist_iterator.hpp, hashtable.hpp, aged_unordered_container.h)
|
||||
# - Boost context/coroutine stack switching (Workers.cpp, thread.h)
|
||||
# Boost coroutines cause multiple ASAN false positives due to swapcontext/fiber stack switching.
|
||||
# ASAN cannot correctly track stack memory across coroutine context switches, leading to:
|
||||
# - stack-use-after-return errors
|
||||
# - stack-use-after-scope errors
|
||||
# - stack-buffer-overflow errors in seemingly unrelated code (e.g., std::chrono::steady_clock::now())
|
||||
# - stack-buffer-underflow errors in seemingly unrelated code (e.g., xxhasher::retrieveHash(), clock_gettime)
|
||||
#
|
||||
# See: https://github.com/google/sanitizers/wiki/AddressSanitizerContainerOverflow
|
||||
# These are suppressed via:
|
||||
# 1. Runtime option: detect_stack_use_after_return=0 (in ASAN_OPTIONS in CI workflow)
|
||||
# 2. Compile-time flag: -fno-sanitize-address-use-after-scope (in cmake/XrplSanitizers.cmake)
|
||||
#
|
||||
# Note: stack-buffer-overflow false positives from coroutines cannot be fully suppressed
|
||||
# without disabling ASAN entirely for Boost. Clang builds use -fsanitize-blacklist to
|
||||
# exclude Boost headers, but GCC does not support this feature.
|
||||
#
|
||||
# See: https://github.com/google/sanitizers/issues/189
|
||||
|
||||
# Boost
|
||||
interceptor_name:boost/asio
|
||||
|
||||
# Leaks in Doctest tests: xrpl.test.*
|
||||
interceptor_name:src/libxrpl/net/HTTPClient.cpp
|
||||
interceptor_name:src/libxrpl/net/RegisterSSLCerts.cpp
|
||||
interceptor_name:src/tests/libxrpl/net/HTTPClient.cpp
|
||||
interceptor_name:xrpl/net/AutoSocket.h
|
||||
interceptor_name:xrpl/net/HTTPClient.h
|
||||
interceptor_name:xrpl/net/HTTPClientSSLContext.h
|
||||
interceptor_name:xrpl/net/RegisterSSLCerts.h
|
||||
|
||||
# Suppress false positive stack-buffer errors in thread stack allocation
|
||||
# Related to ASan's __asan_handle_no_return warnings (github.com/google/sanitizers/issues/189)
|
||||
# These occur during multi-threaded test initialization on macOS
|
||||
# Boost - false positives from stackful coroutines
|
||||
interceptor_name:clock_gettime
|
||||
interceptor_name:memcpy
|
||||
interceptor_name:__bzero
|
||||
interceptor_name:__asan_memset
|
||||
interceptor_name:__asan_memcpy
|
||||
interceptor_via_fun:assert
|
||||
interceptor_via_fun:static_assert
|
||||
|
||||
@@ -1,16 +1,13 @@
|
||||
# The idea is to empty this file gradually by fixing the underlying issues and removing suppresions.
|
||||
|
||||
# Suppress leaks detected by asan in rippled code.
|
||||
leak:src/libxrpl/net/HTTPClient.cpp
|
||||
leak:src/libxrpl/net/RegisterSSLCerts.cpp
|
||||
leak:src/tests/libxrpl/net/HTTPClient.cpp
|
||||
leak:xrpl/net/AutoSocket.h
|
||||
leak:xrpl/net/HTTPClient.h
|
||||
leak:xrpl/net/HTTPClientSSLContext.h
|
||||
leak:xrpl/net/RegisterSSLCerts.h
|
||||
leak:ripple::HTTPClient
|
||||
leak:ripple::HTTPClientImp
|
||||
|
||||
# Suppress leaks detected by asan in boost code.
|
||||
leak:boost::asio
|
||||
leak:boost/asio
|
||||
# These are false positives from Boost.Asio SSL internals that use OpenSSL BIO structures.
|
||||
# The BIO structures are managed by OpenSSL's internal reference counting and freed at process exit.
|
||||
|
||||
#leak:boost::asio
|
||||
#leak:boost/asio
|
||||
|
||||
# OpenSSL BIO memory is managed internally and freed at process exit
|
||||
leak:CRYPTO_malloc
|
||||
leak:bio_make_pair
|
||||
leak:BIO_new_bio_pair
|
||||
|
||||
3
sanitizers/suppressions/runtime-asan-options.txt
Normal file
3
sanitizers/suppressions/runtime-asan-options.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
detect_container_overflow=0
|
||||
detect_stack_use_after_return=0
|
||||
debug=true
|
||||
1
sanitizers/suppressions/runtime-lsan-options.txt
Normal file
1
sanitizers/suppressions/runtime-lsan-options.txt
Normal file
@@ -0,0 +1 @@
|
||||
halt_on_error=false
|
||||
3
sanitizers/suppressions/runtime-tsan-options.txt
Normal file
3
sanitizers/suppressions/runtime-tsan-options.txt
Normal file
@@ -0,0 +1,3 @@
|
||||
halt_on_error=false
|
||||
verbosity=1
|
||||
second_deadlock_stack=1
|
||||
1
sanitizers/suppressions/runtime-ubsan-options.txt
Normal file
1
sanitizers/suppressions/runtime-ubsan-options.txt
Normal file
@@ -0,0 +1 @@
|
||||
halt_on_error=false
|
||||
@@ -27,3 +27,8 @@ src:core/JobQueue.cpp
|
||||
src:libxrpl/beast/utility/beast_Journal.cpp
|
||||
src:test/beast/beast_PropertyStream_test.cpp
|
||||
src:src/test/app/Invariants_test.cpp
|
||||
|
||||
# Boost coroutines cause false positive stack-buffer-underflow in xxhasher
|
||||
# This is a known ASAN limitation with stackful coroutines
|
||||
# See: https://github.com/google/sanitizers/issues/189
|
||||
src:beast/hash/xxhasher.h
|
||||
|
||||
@@ -140,6 +140,7 @@ unsigned-integer-overflow:src/libxrpl/protocol/tokens.cpp
|
||||
unsigned-integer-overflow:src/libxrpl/shamap/SHAMap.cpp
|
||||
unsigned-integer-overflow:src/test/app/Batch_test.cpp
|
||||
unsigned-integer-overflow:src/test/app/Invariants_test.cpp
|
||||
unsigned-integer-overflow:src/test/app/Loan_test.cpp
|
||||
unsigned-integer-overflow:src/test/app/NFToken_test.cpp
|
||||
unsigned-integer-overflow:src/test/app/Offer_test.cpp
|
||||
unsigned-integer-overflow:src/test/app/Path_test.cpp
|
||||
|
||||
@@ -11,18 +11,16 @@
|
||||
#include <numeric>
|
||||
#include <stdexcept>
|
||||
#include <string>
|
||||
#include <string_view>
|
||||
#include <type_traits>
|
||||
#include <utility>
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#pragma message("Using boost::multiprecision::uint128_t and int128_t")
|
||||
#include <boost/multiprecision/cpp_int.hpp>
|
||||
using uint128_t = boost::multiprecision::uint128_t;
|
||||
using int128_t = boost::multiprecision::int128_t;
|
||||
#else // !defined(_MSC_VER)
|
||||
using uint128_t = __uint128_t;
|
||||
using int128_t = __int128_t;
|
||||
#endif // !defined(_MSC_VER)
|
||||
#endif
|
||||
|
||||
using uint128_t = ripple::detail::uint128_t;
|
||||
using int128_t = ripple::detail::int128_t;
|
||||
|
||||
namespace xrpl {
|
||||
|
||||
@@ -62,10 +60,6 @@ Number::setMantissaScale(MantissaRange::mantissa_scale scale)
|
||||
// precision to an operation. This enables the final result
|
||||
// to be correctly rounded to the internal precision of Number.
|
||||
|
||||
template <class T>
|
||||
concept UnsignedMantissa =
|
||||
std::is_unsigned_v<T> || std::is_same_v<T, uint128_t>;
|
||||
|
||||
class Number::Guard
|
||||
{
|
||||
std::uint64_t digits_; // 16 decimal guard digits
|
||||
@@ -101,7 +95,7 @@ public:
|
||||
round() noexcept;
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
template <UnsignedMantissa T>
|
||||
template <detail::UnsignedMantissa T>
|
||||
void
|
||||
doRoundUp(
|
||||
bool& negative,
|
||||
@@ -109,10 +103,10 @@ public:
|
||||
int& exponent,
|
||||
internalrep const& minMantissa,
|
||||
internalrep const& maxMantissa,
|
||||
std::string location);
|
||||
std::string_view location);
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
template <UnsignedMantissa T>
|
||||
template <detail::UnsignedMantissa T>
|
||||
void
|
||||
doRoundDown(
|
||||
bool& negative,
|
||||
@@ -122,13 +116,13 @@ public:
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
void
|
||||
doRound(rep& drops, std::string location);
|
||||
doRound(rep& drops, std::string_view location);
|
||||
|
||||
private:
|
||||
void
|
||||
doPush(unsigned d) noexcept;
|
||||
|
||||
template <UnsignedMantissa T>
|
||||
template <detail::UnsignedMantissa T>
|
||||
void
|
||||
bringIntoRange(
|
||||
bool& negative,
|
||||
@@ -219,7 +213,7 @@ Number::Guard::round() noexcept
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <UnsignedMantissa T>
|
||||
template <detail::UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::bringIntoRange(
|
||||
bool& negative,
|
||||
@@ -238,13 +232,13 @@ Number::Guard::bringIntoRange(
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
|
||||
negative = zero.negative_;
|
||||
negative = false;
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
}
|
||||
}
|
||||
|
||||
template <UnsignedMantissa T>
|
||||
template <detail::UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::doRoundUp(
|
||||
bool& negative,
|
||||
@@ -252,7 +246,7 @@ Number::Guard::doRoundUp(
|
||||
int& exponent,
|
||||
internalrep const& minMantissa,
|
||||
internalrep const& maxMantissa,
|
||||
std::string location)
|
||||
std::string_view location)
|
||||
{
|
||||
auto r = round();
|
||||
if (r == 1 || (r == 0 && (mantissa & 1) == 1))
|
||||
@@ -260,7 +254,7 @@ Number::Guard::doRoundUp(
|
||||
++mantissa;
|
||||
// Ensure mantissa after incrementing fits within both the
|
||||
// min/maxMantissa range and is a valid "rep".
|
||||
if (mantissa > maxMantissa || mantissa > maxRep)
|
||||
if (mantissa > maxMantissa)
|
||||
{
|
||||
mantissa /= 10;
|
||||
++exponent;
|
||||
@@ -268,10 +262,10 @@ Number::Guard::doRoundUp(
|
||||
}
|
||||
bringIntoRange(negative, mantissa, exponent, minMantissa);
|
||||
if (exponent > maxExponent)
|
||||
throw std::overflow_error(location);
|
||||
Throw<std::overflow_error>(std::string{location});
|
||||
}
|
||||
|
||||
template <UnsignedMantissa T>
|
||||
template <detail::UnsignedMantissa T>
|
||||
void
|
||||
Number::Guard::doRoundDown(
|
||||
bool& negative,
|
||||
@@ -294,12 +288,13 @@ Number::Guard::doRoundDown(
|
||||
|
||||
// Modify the result to the correctly rounded value
|
||||
void
|
||||
Number::Guard::doRound(rep& drops, std::string location)
|
||||
Number::Guard::doRound(rep& drops, std::string_view location)
|
||||
{
|
||||
auto r = round();
|
||||
if (r == 1 || (r == 0 && (drops & 1) == 1))
|
||||
{
|
||||
if (drops >= maxRep)
|
||||
auto const& range = range_.get();
|
||||
if (drops >= range.max)
|
||||
{
|
||||
static_assert(sizeof(internalrep) == sizeof(rep));
|
||||
// This should be impossible, because it's impossible to represent
|
||||
@@ -308,7 +303,8 @@ Number::Guard::doRound(rep& drops, std::string location)
|
||||
// or "(maxRep + 1) / 10", neither of which will round up when
|
||||
// converting to rep, though the latter might overflow _before_
|
||||
// rounding.
|
||||
throw std::overflow_error(location); // LCOV_EXCL_LINE
|
||||
Throw<std::overflow_error>(
|
||||
std::string{location}); // LCOV_EXCL_LINE
|
||||
}
|
||||
++drops;
|
||||
}
|
||||
@@ -328,17 +324,134 @@ Number::externalToInternal(rep mantissa)
|
||||
// If the mantissa is already positive, just return it
|
||||
if (mantissa >= 0)
|
||||
return mantissa;
|
||||
// If the mantissa is negative, but fits within the positive range of rep,
|
||||
// return it negated
|
||||
if (mantissa >= -std::numeric_limits<rep>::max())
|
||||
return -mantissa;
|
||||
|
||||
// If the mantissa doesn't fit within the positive range, convert to
|
||||
// int128_t, negate that, and cast it back down to the internalrep
|
||||
// In practice, this is only going to cover the case of
|
||||
// std::numeric_limits<rep>::min().
|
||||
int128_t temp = mantissa;
|
||||
return static_cast<internalrep>(-temp);
|
||||
// Cast to unsigned before negating to avoid undefined behavior
|
||||
// when v == INT64_MIN (negating INT64_MIN in signed is UB)
|
||||
return -static_cast<internalrep>(mantissa);
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal(MantissaRange const& range) const
|
||||
{
|
||||
auto exponent = exponent_;
|
||||
bool const negative = mantissa_ < 0;
|
||||
auto const sign = negative ? -1 : 1;
|
||||
Rep mantissa = static_cast<Rep>(sign * mantissa_);
|
||||
|
||||
auto const referenceMin = range.referenceMin;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
if (mantissa != 0 && mantissa >= minMantissa && mantissa < referenceMin)
|
||||
{
|
||||
// Ensure the mantissa has the correct number of digits
|
||||
mantissa *= 10;
|
||||
--exponent;
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= referenceMin && mantissa < referenceMin * 10,
|
||||
"ripple::Number::toInternal()",
|
||||
"Number is within reference range and has 'log' digits");
|
||||
}
|
||||
|
||||
return {negative, mantissa, exponent};
|
||||
}
|
||||
|
||||
/** Breaks down the number into components, potentially de-normalizing it.
|
||||
*
|
||||
* Ensures that the mantissa always has range_.log digits.
|
||||
*
|
||||
*/
|
||||
template <detail::UnsignedMantissa Rep>
|
||||
std::tuple<bool, Rep, int>
|
||||
Number::toInternal() const
|
||||
{
|
||||
return toInternal(range_);
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all
|
||||
* in their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near
|
||||
* normalized", meaning that the mantissa has to be modified at most once to
|
||||
* bring it back into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(
|
||||
bool negative,
|
||||
Rep mantissa,
|
||||
int exponent,
|
||||
MantissaRange const* pRange)
|
||||
{
|
||||
if constexpr (std::is_same_v<
|
||||
std::bool_constant<expectNormal>,
|
||||
std::false_type>)
|
||||
{
|
||||
if (!pRange)
|
||||
throw std::runtime_error("Missing range to Number::fromInternal!");
|
||||
auto const& range = *pRange;
|
||||
|
||||
auto const maxMantissa = range.max;
|
||||
auto const minMantissa = range.min;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa,
|
||||
"ripple::Number::fromInternal",
|
||||
"mantissa large enough");
|
||||
|
||||
if (mantissa > maxMantissa || mantissa < minMantissa)
|
||||
{
|
||||
normalize(negative, mantissa, exponent, range.min, maxMantissa);
|
||||
}
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa >= minMantissa && mantissa <= maxMantissa,
|
||||
"ripple::Number::fromInternal",
|
||||
"mantissa in range");
|
||||
}
|
||||
|
||||
auto const sign = negative ? -1 : 1;
|
||||
|
||||
mantissa_ = sign * static_cast<rep>(mantissa);
|
||||
exponent_ = exponent;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
(pRange && isnormal(*pRange)) || isnormal(),
|
||||
"ripple::Number::fromInternal",
|
||||
"Number is normalized");
|
||||
}
|
||||
|
||||
/** Rebuilds the number from components.
|
||||
*
|
||||
* If "normalized" is true, the values are expected to be normalized - all in
|
||||
* their valid ranges.
|
||||
*
|
||||
* If "normalized" is false, the values are expected to be "near normalized",
|
||||
* meaning that the mantissa has to be modified at most once to bring it back
|
||||
* into range.
|
||||
*
|
||||
*/
|
||||
template <bool expectNormal, detail::UnsignedMantissa Rep>
|
||||
void
|
||||
Number::fromInternal(bool negative, Rep mantissa, int exponent)
|
||||
{
|
||||
MantissaRange const* pRange = nullptr;
|
||||
if constexpr (std::is_same_v<
|
||||
std::bool_constant<expectNormal>,
|
||||
std::false_type>)
|
||||
{
|
||||
pRange = &Number::range_.get();
|
||||
}
|
||||
|
||||
fromInternal(negative, mantissa, exponent, pRange);
|
||||
}
|
||||
|
||||
constexpr Number
|
||||
@@ -346,7 +459,7 @@ Number::oneSmall()
|
||||
{
|
||||
return Number{
|
||||
false,
|
||||
Number::smallRange.min,
|
||||
Number::smallRange.referenceMin,
|
||||
-Number::smallRange.log,
|
||||
Number::unchecked{}};
|
||||
};
|
||||
@@ -358,7 +471,7 @@ Number::oneLarge()
|
||||
{
|
||||
return Number{
|
||||
false,
|
||||
Number::largeRange.min,
|
||||
Number::largeRange.referenceMin,
|
||||
-Number::largeRange.log,
|
||||
Number::unchecked{}};
|
||||
};
|
||||
@@ -366,106 +479,91 @@ Number::oneLarge()
|
||||
constexpr Number oneLrg = Number::oneLarge();
|
||||
|
||||
Number
|
||||
Number::one()
|
||||
Number::one(MantissaRange const& range)
|
||||
{
|
||||
if (&range_.get() == &smallRange)
|
||||
if (&range == &smallRange)
|
||||
return oneSml;
|
||||
XRPL_ASSERT(&range_.get() == &largeRange, "Number::one() : valid range_");
|
||||
XRPL_ASSERT(&range == &largeRange, "Number::one() : valid range");
|
||||
return oneLrg;
|
||||
}
|
||||
|
||||
Number
|
||||
Number::one()
|
||||
{
|
||||
return one(range_);
|
||||
}
|
||||
|
||||
// Use the member names in this static function for now so the diff is cleaner
|
||||
// TODO: Rename the function parameters to get rid of the "_" suffix
|
||||
template <class T>
|
||||
void
|
||||
doNormalize(
|
||||
bool& negative,
|
||||
T& mantissa_,
|
||||
int& exponent_,
|
||||
T& mantissa,
|
||||
int& exponent,
|
||||
MantissaRange::rep const& minMantissa,
|
||||
MantissaRange::rep const& maxMantissa)
|
||||
{
|
||||
auto constexpr minExponent = Number::minExponent;
|
||||
auto constexpr maxExponent = Number::maxExponent;
|
||||
auto constexpr maxRep = Number::maxRep;
|
||||
|
||||
using Guard = Number::Guard;
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (mantissa_ == 0)
|
||||
if (mantissa == 0 || (mantissa < minMantissa && exponent <= minExponent))
|
||||
{
|
||||
mantissa_ = zero.mantissa_;
|
||||
exponent_ = zero.exponent_;
|
||||
negative = zero.negative_;
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
negative = false;
|
||||
return;
|
||||
}
|
||||
auto m = mantissa_;
|
||||
while ((m < minMantissa) && (exponent_ > minExponent))
|
||||
|
||||
auto m = mantissa;
|
||||
while ((m < minMantissa) && (exponent > minExponent))
|
||||
{
|
||||
m *= 10;
|
||||
--exponent_;
|
||||
--exponent;
|
||||
}
|
||||
Guard g;
|
||||
if (negative)
|
||||
g.set_negative();
|
||||
while (m > maxMantissa)
|
||||
{
|
||||
if (exponent_ >= maxExponent)
|
||||
if (exponent >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent_;
|
||||
++exponent;
|
||||
}
|
||||
if ((exponent_ < minExponent) || (m < minMantissa))
|
||||
if ((exponent < minExponent) || (m == 0))
|
||||
{
|
||||
mantissa_ = zero.mantissa_;
|
||||
exponent_ = zero.exponent_;
|
||||
negative = zero.negative_;
|
||||
mantissa = zero.mantissa_;
|
||||
exponent = zero.exponent_;
|
||||
negative = false;
|
||||
return;
|
||||
}
|
||||
|
||||
// When using the largeRange, "m" needs fit within an int64, even if
|
||||
// the final mantissa_ is going to end up larger to fit within the
|
||||
// MantissaRange. Cut it down here so that the rounding will be done while
|
||||
// it's smaller.
|
||||
//
|
||||
// Example: 9,900,000,000,000,123,456 > 9,223,372,036,854,775,807,
|
||||
// so "m" will be modified to 990,000,000,000,012,345. Then that value
|
||||
// will be rounded to 990,000,000,000,012,345 or
|
||||
// 990,000,000,000,012,346, depending on the rounding mode. Finally,
|
||||
// mantissa_ will be "m*10" so it fits within the range, and end up as
|
||||
// 9,900,000,000,000,123,450 or 9,900,000,000,000,123,460.
|
||||
// mantissa() will return mantissa_ / 10, and exponent() will return
|
||||
// exponent_ + 1.
|
||||
if (m > maxRep)
|
||||
{
|
||||
if (exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::normalize 1.5");
|
||||
g.push(m % 10);
|
||||
m /= 10;
|
||||
++exponent_;
|
||||
}
|
||||
// Before modification, m should be within the min/max range. After
|
||||
// modification, it must be less than maxRep. In other words, the original
|
||||
// value should have been no more than maxRep * 10.
|
||||
// (maxRep * 10 > maxMantissa)
|
||||
XRPL_ASSERT_PARTS(
|
||||
m <= maxRep,
|
||||
m <= maxMantissa,
|
||||
"xrpl::doNormalize",
|
||||
"intermediate mantissa fits in int64");
|
||||
mantissa_ = m;
|
||||
mantissa = m;
|
||||
|
||||
g.doRoundUp(
|
||||
negative,
|
||||
mantissa_,
|
||||
exponent_,
|
||||
mantissa,
|
||||
exponent,
|
||||
minMantissa,
|
||||
maxMantissa,
|
||||
"Number::normalize 2");
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
mantissa_ >= minMantissa && mantissa_ <= maxMantissa,
|
||||
mantissa >= minMantissa && mantissa <= maxMantissa,
|
||||
"xrpl::doNormalize",
|
||||
"final mantissa fits in range");
|
||||
XRPL_ASSERT_PARTS(
|
||||
exponent >= minExponent && exponent <= maxExponent,
|
||||
"xrpl::doNormalize",
|
||||
"final exponent fits in range");
|
||||
}
|
||||
|
||||
template <>
|
||||
@@ -504,11 +602,20 @@ Number::normalize<unsigned long>(
|
||||
doNormalize(negative, mantissa, exponent, minMantissa, maxMantissa);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize(MantissaRange const& range)
|
||||
{
|
||||
auto [negative, mantissa, exponent] = toInternal(range);
|
||||
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
void
|
||||
Number::normalize()
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
normalize(negative_, mantissa_, exponent_, range.min, range.max);
|
||||
normalize(range_);
|
||||
}
|
||||
|
||||
// Copy the number, but set a new exponent. Because the mantissa doesn't change,
|
||||
@@ -518,24 +625,33 @@ Number
|
||||
Number::shiftExponent(int exponentDelta) const
|
||||
{
|
||||
XRPL_ASSERT_PARTS(isnormal(), "xrpl::Number::shiftExponent", "normalized");
|
||||
auto const newExponent = exponent_ + exponentDelta;
|
||||
if (newExponent >= maxExponent)
|
||||
|
||||
Number result = *this;
|
||||
|
||||
result.exponent_ += exponentDelta;
|
||||
|
||||
if (result.exponent_ >= maxExponent)
|
||||
throw std::overflow_error("Number::shiftExponent");
|
||||
if (newExponent < minExponent)
|
||||
if (result.exponent_ < minExponent)
|
||||
{
|
||||
return Number{};
|
||||
}
|
||||
Number const result{negative_, mantissa_, newExponent, unchecked{}};
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(),
|
||||
"xrpl::Number::shiftExponent",
|
||||
"result is normalized");
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
Number::Number(bool negative, internalrep mantissa, int exponent, normalized)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
normalize(negative, mantissa, exponent, range.min, range.max);
|
||||
fromInternal(negative, mantissa, exponent, &range);
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator+=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
return *this;
|
||||
@@ -551,7 +667,7 @@ Number::operator+=(Number const& y)
|
||||
}
|
||||
|
||||
XRPL_ASSERT(
|
||||
isnormal() && y.isnormal(),
|
||||
isnormal(range) && y.isnormal(range),
|
||||
"xrpl::Number::operator+=(Number) : is normal");
|
||||
// *n = negative
|
||||
// *s = sign
|
||||
@@ -560,13 +676,10 @@ Number::operator+=(Number const& y)
|
||||
|
||||
// Need to use uint128_t, because large mantissas can overflow when added
|
||||
// together.
|
||||
bool xn = negative_;
|
||||
uint128_t xm = mantissa_;
|
||||
auto xe = exponent_;
|
||||
auto [xn, xm, xe] = toInternal<uint128_t>(range);
|
||||
|
||||
auto [yn, ym, ye] = y.toInternal<uint128_t>(range);
|
||||
|
||||
bool yn = y.negative_;
|
||||
uint128_t ym = y.mantissa_;
|
||||
auto ye = y.exponent_;
|
||||
Guard g;
|
||||
if (xe < ye)
|
||||
{
|
||||
@@ -591,14 +704,13 @@ Number::operator+=(Number const& y)
|
||||
} while (xe > ye);
|
||||
}
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
if (xn == yn)
|
||||
{
|
||||
xm += ym;
|
||||
if (xm > maxMantissa || xm > maxRep)
|
||||
if (xm > maxMantissa)
|
||||
{
|
||||
g.push(xm % 10);
|
||||
xm /= 10;
|
||||
@@ -619,7 +731,7 @@ Number::operator+=(Number const& y)
|
||||
xe = ye;
|
||||
xn = yn;
|
||||
}
|
||||
while (xm < minMantissa && xm * 10 <= maxRep)
|
||||
while (xm < minMantissa)
|
||||
{
|
||||
xm *= 10;
|
||||
xm -= g.pop();
|
||||
@@ -628,10 +740,8 @@ Number::operator+=(Number const& y)
|
||||
g.doRoundDown(xn, xm, xe, minMantissa);
|
||||
}
|
||||
|
||||
negative_ = xn;
|
||||
mantissa_ = static_cast<internalrep>(xm);
|
||||
exponent_ = xe;
|
||||
normalize();
|
||||
normalize(xn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(xn, xm, xe, &range);
|
||||
return *this;
|
||||
}
|
||||
|
||||
@@ -666,6 +776,8 @@ divu10(uint128_t& u)
|
||||
Number&
|
||||
Number::operator*=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (*this == zero)
|
||||
return *this;
|
||||
@@ -679,15 +791,11 @@ Number::operator*=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
bool xn = negative_;
|
||||
auto [xn, xm, xe] = toInternal(range);
|
||||
int xs = xn ? -1 : 1;
|
||||
internalrep xm = mantissa_;
|
||||
auto xe = exponent_;
|
||||
|
||||
bool yn = y.negative_;
|
||||
auto [yn, ym, ye] = y.toInternal(range);
|
||||
int ys = yn ? -1 : 1;
|
||||
internalrep ym = y.mantissa_;
|
||||
auto ye = y.exponent_;
|
||||
|
||||
auto zm = uint128_t(xm) * uint128_t(ym);
|
||||
auto ze = xe + ye;
|
||||
@@ -697,11 +805,10 @@ Number::operator*=(Number const& y)
|
||||
if (zn)
|
||||
g.set_negative();
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
while (zm > maxMantissa || zm > maxRep)
|
||||
while (zm > maxMantissa)
|
||||
{
|
||||
// The following is optimization for:
|
||||
// g.push(static_cast<unsigned>(zm % 10));
|
||||
@@ -718,17 +825,17 @@ Number::operator*=(Number const& y)
|
||||
minMantissa,
|
||||
maxMantissa,
|
||||
"Number::multiplication overflow : exponent is " + std::to_string(xe));
|
||||
negative_ = zn;
|
||||
mantissa_ = xm;
|
||||
exponent_ = xe;
|
||||
|
||||
normalize();
|
||||
normalize(zn, xm, xe, minMantissa, maxMantissa);
|
||||
fromInternal(zn, xm, xe, &range);
|
||||
return *this;
|
||||
}
|
||||
|
||||
Number&
|
||||
Number::operator/=(Number const& y)
|
||||
{
|
||||
auto const& range = range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
if (y == zero)
|
||||
throw std::overflow_error("Number: divide by 0");
|
||||
@@ -741,17 +848,12 @@ Number::operator/=(Number const& y)
|
||||
// *m = mantissa
|
||||
// *e = exponent
|
||||
|
||||
bool np = negative_;
|
||||
auto [np, nm, ne] = toInternal(range);
|
||||
int ns = (np ? -1 : 1);
|
||||
auto nm = mantissa_;
|
||||
auto ne = exponent_;
|
||||
|
||||
bool dp = y.negative_;
|
||||
auto [dp, dm, de] = y.toInternal(range);
|
||||
int ds = (dp ? -1 : 1);
|
||||
auto dm = y.mantissa_;
|
||||
auto de = y.exponent_;
|
||||
|
||||
auto const& range = range_.get();
|
||||
auto const& minMantissa = range.min;
|
||||
auto const& maxMantissa = range.max;
|
||||
|
||||
@@ -763,7 +865,7 @@ Number::operator/=(Number const& y)
|
||||
// f can be up to 10^(38-19) = 10^19 safely
|
||||
static_assert(smallRange.log == 15);
|
||||
static_assert(largeRange.log == 18);
|
||||
bool small = Number::getMantissaScale() == MantissaRange::small;
|
||||
bool small = range.scale == MantissaRange::small;
|
||||
uint128_t const f =
|
||||
small ? 100'000'000'000'000'000 : 10'000'000'000'000'000'000ULL;
|
||||
XRPL_ASSERT_PARTS(
|
||||
@@ -815,11 +917,9 @@ Number::operator/=(Number const& y)
|
||||
}
|
||||
}
|
||||
normalize(zn, zm, ze, minMantissa, maxMantissa);
|
||||
negative_ = zn;
|
||||
mantissa_ = static_cast<internalrep>(zm);
|
||||
exponent_ = ze;
|
||||
fromInternal(zn, zm, ze, &range);
|
||||
XRPL_ASSERT_PARTS(
|
||||
isnormal(), "xrpl::Number::operator/=", "result is normalized");
|
||||
isnormal(range), "xrpl::Number::operator/=", "result is normalized");
|
||||
|
||||
return *this;
|
||||
}
|
||||
@@ -831,7 +931,7 @@ Number::operator rep() const
|
||||
Guard g;
|
||||
if (drops != 0)
|
||||
{
|
||||
if (negative_)
|
||||
if (drops < 0)
|
||||
{
|
||||
g.set_negative();
|
||||
drops = -drops;
|
||||
@@ -843,7 +943,7 @@ Number::operator rep() const
|
||||
}
|
||||
for (; offset > 0; --offset)
|
||||
{
|
||||
if (drops > maxRep / 10)
|
||||
if (drops >= largeRange.min)
|
||||
throw std::overflow_error("Number::operator rep() overflow");
|
||||
drops *= 10;
|
||||
}
|
||||
@@ -873,20 +973,22 @@ Number::truncate() const noexcept
|
||||
std::string
|
||||
to_string(Number const& amount)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
// keep full internal accuracy, but make more human friendly if possible
|
||||
constexpr Number zero = Number{};
|
||||
if (amount == zero)
|
||||
return "0";
|
||||
|
||||
auto exponent = amount.exponent_;
|
||||
auto mantissa = amount.mantissa_;
|
||||
bool const negative = amount.negative_;
|
||||
// The mantissa must have a set number of decimal places for this to work
|
||||
auto [negative, mantissa, exponent] = amount.toInternal(range);
|
||||
|
||||
// Use scientific notation for exponents that are too small or too large
|
||||
auto const rangeLog = Number::mantissaLog();
|
||||
if (((exponent != 0) &&
|
||||
auto const rangeLog = range.log;
|
||||
if (((exponent != 0 && amount.exponent() != 0) &&
|
||||
((exponent < -(rangeLog + 10)) || (exponent > -(rangeLog - 10)))))
|
||||
{
|
||||
// Remove trailing zeroes from the mantissa.
|
||||
while (mantissa != 0 && mantissa % 10 == 0 &&
|
||||
exponent < Number::maxExponent)
|
||||
{
|
||||
@@ -895,8 +997,11 @@ to_string(Number const& amount)
|
||||
}
|
||||
std::string ret = negative ? "-" : "";
|
||||
ret.append(std::to_string(mantissa));
|
||||
ret.append(1, 'e');
|
||||
ret.append(std::to_string(exponent));
|
||||
if (exponent != 0)
|
||||
{
|
||||
ret.append(1, 'e');
|
||||
ret.append(std::to_string(exponent));
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
@@ -984,20 +1089,11 @@ power(Number const& f, unsigned n)
|
||||
return r;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
root(Number f, unsigned d)
|
||||
Number::root(MantissaRange const& range, Number f, unsigned d)
|
||||
{
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one();
|
||||
auto const one = Number::one(range);
|
||||
|
||||
if (f == one || d == 1)
|
||||
return f;
|
||||
@@ -1014,22 +1110,30 @@ root(Number f, unsigned d)
|
||||
if (f == zero)
|
||||
return f;
|
||||
|
||||
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
|
||||
auto e = f.exponent_ + Number::mantissaLog() + 1;
|
||||
auto const di = static_cast<int>(d);
|
||||
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
|
||||
{
|
||||
int k = (e >= 0 ? e : e - (di - 1)) / di;
|
||||
int k2 = e - k * di;
|
||||
if (k2 == 0)
|
||||
return 0;
|
||||
return di - k2;
|
||||
auto const [e, di] = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that the scale change (e) is a
|
||||
// multiple of the root (d)
|
||||
auto e = exponent + range.log + 1;
|
||||
auto const di = static_cast<int>(d);
|
||||
auto ex = [e = e, di = di]() // Euclidean remainder of e/d
|
||||
{
|
||||
int k = (e >= 0 ? e : e - (di - 1)) / di;
|
||||
int k2 = e - k * di;
|
||||
if (k2 == 0)
|
||||
return 0;
|
||||
return di - k2;
|
||||
}();
|
||||
e += ex;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return std::make_tuple(e, di);
|
||||
}();
|
||||
e += ex;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
e % di == 0, "xrpl::root(Number, unsigned)", "e is divisible by d");
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(range), "xrpl::root(Number, unsigned)", "f is normalized");
|
||||
bool neg = false;
|
||||
if (f < zero)
|
||||
{
|
||||
@@ -1063,17 +1167,34 @@ root(Number f, unsigned d)
|
||||
// return r * 10^(e/d) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / di);
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(),
|
||||
result.isnormal(range),
|
||||
"xrpl::root(Number, unsigned)",
|
||||
"result is normalized");
|
||||
return result;
|
||||
}
|
||||
|
||||
// Returns f^(1/d)
|
||||
// Uses Newton–Raphson iterations until the result stops changing
|
||||
// to find the non-negative root of the polynomial g(x) = x^d - f
|
||||
|
||||
// This function, and power(Number f, unsigned n, unsigned d)
|
||||
// treat corner cases such as 0 roots as advised by Annex F of
|
||||
// the C standard, which itself is consistent with the IEEE
|
||||
// floating point standards.
|
||||
|
||||
Number
|
||||
root(Number f, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
return Number::root(range, f, d);
|
||||
}
|
||||
|
||||
Number
|
||||
root2(Number f)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one();
|
||||
auto const one = Number::one(range);
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1082,12 +1203,19 @@ root2(Number f)
|
||||
if (f == zero)
|
||||
return f;
|
||||
|
||||
// Scale f into the range (0, 1) such that f's exponent is a multiple of d
|
||||
auto e = f.exponent_ + Number::mantissaLog() + 1;
|
||||
if (e % 2 != 0)
|
||||
++e;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
XRPL_ASSERT_PARTS(f.isnormal(), "xrpl::root2(Number)", "f is normalized");
|
||||
auto const e = [&]() {
|
||||
auto const [negative, mantissa, exponent] = f.toInternal(range);
|
||||
|
||||
// Scale f into the range (0, 1) such that f's exponent is a
|
||||
// multiple of d
|
||||
auto e = exponent + range.log + 1;
|
||||
if (e % 2 != 0)
|
||||
++e;
|
||||
f = f.shiftExponent(-e); // f /= 10^e;
|
||||
return e;
|
||||
}();
|
||||
XRPL_ASSERT_PARTS(
|
||||
f.isnormal(range), "xrpl::root2(Number)", "f is normalized");
|
||||
|
||||
// Quadratic least squares curve fit of f^(1/d) in the range [0, 1]
|
||||
auto const D = 105;
|
||||
@@ -1110,7 +1238,7 @@ root2(Number f)
|
||||
// return r * 10^(e/2) to reverse scaling
|
||||
auto const result = r.shiftExponent(e / 2);
|
||||
XRPL_ASSERT_PARTS(
|
||||
result.isnormal(), "xrpl::root2(Number)", "result is normalized");
|
||||
result.isnormal(range), "xrpl::root2(Number)", "result is normalized");
|
||||
|
||||
return result;
|
||||
}
|
||||
@@ -1120,8 +1248,10 @@ root2(Number f)
|
||||
Number
|
||||
power(Number const& f, unsigned n, unsigned d)
|
||||
{
|
||||
auto const& range = Number::range_.get();
|
||||
|
||||
constexpr Number zero = Number{};
|
||||
auto const one = Number::one();
|
||||
auto const one = Number::one(range);
|
||||
|
||||
if (f == one)
|
||||
return f;
|
||||
@@ -1143,7 +1273,7 @@ power(Number const& f, unsigned n, unsigned d)
|
||||
d /= g;
|
||||
if ((n % 2) == 1 && (d % 2) == 0 && f < zero)
|
||||
throw std::overflow_error("Number::power nan");
|
||||
return root(power(f, n), d);
|
||||
return Number::root(range, power(f, n), d);
|
||||
}
|
||||
|
||||
} // namespace xrpl
|
||||
|
||||
@@ -198,17 +198,17 @@ Value::Value(ValueType type) : type_(type), allocated_(0)
|
||||
}
|
||||
}
|
||||
|
||||
Value::Value(Int value) : type_(intValue)
|
||||
Value::Value(Int value) : type_(intValue), allocated_(0)
|
||||
{
|
||||
value_.int_ = value;
|
||||
}
|
||||
|
||||
Value::Value(UInt value) : type_(uintValue)
|
||||
Value::Value(UInt value) : type_(uintValue), allocated_(0)
|
||||
{
|
||||
value_.uint_ = value;
|
||||
}
|
||||
|
||||
Value::Value(double value) : type_(realValue)
|
||||
Value::Value(double value) : type_(realValue), allocated_(0)
|
||||
{
|
||||
value_.real_ = value;
|
||||
}
|
||||
@@ -236,7 +236,7 @@ Value::Value(StaticString const& value) : type_(stringValue), allocated_(false)
|
||||
value_.string_ = const_cast<char*>(value.c_str());
|
||||
}
|
||||
|
||||
Value::Value(bool value) : type_(booleanValue)
|
||||
Value::Value(bool value) : type_(booleanValue), allocated_(0)
|
||||
{
|
||||
value_.bool_ = value;
|
||||
}
|
||||
|
||||
@@ -26,6 +26,12 @@ HTTPClient::initializeSSLContext(
|
||||
httpClientSSLContext.emplace(sslVerifyDir, sslVerifyFile, sslVerify, j);
|
||||
}
|
||||
|
||||
void
|
||||
HTTPClient::cleanupSSLContext()
|
||||
{
|
||||
httpClientSSLContext.reset();
|
||||
}
|
||||
|
||||
//------------------------------------------------------------------------------
|
||||
//
|
||||
// Fetch a web page via http or https.
|
||||
|
||||
@@ -71,7 +71,7 @@ make_name(std::string const& object, std::string const& field)
|
||||
if (field.empty())
|
||||
return object;
|
||||
|
||||
return object + "." + field;
|
||||
return {object + "." + field};
|
||||
}
|
||||
|
||||
static inline Json::Value
|
||||
|
||||
@@ -77,7 +77,8 @@ SHAMapNodeID::getChildNodeID(unsigned int m) const
|
||||
Throw<std::logic_error>(
|
||||
"Request for child node ID of " + to_string(*this));
|
||||
|
||||
if (id_ != (id_ & depthMask(depth_)))
|
||||
auto const idAtDepth = id_ & depthMask(depth_);
|
||||
if (id_ != idAtDepth)
|
||||
Throw<std::logic_error>("Incorrect mask for " + to_string(*this));
|
||||
|
||||
SHAMapNodeID node{depth_ + 1, id_};
|
||||
|
||||
@@ -156,7 +156,7 @@ private:
|
||||
std::vector<std::string> emptyCfgKeys;
|
||||
struct publisher
|
||||
{
|
||||
publisher(FetchListConfig const& c) : cfg{c}
|
||||
publisher(FetchListConfig const& c) : cfg{c}, isRetry{false}
|
||||
{
|
||||
}
|
||||
std::shared_ptr<TrustedPublisherServer> server;
|
||||
|
||||
@@ -32,9 +32,10 @@ public:
|
||||
test_limits()
|
||||
{
|
||||
auto const scale = Number::getMantissaScale();
|
||||
testcase << "test_limits " << to_string(scale);
|
||||
bool caught = false;
|
||||
auto const minMantissa = Number::minMantissa();
|
||||
|
||||
testcase << "test_limits " << to_string(scale) << ", " << minMantissa;
|
||||
bool caught = false;
|
||||
try
|
||||
{
|
||||
Number x =
|
||||
@@ -62,8 +63,9 @@ public:
|
||||
Number{},
|
||||
__LINE__);
|
||||
test(
|
||||
// Use 1501 to force rounding up
|
||||
Number{false, minMantissa, 32000, Number::normalized{}} * 1'000 +
|
||||
Number{false, 1'500, 32000, Number::normalized{}},
|
||||
Number{false, 1'501, 32000, Number::normalized{}},
|
||||
Number{false, minMantissa + 2, 32003, Number::normalized{}},
|
||||
__LINE__);
|
||||
// 9,223,372,036,854,775,808
|
||||
@@ -198,12 +200,12 @@ public:
|
||||
9'999'999'999'999'999'990ULL,
|
||||
-19,
|
||||
Number::normalized{}}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
Number{6, -1},
|
||||
Number{Number::maxRep / 10, 1}},
|
||||
{Number{Number::maxRep - 1},
|
||||
Number{Number::largestMantissa / 10, 1}},
|
||||
{Number{Number::largestMantissa - 1},
|
||||
Number{1, 0},
|
||||
Number{Number::maxRep}},
|
||||
Number{Number::largestMantissa}},
|
||||
// Test extremes
|
||||
{
|
||||
// Each Number operand rounds up, so the actual mantissa is
|
||||
@@ -221,11 +223,30 @@ public:
|
||||
Number{2, 19},
|
||||
},
|
||||
{
|
||||
// Does not round. Mantissas are going to be > maxRep, so if
|
||||
// added together as uint64_t's, the result will overflow.
|
||||
// With addition using uint128_t, there's no problem. After
|
||||
// normalizing, the resulting mantissa ends up less than
|
||||
// maxRep.
|
||||
// Does not round. Mantissas are going to be >
|
||||
// largestMantissa, so if added together as uint64_t's, the
|
||||
// result will overflow. With addition using uint128_t,
|
||||
// there's no problem. After normalizing, the resulting
|
||||
// mantissa ends up less than largestMantissa.
|
||||
Number{
|
||||
false,
|
||||
Number::largestMantissa,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
Number::largestMantissa,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
Number::largestMantissa * 2,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
},
|
||||
{
|
||||
// These mantissas round down, so adding them together won't
|
||||
// have any consequences.
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'990ULL,
|
||||
@@ -352,16 +373,24 @@ public:
|
||||
{Number{1'000'000'000'000'000'001, -18},
|
||||
Number{1'000'000'000'000'000'000, -18},
|
||||
Number{1'000'000'000'000'000'000, -36}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
Number{6, -1},
|
||||
Number{Number::maxRep - 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{Number::largestMantissa - 1}},
|
||||
{Number{
|
||||
false,
|
||||
Number::largestMantissa + 1,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{1, 0},
|
||||
Number{Number::maxRep / 10 + 1, 1}},
|
||||
{Number{false, Number::maxRep + 1, 0, Number::normalized{}},
|
||||
Number{Number::largestMantissa / 10 + 1, 1}},
|
||||
{Number{
|
||||
false,
|
||||
Number::largestMantissa + 1,
|
||||
0,
|
||||
Number::normalized{}},
|
||||
Number{3, 0},
|
||||
Number{Number::maxRep}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::maxRep}},
|
||||
Number{Number::largestMantissa}},
|
||||
{power(2, 63), Number{3, 0}, Number{Number::largestMantissa}},
|
||||
});
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z] : c)
|
||||
@@ -384,14 +413,16 @@ public:
|
||||
auto const scale = Number::getMantissaScale();
|
||||
testcase << "test_mul " << to_string(scale);
|
||||
|
||||
using Case = std::tuple<Number, Number, Number>;
|
||||
// Case: Factor 1, Factor 2, Expected product, Line number
|
||||
using Case = std::tuple<Number, Number, Number, int>;
|
||||
auto test = [this](auto const& c) {
|
||||
for (auto const& [x, y, z] : c)
|
||||
for (auto const& [x, y, z, line] : c)
|
||||
{
|
||||
auto const result = x * y;
|
||||
std::stringstream ss;
|
||||
ss << x << " * " << y << " = " << result << ". Expected: " << z;
|
||||
BEAST_EXPECTS(result == z, ss.str());
|
||||
BEAST_EXPECTS(
|
||||
result == z, ss.str() + " line: " + std::to_string(line));
|
||||
}
|
||||
};
|
||||
auto tests = [&](auto const& cSmall, auto const& cLarge) {
|
||||
@@ -401,78 +432,105 @@ public:
|
||||
test(cLarge);
|
||||
};
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(
|
||||
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
|
||||
10 -
|
||||
1;
|
||||
|
||||
saveNumberRoundMode save{Number::setround(Number::to_nearest)};
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>({
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{2000000000000000, -15}},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-2000000000000000, -15}},
|
||||
Number{-2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{2000000000000000, -15}},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{1000000000000000, -14}},
|
||||
Number{1000000000000000, -14},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0}},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
// Maximum mantissa range
|
||||
{Number{9'999'999'999'999'999, 0},
|
||||
Number{9'999'999'999'999'999, 0},
|
||||
Number{9'999'999'999'999'998, 16}},
|
||||
Number{9'999'999'999'999'998, 16},
|
||||
__LINE__},
|
||||
});
|
||||
auto const cLarge = std::to_array<Case>({
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999862, -18}},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999862, -18}},
|
||||
Number{-1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999862, -18}},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'579ULL,
|
||||
-18,
|
||||
Number::normalized{}}},
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0}},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2000000000000000001, -18}},
|
||||
Number{2000000000000000001, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999998, -18}},
|
||||
Number{-1999999999999999998, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18}},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{10, 0}},
|
||||
// Maximum mantissa range - rounds up to 1e19
|
||||
Number{10, 0},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds up to 1e19
|
||||
{Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38},
|
||||
__LINE__},
|
||||
// Maximum actual mantissa range - same as int64 range
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38}},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
// Maximum int64 range
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'85, 19}},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -481,76 +539,100 @@ public:
|
||||
<< " towards_zero";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999, -15}},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999, -15}},
|
||||
Number{-1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999, -15}},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{9999999999999999, -15}},
|
||||
Number{9999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0}}});
|
||||
Number{0},
|
||||
__LINE__}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999861, -18}},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999861, -18}},
|
||||
Number{-1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999861, -18}},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{
|
||||
false,
|
||||
9999999999999999579ULL,
|
||||
-18,
|
||||
Number::normalized{}}},
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0}},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2, 0}},
|
||||
Number{2, 0},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999997, -18}},
|
||||
Number{-1999999999999999997, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18}},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{10, 0}},
|
||||
// Maximum mantissa range - rounds down to maxMantissa/10e1
|
||||
Number{10, 0},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds down to
|
||||
// maxMantissa/10e1
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
{Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
maxMantissa / 10 - 1,
|
||||
maxInternalMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}}},
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
// Maximum actual mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'84, 19}},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -559,76 +641,100 @@ public:
|
||||
<< " downward";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999, -15}},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-2000000000000000, -15}},
|
||||
Number{-2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999, -15}},
|
||||
Number{1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{9999999999999999, -15}},
|
||||
Number{9999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0}}});
|
||||
Number{0},
|
||||
__LINE__}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999861, -18}},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999862, -18}},
|
||||
Number{-1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999861, -18}},
|
||||
Number{1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{
|
||||
false,
|
||||
9'999'999'999'999'999'579ULL,
|
||||
-18,
|
||||
Number::normalized{}}},
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0}},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2, 0}},
|
||||
Number{2, 0},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999998, -18}},
|
||||
Number{-1999999999999999998, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{1999999999999999999, -18}},
|
||||
Number{1999999999999999999, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{10, 0}},
|
||||
// Maximum mantissa range - rounds down to maxMantissa/10e1
|
||||
Number{10, 0},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds down to
|
||||
// maxMantissa/10-1
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
{Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false,
|
||||
maxMantissa / 10 - 1,
|
||||
maxInternalMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}}},
|
||||
Number::normalized{}},
|
||||
__LINE__},
|
||||
// Maximum mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'84, 19}},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'84, 19},
|
||||
__LINE__},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -637,68 +743,91 @@ public:
|
||||
<< " upward";
|
||||
{
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{7}, Number{8}, Number{56}},
|
||||
{{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{2000000000000000, -15}},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999, -15}},
|
||||
Number{-1999999999999999, -15},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{2000000000000000, -15}},
|
||||
Number{2000000000000000, -15},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{1000000000000000, -14}},
|
||||
Number{1000000000000000, -14},
|
||||
__LINE__},
|
||||
{Number{1000000000000000, -32768},
|
||||
Number{1000000000000000, -32768},
|
||||
Number{0}}});
|
||||
Number{0},
|
||||
__LINE__}});
|
||||
auto const cLarge = std::to_array<Case>(
|
||||
// Note that items with extremely large mantissas need to be
|
||||
// calculated, because otherwise they overflow uint64. Items
|
||||
// from C with larger mantissa
|
||||
{
|
||||
{Number{7}, Number{8}, Number{56}},
|
||||
{Number{7}, Number{8}, Number{56}, __LINE__},
|
||||
{Number{1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{1999999999999999862, -18}},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{1414213562373095, -15},
|
||||
Number{-1999999999999999861, -18}},
|
||||
Number{-1999999999999999861, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095, -15},
|
||||
Number{-1414213562373095, -15},
|
||||
Number{1999999999999999862, -18}},
|
||||
Number{1999999999999999862, -18},
|
||||
__LINE__},
|
||||
{Number{3214285714285706, -15},
|
||||
Number{3111111111111119, -15},
|
||||
Number{999999999999999958, -17}},
|
||||
Number{999999999999999958, -17},
|
||||
__LINE__},
|
||||
{Number{1000000000000000000, -32768},
|
||||
Number{1000000000000000000, -32768},
|
||||
Number{0}},
|
||||
Number{0},
|
||||
__LINE__},
|
||||
// Items from cSmall expanded for the larger mantissa,
|
||||
// except duplicates. Sadly, it looks like sqrt(2)^2 != 2
|
||||
// with higher precision
|
||||
{Number{1414213562373095049, -18},
|
||||
Number{1414213562373095049, -18},
|
||||
Number{2000000000000000001, -18}},
|
||||
Number{2000000000000000001, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{1414213562373095048, -18},
|
||||
Number{-1999999999999999997, -18}},
|
||||
Number{-1999999999999999997, -18},
|
||||
__LINE__},
|
||||
{Number{-1414213562373095048, -18},
|
||||
Number{-1414213562373095049, -18},
|
||||
Number{2, 0}},
|
||||
Number{2, 0},
|
||||
__LINE__},
|
||||
{Number{3214285714285714278, -18},
|
||||
Number{3111111111111111119, -18},
|
||||
Number{1000000000000000001, -17}},
|
||||
// Maximum mantissa range - rounds up to minMantissa*10
|
||||
// 1e19*1e19=1e38
|
||||
Number{1000000000000000001, -17},
|
||||
__LINE__},
|
||||
// Maximum internal mantissa range - rounds up to
|
||||
// minMantissa*10 1e19*1e19=1e38
|
||||
{Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{
|
||||
false, maxInternalMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38},
|
||||
__LINE__},
|
||||
// Maximum mantissa range - same as int64
|
||||
{Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
Number{1, 38}},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
// Maximum int64 range
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249
|
||||
{Number{Number::maxRep, 0},
|
||||
Number{Number::maxRep, 0},
|
||||
Number{85'070'591'730'234'615'85, 19}},
|
||||
{Number{Number::largestMantissa, 0},
|
||||
Number{Number::largestMantissa, 0},
|
||||
Number{85'070'591'730'234'615'85, 19},
|
||||
__LINE__},
|
||||
});
|
||||
tests(cSmall, cLarge);
|
||||
}
|
||||
@@ -971,6 +1100,12 @@ public:
|
||||
};
|
||||
*/
|
||||
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(
|
||||
static_cast<std::int64_t>(power(10, Number::mantissaLog()))) *
|
||||
10 -
|
||||
1;
|
||||
|
||||
auto const cSmall = std::to_array<Case>(
|
||||
{{Number{2}, 2, Number{1414213562373095049, -18}},
|
||||
{Number{2'000'000}, 2, Number{1414213562373095049, -15}},
|
||||
@@ -982,17 +1117,17 @@ public:
|
||||
{Number{0}, 5, Number{0}},
|
||||
{Number{5625, -4}, 2, Number{75, -2}}});
|
||||
auto const cLarge = std::to_array<Case>({
|
||||
{Number{false, Number::maxMantissa() - 9, -1, Number::normalized{}},
|
||||
{Number{false, maxInternalMantissa - 9, -1, Number::normalized{}},
|
||||
2,
|
||||
Number{false, 999'999'999'999'999'999, -9, Number::normalized{}}},
|
||||
{Number{false, Number::maxMantissa() - 9, 0, Number::normalized{}},
|
||||
{Number{false, maxInternalMantissa - 9, 0, Number::normalized{}},
|
||||
2,
|
||||
Number{
|
||||
false, 3'162'277'660'168'379'330, -9, Number::normalized{}}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
2,
|
||||
Number{false, 3'037'000'499'976049692, -9, Number::normalized{}}},
|
||||
{Number{Number::maxRep},
|
||||
{Number{Number::largestMantissa},
|
||||
4,
|
||||
Number{false, 55'108'98747006743627, -14, Number::normalized{}}},
|
||||
});
|
||||
@@ -1042,6 +1177,9 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
auto const maxInternalMantissa =
|
||||
power(10, Number::mantissaLog()) * 10 - 1;
|
||||
|
||||
auto const cSmall = std::to_array<Number>({
|
||||
Number{2},
|
||||
Number{2'000'000},
|
||||
@@ -1051,7 +1189,10 @@ public:
|
||||
Number{5, -1},
|
||||
Number{0},
|
||||
Number{5625, -4},
|
||||
Number{Number::maxRep},
|
||||
Number{Number::largestMantissa},
|
||||
maxInternalMantissa,
|
||||
Number{Number::minMantissa(), 0, Number::unchecked{}},
|
||||
Number{Number::maxMantissa(), 0, Number::unchecked{}},
|
||||
});
|
||||
test(cSmall);
|
||||
bool caught = false;
|
||||
@@ -1417,20 +1558,20 @@ public:
|
||||
case MantissaRange::large:
|
||||
// Test the edges
|
||||
// ((exponent < -(28)) || (exponent > -(8)))))
|
||||
test(Number::min(), "1e-32750");
|
||||
test(Number::min(), "922337203685477581e-32768");
|
||||
test(Number::max(), "9223372036854775807e32768");
|
||||
test(Number::lowest(), "-9223372036854775807e32768");
|
||||
{
|
||||
NumberRoundModeGuard mg(Number::towards_zero);
|
||||
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
BEAST_EXPECT(maxMantissa == 9'999'999'999'999'999'999ULL);
|
||||
BEAST_EXPECT(maxMantissa == 9'223'372'036'854'775'807ULL);
|
||||
test(
|
||||
Number{false, maxMantissa, 0, Number::normalized{}},
|
||||
"9999999999999999990");
|
||||
"9223372036854775807");
|
||||
test(
|
||||
Number{true, maxMantissa, 0, Number::normalized{}},
|
||||
"-9999999999999999990");
|
||||
"-9223372036854775807");
|
||||
|
||||
test(
|
||||
Number{std::numeric_limits<std::int64_t>::max(), 0},
|
||||
@@ -1671,7 +1812,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() > 0);
|
||||
|
||||
Number const maxInt64{Number::maxRep};
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
BEAST_EXPECT(maxInt64.exponent() > 0);
|
||||
// 85'070'591'730'234'615'865'843'651'857'942'052'864 - 38 digits
|
||||
BEAST_EXPECT(
|
||||
@@ -1691,7 +1832,7 @@ public:
|
||||
Number const initalXrp{INITIAL_XRP};
|
||||
BEAST_EXPECT(initalXrp.exponent() <= 0);
|
||||
|
||||
Number const maxInt64{Number::maxRep};
|
||||
Number const maxInt64{Number::largestMantissa};
|
||||
BEAST_EXPECT(maxInt64.exponent() <= 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - 38 digits
|
||||
BEAST_EXPECT(
|
||||
@@ -1699,16 +1840,247 @@ public:
|
||||
|
||||
NumberRoundModeGuard mg(Number::towards_zero);
|
||||
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
Number const max =
|
||||
Number{false, maxMantissa, 0, Number::normalized{}};
|
||||
BEAST_EXPECT(max.mantissa() == maxMantissa / 10);
|
||||
BEAST_EXPECT(max.exponent() == 1);
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT((
|
||||
power(max, 2) ==
|
||||
Number{false, maxMantissa / 10 - 1, 20, Number::normalized{}}));
|
||||
{
|
||||
auto const maxInternalMantissa =
|
||||
static_cast<std::uint64_t>(static_cast<std::int64_t>(
|
||||
power(10, Number::mantissaLog()))) *
|
||||
10 -
|
||||
1;
|
||||
|
||||
// Rounds down to fit under 2^63
|
||||
Number const max =
|
||||
Number{false, maxInternalMantissa, 0, Number::normalized{}};
|
||||
// No alterations by the accessors
|
||||
BEAST_EXPECT(max.mantissa() == maxInternalMantissa / 10);
|
||||
BEAST_EXPECT(max.exponent() == 1);
|
||||
// 99'999'999'999'999'999'800'000'000'000'000'000'100 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT(
|
||||
(power(max, 2) ==
|
||||
Number{
|
||||
false,
|
||||
maxInternalMantissa / 10 - 1,
|
||||
20,
|
||||
Number::normalized{}}));
|
||||
}
|
||||
|
||||
{
|
||||
auto const maxMantissa = Number::maxMantissa();
|
||||
Number const max =
|
||||
Number{false, maxMantissa, 0, Number::normalized{}};
|
||||
// No alterations by the accessors
|
||||
BEAST_EXPECT(max.mantissa() == maxMantissa);
|
||||
BEAST_EXPECT(max.exponent() == 0);
|
||||
// 85'070'591'730'234'615'847'396'907'784'232'501'249 - also 38
|
||||
// digits
|
||||
BEAST_EXPECT(
|
||||
(power(max, 2) ==
|
||||
Number{
|
||||
false,
|
||||
85'070'591'730'234'615'84,
|
||||
19,
|
||||
Number::normalized{}}));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
testNormalizeToRange()
|
||||
{
|
||||
// Test edge-cases of normalizeToRange
|
||||
auto const scale = Number::getMantissaScale();
|
||||
testcase << "normalizeToRange " << to_string(scale);
|
||||
|
||||
auto test = [this](
|
||||
Number const& n,
|
||||
auto const rangeMin,
|
||||
auto const rangeMax,
|
||||
auto const expectedMantissa,
|
||||
auto const expectedExponent,
|
||||
auto const line) {
|
||||
auto const normalized = n.normalizeToRange(rangeMin, rangeMax);
|
||||
BEAST_EXPECTS(
|
||||
normalized.first == expectedMantissa,
|
||||
"Number " + to_string(n) + " scaled to " +
|
||||
std::to_string(rangeMax) +
|
||||
". Expected mantissa:" + std::to_string(expectedMantissa) +
|
||||
", got: " + std::to_string(normalized.first) + " @ " +
|
||||
std::to_string(line));
|
||||
BEAST_EXPECTS(
|
||||
normalized.second == expectedExponent,
|
||||
"Number " + to_string(n) + " scaled to " +
|
||||
std::to_string(rangeMax) +
|
||||
". Expected exponent:" + std::to_string(expectedExponent) +
|
||||
", got: " + std::to_string(normalized.second) + " @ " +
|
||||
std::to_string(line));
|
||||
};
|
||||
|
||||
std::int64_t constexpr iRangeMin = 100;
|
||||
std::int64_t constexpr iRangeMax = 999;
|
||||
|
||||
std::uint64_t constexpr uRangeMin = 100;
|
||||
std::uint64_t constexpr uRangeMax = 999;
|
||||
|
||||
constexpr static MantissaRange largeRange{MantissaRange::large};
|
||||
|
||||
std::int64_t constexpr iBigMin = largeRange.min;
|
||||
std::int64_t constexpr iBigMax = largeRange.max;
|
||||
|
||||
auto const testSuite = [&](Number const& n,
|
||||
auto const expectedSmallMantissa,
|
||||
auto const expectedSmallExponent,
|
||||
auto const expectedLargeMantissa,
|
||||
auto const expectedLargeExponent,
|
||||
auto const line) {
|
||||
test(
|
||||
n,
|
||||
iRangeMin,
|
||||
iRangeMax,
|
||||
expectedSmallMantissa,
|
||||
expectedSmallExponent,
|
||||
line);
|
||||
test(
|
||||
n,
|
||||
iBigMin,
|
||||
iBigMax,
|
||||
expectedLargeMantissa,
|
||||
expectedLargeExponent,
|
||||
line);
|
||||
|
||||
// Only test non-negative. testing a negative number with an
|
||||
// unsigned range will assert, and asserts can't be tested.
|
||||
if (n.signum() >= 0)
|
||||
{
|
||||
test(
|
||||
n,
|
||||
uRangeMin,
|
||||
uRangeMax,
|
||||
expectedSmallMantissa,
|
||||
expectedSmallExponent,
|
||||
line);
|
||||
test(
|
||||
n,
|
||||
largeRange.min,
|
||||
largeRange.max,
|
||||
expectedLargeMantissa,
|
||||
expectedLargeExponent,
|
||||
line);
|
||||
}
|
||||
};
|
||||
|
||||
{
|
||||
// zero
|
||||
Number const n{0};
|
||||
|
||||
testSuite(
|
||||
n,
|
||||
0,
|
||||
std::numeric_limits<int>::lowest(),
|
||||
0,
|
||||
std::numeric_limits<int>::lowest(),
|
||||
__LINE__);
|
||||
}
|
||||
{
|
||||
// Small positive number
|
||||
Number const n{2};
|
||||
|
||||
testSuite(n, 200, -2, 2'000'000'000'000'000'000, -18, __LINE__);
|
||||
}
|
||||
{
|
||||
// Negative number
|
||||
Number const n{-2};
|
||||
|
||||
testSuite(n, -200, -2, -2'000'000'000'000'000'000, -18, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa
|
||||
Number const n{Number::largestMantissa, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, Number::largestMantissa, 0, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa + 1
|
||||
Number const n{
|
||||
Number::largestMantissa + 1, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa + 2
|
||||
Number const n{
|
||||
Number::largestMantissa + 2, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// Biggest valid mantissa + 3
|
||||
Number const n{
|
||||
Number::largestMantissa + 3, 0, Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
// With the small mantissa range, the value rounds up. Because
|
||||
// it rounds up, when scaling up to the full int64 range, it
|
||||
// can't go over the max, so it is one digit smaller than the
|
||||
// full value.
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, 922, 16, 922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// int64 min
|
||||
Number const n{std::numeric_limits<std::int64_t>::min(), 0};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
{
|
||||
// int64 min + 1
|
||||
Number const n{std::numeric_limits<std::int64_t>::min() + 1, 0};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, -922, 16, -9'223'372'036'854'775'807, 0, __LINE__);
|
||||
}
|
||||
{
|
||||
// int64 min - 1
|
||||
// Need to cast to uint, even though we're dealing with a negative
|
||||
// number to avoid overflow and UB
|
||||
Number const n{
|
||||
true,
|
||||
-static_cast<std::uint64_t>(
|
||||
std::numeric_limits<std::int64_t>::min()) +
|
||||
1,
|
||||
0,
|
||||
Number::normalized{}};
|
||||
|
||||
if (scale == MantissaRange::small)
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'600, 1, __LINE__);
|
||||
else
|
||||
testSuite(n, -922, 16, -922'337'203'685'477'581, 1, __LINE__);
|
||||
}
|
||||
}
|
||||
|
||||
@@ -1739,6 +2111,7 @@ public:
|
||||
test_truncate();
|
||||
testRounding();
|
||||
testInt64();
|
||||
testNormalizeToRange();
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
@@ -277,6 +277,9 @@ TEST(HTTPClient, case_insensitive_content_length)
|
||||
EXPECT_EQ(resultStatus, 200);
|
||||
EXPECT_EQ(resultData, testBody);
|
||||
}
|
||||
|
||||
// Clean up SSL context to prevent memory leaks
|
||||
HTTPClient::cleanupSSLContext();
|
||||
}
|
||||
|
||||
TEST(HTTPClient, basic_http_request)
|
||||
@@ -298,6 +301,9 @@ TEST(HTTPClient, basic_http_request)
|
||||
EXPECT_FALSE(resultError);
|
||||
EXPECT_EQ(resultStatus, 200);
|
||||
EXPECT_EQ(resultData, testBody);
|
||||
|
||||
// Clean up SSL context to prevent memory leaks
|
||||
HTTPClient::cleanupSSLContext();
|
||||
}
|
||||
|
||||
TEST(HTTPClient, empty_response)
|
||||
@@ -318,6 +324,9 @@ TEST(HTTPClient, empty_response)
|
||||
EXPECT_FALSE(resultError);
|
||||
EXPECT_EQ(resultStatus, 200);
|
||||
EXPECT_TRUE(resultData.empty());
|
||||
|
||||
// Clean up SSL context to prevent memory leaks
|
||||
HTTPClient::cleanupSSLContext();
|
||||
}
|
||||
|
||||
TEST(HTTPClient, different_status_codes)
|
||||
@@ -347,4 +356,7 @@ TEST(HTTPClient, different_status_codes)
|
||||
EXPECT_FALSE(resultError);
|
||||
EXPECT_EQ(resultStatus, static_cast<int>(status));
|
||||
}
|
||||
|
||||
// Clean up SSL context to prevent memory leaks
|
||||
HTTPClient::cleanupSSLContext();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user