Compare commits

..

4 Commits

Author SHA1 Message Date
JCW
4734b81302 Polish the code
Signed-off-by: JCW <a1q123456@users.noreply.github.com>
2025-12-05 16:28:23 +00:00
JCW
5e0a0cbdae Fix the bug
Signed-off-by: JCW <a1q123456@users.noreply.github.com>
2025-12-05 09:25:06 +00:00
Vito Tumas
354531f946 Fix Overpayment Calculation (#6087)
- Adds additional unit tests to cover math calculations.
- Removes unused methods.
2025-12-04 12:54:25 -05:00
Ed Hennis
0650e6e89d Fix LCOV exclusion 2025-12-03 19:49:47 -05:00
6 changed files with 863 additions and 120 deletions

View File

@@ -0,0 +1,642 @@
#include <xrpl/beast/unit_test/suite.h>
// DO NOT REMOVE
#include <test/jtx.h>
#include <test/jtx/Account.h>
#include <test/jtx/amount.h>
#include <test/jtx/mpt.h>
#include <xrpld/app/misc/LendingHelpers.h>
#include <xrpld/app/misc/LoadFeeTrack.h>
#include <xrpld/app/tx/detail/Batch.h>
#include <xrpld/app/tx/detail/LoanSet.h>
#include <xrpl/beast/xor_shift_engine.h>
#include <xrpl/protocol/SField.h>
#include <string>
#include <vector>
namespace ripple {
namespace test {
class LendingHelpers_test : public beast::unit_test::suite
{
void
testComputeRaisedRate()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number periodicRate;
std::uint32_t paymentsRemaining;
Number expectedRaisedRate;
};
auto const testCases = std::vector<TestCase>{
{
.name = "Zero payments remaining",
.periodicRate = Number{5, -2},
.paymentsRemaining = 0,
.expectedRaisedRate = Number{1}, // (1 + r)^0 = 1
},
{
.name = "One payment remaining",
.periodicRate = Number{5, -2},
.paymentsRemaining = 1,
.expectedRaisedRate = Number{105, -2},
}, // 1.05^1
{
.name = "Multiple payments remaining",
.periodicRate = Number{5, -2},
.paymentsRemaining = 3,
.expectedRaisedRate = Number{1157625, -6},
}, // 1.05^3
{
.name = "Zero periodic rate",
.periodicRate = Number{0},
.paymentsRemaining = 5,
.expectedRaisedRate = Number{1}, // (1 + 0)^5 = 1
}};
for (auto const& tc : testCases)
{
testcase("computeRaisedRate: " + tc.name);
auto const computedRaisedRate =
computeRaisedRate(tc.periodicRate, tc.paymentsRemaining);
BEAST_EXPECTS(
computedRaisedRate == tc.expectedRaisedRate,
"Raised rate mismatch: expected " +
to_string(tc.expectedRaisedRate) + ", got " +
to_string(computedRaisedRate));
}
}
void
testComputePaymentFactor()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number periodicRate;
std::uint32_t paymentsRemaining;
Number expectedPaymentFactor;
};
auto const testCases = std::vector<TestCase>{
{
.name = "Zero periodic rate",
.periodicRate = Number{0},
.paymentsRemaining = 4,
.expectedPaymentFactor = Number{25, -2},
}, // 1/4 = 0.25
{
.name = "One payment remaining",
.periodicRate = Number{5, -2},
.paymentsRemaining = 1,
.expectedPaymentFactor = Number{105, -2},
}, // 0.05/1 = 1.05
{
.name = "Multiple payments remaining",
.periodicRate = Number{5, -2},
.paymentsRemaining = 3,
.expectedPaymentFactor = Number{367208564631245, -15},
}, // from calc
{
.name = "Zero payments remaining",
.periodicRate = Number{5, -2},
.paymentsRemaining = 0,
.expectedPaymentFactor = Number{0},
} // edge case
};
for (auto const& tc : testCases)
{
testcase("computePaymentFactor: " + tc.name);
auto const computedPaymentFactor =
computePaymentFactor(tc.periodicRate, tc.paymentsRemaining);
BEAST_EXPECTS(
computedPaymentFactor == tc.expectedPaymentFactor,
"Payment factor mismatch: expected " +
to_string(tc.expectedPaymentFactor) + ", got " +
to_string(computedPaymentFactor));
}
}
void
testLoanPeriodicPayment()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number principalOutstanding;
Number periodicRate;
std::uint32_t paymentsRemaining;
Number expectedPeriodicPayment;
};
auto const testCases = std::vector<TestCase>{
{
.name = "Zero principal outstanding",
.principalOutstanding = Number{0},
.periodicRate = Number{5, -2},
.paymentsRemaining = 5,
.expectedPeriodicPayment = Number{0},
},
{
.name = "Zero payments remaining",
.principalOutstanding = Number{1'000},
.periodicRate = Number{5, -2},
.paymentsRemaining = 0,
.expectedPeriodicPayment = Number{0},
},
{
.name = "Zero periodic rate",
.principalOutstanding = Number{1'000},
.periodicRate = Number{0},
.paymentsRemaining = 4,
.expectedPeriodicPayment = Number{250},
},
{
.name = "Standard case",
.principalOutstanding = Number{1'000},
.periodicRate =
loanPeriodicRate(TenthBips32(100'000), 30 * 24 * 60 * 60),
.paymentsRemaining = 3,
.expectedPeriodicPayment =
Number{3895690663961231, -13}, // from calc
},
};
for (auto const& tc : testCases)
{
testcase("loanPeriodicPayment: " + tc.name);
auto const computedPeriodicPayment = loanPeriodicPayment(
tc.principalOutstanding, tc.periodicRate, tc.paymentsRemaining);
BEAST_EXPECTS(
computedPeriodicPayment == tc.expectedPeriodicPayment,
"Periodic payment mismatch: expected " +
to_string(tc.expectedPeriodicPayment) + ", got " +
to_string(computedPeriodicPayment));
}
}
void
testLoanPrincipalFromPeriodicPayment()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number periodicPayment;
Number periodicRate;
std::uint32_t paymentsRemaining;
Number expectedPrincipalOutstanding;
};
auto const testCases = std::vector<TestCase>{
{
.name = "Zero periodic payment",
.periodicPayment = Number{0},
.periodicRate = Number{5, -2},
.paymentsRemaining = 5,
.expectedPrincipalOutstanding = Number{0},
},
{
.name = "Zero payments remaining",
.periodicPayment = Number{1'000},
.periodicRate = Number{5, -2},
.paymentsRemaining = 0,
.expectedPrincipalOutstanding = Number{0},
},
{
.name = "Zero periodic rate",
.periodicPayment = Number{250},
.periodicRate = Number{0},
.paymentsRemaining = 4,
.expectedPrincipalOutstanding = Number{1'000},
},
{
.name = "Standard case",
.periodicPayment = Number{3895690663961231, -13}, // from calc
.periodicRate =
loanPeriodicRate(TenthBips32(100'000), 30 * 24 * 60 * 60),
.paymentsRemaining = 3,
.expectedPrincipalOutstanding = Number{1'000},
},
};
for (auto const& tc : testCases)
{
testcase("loanPrincipalFromPeriodicPayment: " + tc.name);
auto const computedPrincipalOutstanding =
loanPrincipalFromPeriodicPayment(
tc.periodicPayment, tc.periodicRate, tc.paymentsRemaining);
BEAST_EXPECTS(
computedPrincipalOutstanding == tc.expectedPrincipalOutstanding,
"Principal outstanding mismatch: expected " +
to_string(tc.expectedPrincipalOutstanding) + ", got " +
to_string(computedPrincipalOutstanding));
}
}
void
testComputeOverpaymentComponents()
{
testcase("computeOverpaymentComponents");
using namespace jtx;
using namespace ripple::detail;
Account const issuer{"issuer"};
PrettyAsset const IOU = issuer["IOU"];
int32_t const loanScale = 1;
auto const overpayment = Number{1'000};
auto const overpaymentInterestRate = TenthBips32{10'000}; // 10%
auto const overpaymentFeeRate = TenthBips32{50'000}; // 50%
auto const managementFeeRate = TenthBips16{10'000}; // 10%
auto const expectedOverpaymentFee = Number{500}; // 50% of 1,000
auto const expectedOverpaymentInterestGross =
Number{100}; // 10% of 1,000
auto const expectedOverpaymentInterestNet =
Number{90}; // 100 - 10% of 100
auto const expectedOverpaymentManagementFee = Number{10}; // 10% of 100
auto const expectedPrincipalPortion = Number{400}; // 1,000 - 100 - 500
auto const components = detail::computeOverpaymentComponents(
IOU,
loanScale,
overpayment,
overpaymentInterestRate,
overpaymentFeeRate,
managementFeeRate);
BEAST_EXPECT(
components.untrackedManagementFee == expectedOverpaymentFee);
BEAST_EXPECT(
components.untrackedInterest == expectedOverpaymentInterestNet);
BEAST_EXPECT(
components.trackedManagementFeeDelta ==
expectedOverpaymentManagementFee);
BEAST_EXPECT(
components.trackedPrincipalDelta == expectedPrincipalPortion);
BEAST_EXPECT(
components.trackedManagementFeeDelta +
components.untrackedInterest ==
expectedOverpaymentInterestGross);
BEAST_EXPECT(
components.trackedManagementFeeDelta +
components.untrackedInterest +
components.trackedPrincipalDelta +
components.untrackedManagementFee ==
overpayment);
}
void
testComputeInterestAndFeeParts()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number interest;
TenthBips16 managementFeeRate;
Number expectedInterestPart;
Number expectedFeePart;
};
Account const issuer{"issuer"};
PrettyAsset const IOU = issuer["IOU"];
std::int32_t const loanScale = 1;
auto const testCases = std::vector<TestCase>{
{.name = "Zero interest",
.interest = Number{0},
.managementFeeRate = TenthBips16{10'000},
.expectedInterestPart = Number{0},
.expectedFeePart = Number{0}},
{.name = "Zero fee rate",
.interest = Number{1'000},
.managementFeeRate = TenthBips16{0},
.expectedInterestPart = Number{1'000},
.expectedFeePart = Number{0}},
{.name = "10% fee rate",
.interest = Number{1'000},
.managementFeeRate = TenthBips16{10'000},
.expectedInterestPart = Number{900},
.expectedFeePart = Number{100}},
};
for (auto const& tc : testCases)
{
testcase("computeInterestAndFeeParts: " + tc.name);
auto const [computedInterestPart, computedFeePart] =
computeInterestAndFeeParts(
IOU, tc.interest, tc.managementFeeRate, loanScale);
BEAST_EXPECTS(
computedInterestPart == tc.expectedInterestPart,
"Interest part mismatch: expected " +
to_string(tc.expectedInterestPart) + ", got " +
to_string(computedInterestPart));
BEAST_EXPECTS(
computedFeePart == tc.expectedFeePart,
"Fee part mismatch: expected " + to_string(tc.expectedFeePart) +
", got " + to_string(computedFeePart));
}
}
void
testLoanLatePaymentInterest()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number principalOutstanding;
TenthBips32 lateInterestRate;
NetClock::time_point parentCloseTime;
std::uint32_t nextPaymentDueDate;
Number expectedLateInterest;
};
auto const testCases = std::vector<TestCase>{
{
.name = "On-time payment",
.principalOutstanding = Number{1'000},
.lateInterestRate = TenthBips32{10'000}, // 10%
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.nextPaymentDueDate = 3'000,
.expectedLateInterest = Number{0},
},
{
.name = "Early payment",
.principalOutstanding = Number{1'000},
.lateInterestRate = TenthBips32{10'000}, // 10%
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.nextPaymentDueDate = 4'000,
.expectedLateInterest = Number{0},
},
{
.name = "No principal outstanding",
.principalOutstanding = Number{0},
.lateInterestRate = TenthBips32{10'000}, // 10%
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.nextPaymentDueDate = 2'000,
.expectedLateInterest = Number{0},
},
{
.name = "No late interest rate",
.principalOutstanding = Number{1'000},
.lateInterestRate = TenthBips32{0}, // 0%
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.nextPaymentDueDate = 2'000,
.expectedLateInterest = Number{0},
},
{
.name = "Late payment",
.principalOutstanding = Number{1'000},
.lateInterestRate = TenthBips32{100'000}, // 100%
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.nextPaymentDueDate = 2'000,
.expectedLateInterest =
Number{3170979198376459, -17}, // from calc
},
};
for (auto const& tc : testCases)
{
testcase("loanLatePaymentInterest: " + tc.name);
auto const computedLateInterest = loanLatePaymentInterest(
tc.principalOutstanding,
tc.lateInterestRate,
tc.parentCloseTime,
tc.nextPaymentDueDate);
BEAST_EXPECTS(
computedLateInterest == tc.expectedLateInterest,
"Late interest mismatch: expected " +
to_string(tc.expectedLateInterest) + ", got " +
to_string(computedLateInterest));
}
}
void
testLoanAccruedInterest()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number principalOutstanding;
Number periodicRate;
NetClock::time_point parentCloseTime;
std::uint32_t startDate;
std::uint32_t prevPaymentDate;
std::uint32_t paymentInterval;
Number expectedAccruedInterest;
};
auto const testCases = std::vector<TestCase>{
{
.name = "Zero principal outstanding",
.principalOutstanding = Number{0},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.startDate = 2'000,
.prevPaymentDate = 2'500,
.paymentInterval = 30 * 24 * 60 * 60,
.expectedAccruedInterest = Number{0},
},
{
.name = "Before start date",
.principalOutstanding = Number{1'000},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{1'000}},
.startDate = 2'000,
.prevPaymentDate = 1'500,
.paymentInterval = 30 * 24 * 60 * 60,
.expectedAccruedInterest = Number{0},
},
{
.name = "Zero periodic rate",
.principalOutstanding = Number{1'000},
.periodicRate = Number{0},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.startDate = 2'000,
.prevPaymentDate = 2'500,
.paymentInterval = 30 * 24 * 60 * 60,
.expectedAccruedInterest = Number{0},
},
{
.name = "Zero payment interval",
.principalOutstanding = Number{1'000},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.startDate = 2'000,
.prevPaymentDate = 2'500,
.paymentInterval = 0,
.expectedAccruedInterest = Number{0},
},
{
.name = "Standard case",
.principalOutstanding = Number{1'000},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.startDate = 1'000,
.prevPaymentDate = 2'000,
.paymentInterval = 30 * 24 * 60 * 60,
.expectedAccruedInterest =
Number{1929012345679012, -17}, // from calc
},
};
for (auto const& tc : testCases)
{
testcase("loanAccruedInterest: " + tc.name);
auto const computedAccruedInterest = loanAccruedInterest(
tc.principalOutstanding,
tc.periodicRate,
tc.parentCloseTime,
tc.startDate,
tc.prevPaymentDate,
tc.paymentInterval);
BEAST_EXPECTS(
computedAccruedInterest == tc.expectedAccruedInterest,
"Accrued interest mismatch: expected " +
to_string(tc.expectedAccruedInterest) + ", got " +
to_string(computedAccruedInterest));
}
}
// This test overlaps with testLoanAccruedInterest, the test cases only
// exercise the computeFullPaymentInterest parts unique to it.
void
testComputeFullPaymentInterest()
{
using namespace jtx;
using namespace ripple::detail;
struct TestCase
{
std::string name;
Number rawPrincipalOutstanding;
Number periodicRate;
NetClock::time_point parentCloseTime;
std::uint32_t paymentInterval;
std::uint32_t prevPaymentDate;
std::uint32_t startDate;
TenthBips32 closeInterestRate;
Number expectedFullPaymentInterest;
};
auto const testCases = std::vector<TestCase>{
{
.name = "Zero principal outstanding",
.rawPrincipalOutstanding = Number{0},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.paymentInterval = 30 * 24 * 60 * 60,
.prevPaymentDate = 2'000,
.startDate = 1'000,
.closeInterestRate = TenthBips32{10'000},
.expectedFullPaymentInterest = Number{0},
},
{
.name = "Zero close interest rate",
.rawPrincipalOutstanding = Number{1'000},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.paymentInterval = 30 * 24 * 60 * 60,
.prevPaymentDate = 2'000,
.startDate = 1'000,
.closeInterestRate = TenthBips32{0},
.expectedFullPaymentInterest =
Number{1929012345679012, -17}, // from calc
},
{
.name = "Standard case",
.rawPrincipalOutstanding = Number{1'000},
.periodicRate = Number{5, -2},
.parentCloseTime =
NetClock::time_point{NetClock::duration{3'000}},
.paymentInterval = 30 * 24 * 60 * 60,
.prevPaymentDate = 2'000,
.startDate = 1'000,
.closeInterestRate = TenthBips32{10'000},
.expectedFullPaymentInterest =
Number{1000192901234568, -13}, // from calc
},
};
for (auto const& tc : testCases)
{
testcase("computeFullPaymentInterest: " + tc.name);
auto const computedFullPaymentInterest = computeFullPaymentInterest(
tc.rawPrincipalOutstanding,
tc.periodicRate,
tc.parentCloseTime,
tc.paymentInterval,
tc.prevPaymentDate,
tc.startDate,
tc.closeInterestRate);
BEAST_EXPECTS(
computedFullPaymentInterest == tc.expectedFullPaymentInterest,
"Full payment interest mismatch: expected " +
to_string(tc.expectedFullPaymentInterest) + ", got " +
to_string(computedFullPaymentInterest));
}
}
public:
void
run() override
{
testComputeFullPaymentInterest();
testLoanAccruedInterest();
testLoanLatePaymentInterest();
testLoanPeriodicPayment();
testLoanPrincipalFromPeriodicPayment();
testComputeRaisedRate();
testComputePaymentFactor();
testComputeOverpaymentComponents();
testComputeInterestAndFeeParts();
}
};
BEAST_DEFINE_TESTSUITE(LendingHelpers, app, ripple);
} // namespace test
} // namespace ripple

View File

@@ -6145,15 +6145,16 @@ protected:
// Accrued + prepayment-penalty interest based on current periodic
// schedule
auto const fullPaymentInterest = computeFullPaymentInterest(
after.periodicPayment,
detail::loanPrincipalFromPeriodicPayment(
after.periodicPayment, periodicRate2, after.paymentRemaining),
periodicRate2,
after.paymentRemaining,
env.current()->parentCloseTime(),
after.paymentInterval,
after.previousPaymentDate,
static_cast<std::uint32_t>(
after.startDate.time_since_epoch().count()),
closeInterestRate);
// Round to asset scale and split interest/fee parts
auto const roundedInterest =
roundToAsset(asset.raw(), fullPaymentInterest, after.loanScale);
@@ -6181,9 +6182,9 @@ protected:
// window by clamping prevPaymentDate to 'now' for the full-pay path.
auto const prevClamped = std::min(after.previousPaymentDate, nowSecs);
auto const fullPaymentInterestClamped = computeFullPaymentInterest(
after.periodicPayment,
detail::loanPrincipalFromPeriodicPayment(
after.periodicPayment, periodicRate2, after.paymentRemaining),
periodicRate2,
after.paymentRemaining,
env.current()->parentCloseTime(),
after.paymentInterval,
prevClamped,
@@ -7027,6 +7028,140 @@ protected:
paymentParams);
}
void
testLoanPayBrokerOwnerMissingTrustline()
{
testcase << "LoanPay Broker Owner Missing Trustline (PoC)";
using namespace jtx;
using namespace loan;
Account const issuer("issuer");
Account const borrower("borrower");
Account const broker("broker");
auto const IOU = issuer["IOU"];
Env env(*this, all);
env.fund(XRP(20'000), issuer, broker, borrower);
env.close();
// Set up trustlines and fund accounts
env(trust(broker, IOU(20'000'000)));
env(trust(borrower, IOU(20'000'000)));
env(pay(issuer, broker, IOU(10'000'000)));
env(pay(issuer, borrower, IOU(1'000)));
env.close();
// Create vault and broker
auto const brokerInfo = createVaultAndBroker(env, IOU, broker);
// Create a loan first (this creates debt)
auto const keylet = keylet::loan(brokerInfo.brokerID, 1);
env(set(borrower, brokerInfo.brokerID, 10'000),
sig(sfCounterpartySignature, broker),
loanServiceFee(IOU(100).value()),
paymentInterval(100),
fee(XRP(100)));
env.close();
// Ensure broker has sufficient cover so brokerPayee == brokerOwner
// We need coverAvailable >= (debtTotal * coverRateMinimum)
// Deposit enough cover to ensure the fee goes to broker owner
// The default coverRateMinimum is 10%, so for a 10,000 loan we need
// at least 1,000 cover. Default cover is 1,000, so we add more to be
// safe.
auto const additionalCover = IOU(50'000).value();
env(loanBroker::coverDeposit(
broker, brokerInfo.brokerID, STAmount{IOU, additionalCover}));
env.close();
// Verify broker owner has a trustline
auto const brokerTrustline = keylet::line(broker, IOU);
BEAST_EXPECT(env.le(brokerTrustline) != nullptr);
// Broker owner deletes their trustline
// First, pay any positive balance to issuer to zero it out
auto const brokerBalance = env.balance(broker, IOU);
env(pay(broker, issuer, brokerBalance));
env.close();
// Remove the trustline by setting limit to 0
env(trust(broker, IOU(0)));
env.close();
// Verify trustline is deleted
BEAST_EXPECT(env.le(brokerTrustline) == nullptr);
// Now borrower tries to make a payment
// We should get a tesSUCCESS instead of a tecNO_LINE.
env(pay(borrower, keylet.key, IOU(10'100)),
fee(XRP(100)),
ter(tesSUCCESS));
env.close();
}
void
testLoanPayBrokerOwnerUnauthorizedMPT()
{
testcase << "LoanPay Broker Owner MPT unauthorized";
using namespace jtx;
using namespace loan;
Account const issuer("issuer");
Account const borrower("borrower");
Account const broker("broker");
Env env(*this, all);
env.fund(XRP(20'000), issuer, broker, borrower);
env.close();
MPTTester mptt{env, issuer, mptInitNoFund};
mptt.create(
{.flags = tfMPTCanClawback | tfMPTCanTransfer | tfMPTCanLock});
PrettyAsset const MPT{mptt.issuanceID()};
// Authorize broker and borrower
mptt.authorize({.account = broker});
mptt.authorize({.account = borrower});
env.close();
// Fund accounts
env(pay(issuer, broker, MPT(10'000'000)));
env(pay(issuer, borrower, MPT(1'000)));
env.close();
// Create vault and broker
auto const brokerInfo = createVaultAndBroker(env, MPT, broker);
// Create a loan first (this creates debt)
auto const keylet = keylet::loan(brokerInfo.brokerID, 1);
env(set(borrower, brokerInfo.brokerID, 10'000),
sig(sfCounterpartySignature, broker),
loanServiceFee(MPT(100).value()),
paymentInterval(100),
fee(XRP(100)));
env.close();
// Ensure broker has sufficient cover so brokerPayee == brokerOwner
// We need coverAvailable >= (debtTotal * coverRateMinimum)
// Deposit enough cover to ensure the fee goes to broker owner
// The default coverRateMinimum is 10%, so for a 10,000 loan we need
// at least 1,000 cover. Default cover is 1,000, so we add more to be
// safe.
auto const additionalCover = MPT(50'000).value();
env(loanBroker::coverDeposit(
broker, brokerInfo.brokerID, STAmount{MPT, additionalCover}));
env.close();
// Verify broker owner is authorized
auto const brokerMpt = keylet::mptoken(mptt.issuanceID(), broker);
BEAST_EXPECT(env.le(brokerMpt) != nullptr);
// Broker owner unauthorizes.
// First, pay any positive balance to issuer to zero it out
auto const brokerBalance = env.balance(broker, MPT);
env(pay(broker, issuer, brokerBalance));
env.close();
// Then, unauthorize the MPT.
mptt.authorize({.account = broker, .flags = tfMPTUnauthorize});
env.close();
// Verify the MPT is unauthorized.
BEAST_EXPECT(env.le(brokerMpt) == nullptr);
// Now borrower tries to make a payment
// We should get a tesSUCCESS instead of a tecNO_AUTH.
auto const borrowerBalance = env.balance(borrower, MPT);
env(pay(borrower, keylet.key, MPT(10'100)),
fee(XRP(100)),
ter(tesSUCCESS));
env.close();
}
public:
void
run() override
@@ -7075,6 +7210,8 @@ public:
testBorrowerIsBroker();
testIssuerIsBorrower();
testLimitExceeded();
testLoanPayBrokerOwnerMissingTrustline();
testLoanPayBrokerOwnerUnauthorizedMPT();
}
};

View File

@@ -202,14 +202,6 @@ computeRawLoanState(
std::uint32_t const paymentRemaining,
TenthBips32 const managementFeeRate);
LoanState
computeRawLoanState(
Number const& periodicPayment,
TenthBips32 interestRate,
std::uint32_t paymentInterval,
std::uint32_t const paymentRemaining,
TenthBips32 const managementFeeRate);
// Constructs a valid LoanState object from arbitrary inputs
LoanState
constructLoanState(
@@ -239,17 +231,6 @@ computeFullPaymentInterest(
std::uint32_t startDate,
TenthBips32 closeInterestRate);
Number
computeFullPaymentInterest(
Number const& periodicPayment,
Number const& periodicRate,
std::uint32_t paymentRemaining,
NetClock::time_point parentCloseTime,
std::uint32_t paymentInterval,
std::uint32_t prevPaymentDate,
std::uint32_t startDate,
TenthBips32 closeInterestRate);
namespace detail {
// These classes and functions should only be accessed by LendingHelper
// functions and unit tests
@@ -387,6 +368,58 @@ struct LoanStateDeltas
nonNegative();
};
Number
computeRaisedRate(Number const& periodicRate, std::uint32_t paymentsRemaining);
Number
computePaymentFactor(
Number const& periodicRate,
std::uint32_t paymentsRemaining);
std::pair<Number, Number>
computeInterestAndFeeParts(
Asset const& asset,
Number const& interest,
TenthBips16 managementFeeRate,
std::int32_t loanScale);
Number
loanPeriodicPayment(
Number const& principalOutstanding,
Number const& periodicRate,
std::uint32_t paymentsRemaining);
Number
loanPrincipalFromPeriodicPayment(
Number const& periodicPayment,
Number const& periodicRate,
std::uint32_t paymentsRemaining);
Number
loanLatePaymentInterest(
Number const& principalOutstanding,
TenthBips32 lateInterestRate,
NetClock::time_point parentCloseTime,
std::uint32_t nextPaymentDueDate);
Number
loanAccruedInterest(
Number const& principalOutstanding,
Number const& periodicRate,
NetClock::time_point parentCloseTime,
std::uint32_t startDate,
std::uint32_t prevPaymentDate,
std::uint32_t paymentInterval);
ExtendedPaymentComponents
computeOverpaymentComponents(
Asset const& asset,
int32_t const loanScale,
Number const& overpayment,
TenthBips32 const overpaymentInterestRate,
TenthBips32 const overpaymentFeeRate,
TenthBips16 const managementFeeRate);
PaymentComponents
computePaymentComponents(
Asset const& asset,

View File

@@ -100,6 +100,9 @@ computePaymentFactor(
Number const& periodicRate,
std::uint32_t paymentsRemaining)
{
if (paymentsRemaining == 0)
return numZero;
// For zero interest, payment factor is simply 1/paymentsRemaining
if (periodicRate == beast::zero)
return Number{1} / paymentsRemaining;
@@ -132,27 +135,6 @@ loanPeriodicPayment(
computePaymentFactor(periodicRate, paymentsRemaining);
}
/* Calculates the periodic payment amount from annualized interest rate.
* Converts the annual rate to periodic rate before computing payment.
*
* Equation (7) from XLS-66 spec, Section A-2 Equation Glossary
*/
Number
loanPeriodicPayment(
Number const& principalOutstanding,
TenthBips32 interestRate,
std::uint32_t paymentInterval,
std::uint32_t paymentsRemaining)
{
if (principalOutstanding == 0 || paymentsRemaining == 0)
return 0;
Number const periodicRate = loanPeriodicRate(interestRate, paymentInterval);
return loanPeriodicPayment(
principalOutstanding, periodicRate, paymentsRemaining);
}
/* Reverse-calculates principal from periodic payment amount.
* Used to determine theoretical principal at any point in the schedule.
*
@@ -164,6 +146,9 @@ loanPrincipalFromPeriodicPayment(
Number const& periodicRate,
std::uint32_t paymentsRemaining)
{
if (paymentsRemaining == 0)
return numZero;
if (periodicRate == 0)
return periodicPayment * paymentsRemaining;
@@ -171,21 +156,6 @@ loanPrincipalFromPeriodicPayment(
computePaymentFactor(periodicRate, paymentsRemaining);
}
/* Splits gross interest into net interest (to vault) and management fee (to
* broker). Returns pair of (net interest, management fee).
*
* Equation (33) from XLS-66 spec, Section A-2 Equation Glossary
*/
std::pair<Number, Number>
computeInterestAndFeeParts(
Number const& interest,
TenthBips16 managementFeeRate)
{
auto const fee = tenthBipsOfValue(interest, managementFeeRate);
return std::make_pair(interest - fee, fee);
}
/*
* Computes the interest and management fee parts from interest amount.
*
@@ -216,6 +186,12 @@ loanLatePaymentInterest(
NetClock::time_point parentCloseTime,
std::uint32_t nextPaymentDueDate)
{
if (principalOutstanding == beast::zero)
return numZero;
if (lateInterestRate == TenthBips32{0})
return numZero;
auto const now = parentCloseTime.time_since_epoch().count();
// If the payment is not late by any amount of time, then there's no late
@@ -248,6 +224,9 @@ loanAccruedInterest(
if (periodicRate == beast::zero)
return numZero;
if (paymentInterval == 0)
return numZero;
auto const lastPaymentDate = std::max(prevPaymentDate, startDate);
auto const now = parentCloseTime.time_since_epoch().count();
@@ -1225,17 +1204,12 @@ computeOverpaymentComponents(
// This interest doesn't follow the normal amortization schedule - it's
// a one-time charge for paying early.
// Equation (20) and (21) from XLS-66 spec, Section A-2 Equation Glossary
auto const [rawOverpaymentInterest, _] = [&]() {
Number const interest =
tenthBipsOfValue(overpayment, overpaymentInterestRate);
return detail::computeInterestAndFeeParts(interest, managementFeeRate);
}();
// Round the penalty interest components to the loan scale
auto const [roundedOverpaymentInterest, roundedOverpaymentManagementFee] =
[&]() {
Number const interest =
roundToAsset(asset, rawOverpaymentInterest, loanScale);
auto const interest = roundToAsset(
asset,
tenthBipsOfValue(overpayment, overpaymentInterestRate),
loanScale);
return detail::computeInterestAndFeeParts(
asset, interest, managementFeeRate, loanScale);
}();
@@ -1429,31 +1403,6 @@ computeFullPaymentInterest(
return accruedInterest + prepaymentPenalty;
}
Number
computeFullPaymentInterest(
Number const& periodicPayment,
Number const& periodicRate,
std::uint32_t paymentRemaining,
NetClock::time_point parentCloseTime,
std::uint32_t paymentInterval,
std::uint32_t prevPaymentDate,
std::uint32_t startDate,
TenthBips32 closeInterestRate)
{
Number const rawPrincipalOutstanding =
detail::loanPrincipalFromPeriodicPayment(
periodicPayment, periodicRate, paymentRemaining);
return computeFullPaymentInterest(
rawPrincipalOutstanding,
periodicRate,
parentCloseTime,
paymentInterval,
prevPaymentDate,
startDate,
closeInterestRate);
}
/* Calculates the theoretical loan state at maximum precision for a given point
* in the amortization schedule.
*
@@ -1515,21 +1464,6 @@ computeRawLoanState(
.managementFeeDue = rawManagementFeeOutstanding};
};
LoanState
computeRawLoanState(
Number const& periodicPayment,
TenthBips32 interestRate,
std::uint32_t paymentInterval,
std::uint32_t const paymentRemaining,
TenthBips32 const managementFeeRate)
{
return computeRawLoanState(
periodicPayment,
loanPeriodicRate(interestRate, paymentInterval),
paymentRemaining,
managementFeeRate);
}
/* Constructs a LoanState from rounded Loan ledger object values.
*
* This function creates a LoanState structure from the three tracked values

View File

@@ -67,7 +67,7 @@ LoanBrokerDelete::preclaim(PreclaimContext const& ctx)
JLOG(ctx.j.warn()) << "LoanBrokerDelete: Debt total is "
<< debtTotal << ", which rounds to " << rounded;
return tecHAS_OBLIGATIONS;
// LCOV_EXCL_START
// LCOV_EXCL_STOP
}
}

View File

@@ -262,9 +262,10 @@ LoanPay::doApply()
auto debtTotalProxy = brokerSle->at(sfDebtTotal);
// Send the broker fee to the owner if they have sufficient cover available,
// _and_ if the owner can receive funds. If not, so as not to block the
// payment, add it to the cover balance (send it to the broker pseudo
// account).
// _and_ if the owner can receive funds
// _and_ if the broker is authorized to hold funds. If not, so as not to
// block the payment, add it to the cover balance (send it to the broker
// pseudo account).
//
// Normally freeze status is checked in preflight, but we do it here to
// avoid duplicating the check. It'll claim a fee either way.
@@ -278,7 +279,9 @@ LoanPay::doApply()
asset,
tenthBipsOfValue(debtTotalProxy.value(), coverRateMinimum),
loanScale) &&
!isDeepFrozen(view, brokerOwner, asset);
!isDeepFrozen(view, brokerOwner, asset) &&
requireAuth(view, asset, brokerOwner, AuthType::StrongAuth) ==
tesSUCCESS;
}();
auto const brokerPayee =
@@ -305,13 +308,7 @@ LoanPay::doApply()
// change will be discarded.
if (loanSle->isFlag(lsfLoanImpaired))
{
if (auto const ret =
LoanManage::unimpairLoan(view, loanSle, vaultSle, j_);
ret != tesSUCCESS)
{
JLOG(j_.fatal()) << "Failed to unimpair loan before payment.";
return ret; // LCOV_EXCL_LINE
}
LoanManage::unimpairLoan(view, loanSle, vaultSle, j_);
}
LoanPaymentType const paymentType = [&tx]() {