Merge branch 'master' of github.com:jedmccaleb/NewCoin

This commit is contained in:
Arthur Britto
2012-04-07 16:18:39 -07:00
9 changed files with 144 additions and 62 deletions

View File

@@ -2,6 +2,7 @@
#include "ParseSection.h"
#include <iostream>
#include <fstream>
#include <boost/lexical_cast.hpp>

View File

@@ -11,30 +11,43 @@
#include "key.h"
#define ECIES_KEY_HASH SHA256
#define ECIES_KEY_LENGTH (256/8)
#define ECIES_KEY_TYPE uint256
#define ECIES_ENC_ALGO EVP_aes_256_cbc()
#define ECIES_ENC_KEY_SIZE (256/8)
#define ECIES_ENC_BLK_SIZE (128/8)
#define ECIES_ENC_KEY_TYPE uint256
#define ECIES_ENC_IV_TYPE uint128
#define ECIES_HMAC_ALGO EVP_sha256()
#define ECIES_HMAC_SIZE (256/8)
#define ECIES_HMAC_TYPE uint256
// ECIES uses elliptic curve keys to send an encrypted message.
static void* ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen)
{ // This function must not be changed as it must be what ECDH_compute_key expects
if (*olen < ECIES_KEY_LENGTH)
{
assert(false);
return NULL;
}
*olen = ECIES_KEY_LENGTH;
return ECIES_KEY_HASH(static_cast<const unsigned char *>(input), ilen, static_cast<unsigned char *>(output));
}
// A shared secret is generated from one public key and one private key.
// The same key results regardless of which key is public and which private.
ECIES_KEY_TYPE CKey::getECIESSecret(CKey& otherKey)
// Anonymous messages can be sent by generating an ephemeral public/private
// key pair, using that private key with the recipient's public key to
// encrypt and publishing the ephemeral public key. Non-anonymous messages
// can be sent by using your own private key with the recipient's public key.
// A random IV is used to encrypt the message and an HMAC is used to ensure
// message integrity. If you need timestamps or need to tell the recipient
// which key to use (his, yours, or ephemeral) you must add that data.
// (Obviously, key information can't go in the encrypted portion anyway.)
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) IV (unencrypted)
// 2) Encrypted: HMAC of original plaintext
// 3) Encrypted: Original plaintext
// 4) Encrypted: Rest of block/padding
// Algorithmic choices:
#define ECIES_KEY_HASH SHA512 // Hash used to expand shared secret
#define ECIES_KEY_LENGTH (512/8) // Size of expanded shared secret
#define ECIES_MIN_SEC (128/8) // The minimum equivalent security
#define ECIES_ENC_ALGO EVP_aes_256_cbc() // Encryption algorithm
#define ECIES_ENC_KEY_TYPE uint256 // Type used to hold shared secret
#define ECIES_ENC_KEY_SIZE (256/8) // Encryption key size
#define ECIES_ENC_BLK_SIZE (128/8) // Encryption block size
#define ECIES_ENC_IV_TYPE uint128 // Type used to hold IV
#define ECIES_HMAC_ALGO EVP_sha256() // HMAC algorithm
#define ECIES_HMAC_KEY_TYPE uint256 // Type used to hold HMAC key
#define ECIES_HMAC_KEY_SIZE (256/8) // Size of HMAC key
#define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC value
#define ECIES_HMAC_SIZE (256/8) // Size of HMAC value
void CKey::getECIESSecret(CKey& otherKey, ECIES_ENC_KEY_TYPE& enc_key, ECIES_HMAC_KEY_TYPE& hmac_key)
{ // Retrieve a secret generated from an EC key pair. At least one private key must be known.
if(!pkey || !otherKey.pkey)
throw std::runtime_error("missing key");
@@ -52,25 +65,27 @@ ECIES_KEY_TYPE CKey::getECIESSecret(CKey& otherKey)
}
else throw std::runtime_error("no private key");
ECIES_KEY_TYPE key;
if (ECDH_compute_key(key.begin(), ECIES_KEY_LENGTH, EC_KEY_get0_public_key(pubkey),
privkey, ecies_key_derivation) != ECIES_KEY_LENGTH)
unsigned char rawbuf[512];
int buflen=ECDH_compute_key(rawbuf, 512, EC_KEY_get0_public_key(pubkey), privkey, NULL);
if(buflen < ECIES_MIN_SEC)
throw std::runtime_error("ecdh key failed");
return key;
unsigned char hbuf[ECIES_KEY_LENGTH];
ECIES_KEY_HASH(rawbuf, buflen, hbuf);
memset(rawbuf, 0, ECIES_HMAC_KEY_SIZE);
assert((ECIES_ENC_KEY_SIZE + ECIES_HMAC_KEY_SIZE) >= ECIES_KEY_LENGTH);
memcpy(enc_key.begin(), hbuf, ECIES_ENC_KEY_SIZE);
memcpy(hmac_key.begin(), hbuf + ECIES_ENC_KEY_SIZE, ECIES_HMAC_KEY_SIZE);
memset(hbuf, 0, ECIES_KEY_LENGTH);
}
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) IV (unencrypted)
// 2) Encrypted: HMAC of original plaintext
// 3) Encrypted: Original plaintext
// 4) Encrypted: Rest of block/padding
static ECIES_HMAC_TYPE makeHMAC(ECIES_KEY_TYPE secret, const std::vector<unsigned char> data)
static ECIES_HMAC_TYPE makeHMAC(const ECIES_HMAC_KEY_TYPE& secret, const std::vector<unsigned char> data)
{
HMAC_CTX ctx;
HMAC_CTX_init(&ctx);
if(HMAC_Init_ex(&ctx, secret.begin(), ECIES_KEY_LENGTH, ECIES_HMAC_ALGO, NULL) != 1)
if(HMAC_Init_ex(&ctx, secret.begin(), ECIES_HMAC_KEY_SIZE, ECIES_HMAC_ALGO, NULL) != 1)
{
HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("init hmac");
@@ -82,37 +97,42 @@ static ECIES_HMAC_TYPE makeHMAC(ECIES_KEY_TYPE secret, const std::vector<unsigne
throw std::runtime_error("update hmac");
}
unsigned int ml=EVP_MAX_MD_SIZE;
std::vector<unsigned char> hmac(ml);
if(HMAC_Final(&ctx, &(hmac.front()), &ml) != 1)
ECIES_HMAC_TYPE ret;
unsigned int ml = ECIES_HMAC_SIZE;
if(HMAC_Final(&ctx, ret.begin(), &ml) != 1)
{
HMAC_CTX_cleanup(&ctx);
throw std::runtime_error("finalize hmac");
}
ECIES_HMAC_TYPE ret;
memcpy(ret.begin(), &(hmac.front()), ECIES_HMAC_SIZE);
assert(ml == ECIES_HMAC_SIZE);
HMAC_CTX_cleanup(&ctx);
return ret;
}
std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<unsigned char>& plaintext)
{
ECIES_KEY_TYPE secret=getECIESSecret(otherKey);
ECIES_HMAC_TYPE hmac=makeHMAC(secret, plaintext);
ECIES_ENC_IV_TYPE iv;
if(RAND_bytes(static_cast<unsigned char *>(iv.begin()), ECIES_ENC_BLK_SIZE) != 1)
throw std::runtime_error("insufficient entropy");
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret(otherKey, secret, hmacKey);
ECIES_HMAC_TYPE hmac=makeHMAC(hmacKey, plaintext);
hmacKey.zero();
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
if (EVP_EncryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
{
EVP_CIPHER_CTX_cleanup(&ctx);
secret.zero();
throw std::runtime_error("init cipher ctx");
}
secret.zero();
std::vector<unsigned char> out(plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_KEY_SIZE + ECIES_ENC_BLK_SIZE, 0);
int len=0, bytesWritten;
@@ -160,10 +180,9 @@ std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<
std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<unsigned char>& ciphertext)
{
ECIES_KEY_TYPE secret=getECIESSecret(otherKey);
// minimum ciphertext = IV + HMAC + 1 block
if(ciphertext.size() < ((2*ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) )
if(ciphertext.size() < ((2 * ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) )
throw std::runtime_error("ciphertext too short");
// extract IV
@@ -173,9 +192,14 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
// begin decrypting
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret(otherKey, secret, hmacKey);
if(EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to init cipher");
}
@@ -184,8 +208,10 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
ECIES_HMAC_TYPE hmac;
int outlen=ECIES_HMAC_SIZE;
if( (EVP_DecryptUpdate(&ctx, hmac.begin(), &outlen,
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE+1) != 1) || (outlen != ECIES_HMAC_SIZE) )
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE + 1) != 1) || (outlen != ECIES_HMAC_SIZE) )
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract hmac");
}
@@ -194,26 +220,36 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
std::vector<unsigned char> plaintext(ciphertext.size() - ECIES_HMAC_SIZE - ECIES_ENC_BLK_SIZE);
outlen=plaintext.size();
if(EVP_DecryptUpdate(&ctx, &(plaintext.front()), &outlen,
&(ciphertext.front())+ECIES_ENC_BLK_SIZE+ECIES_HMAC_SIZE+1,
ciphertext.size()-ECIES_ENC_BLK_SIZE-ECIES_HMAC_SIZE-1) != 1)
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE + ECIES_HMAC_SIZE + 1,
ciphertext.size() - ECIES_ENC_BLK_SIZE - ECIES_HMAC_SIZE - 1) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("unable to extract plaintext");
}
// decrypt padding
int flen = 0;
if(EVP_DecryptFinal(&ctx, &(plaintext.front()) + outlen, &flen) != 1)
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad padding");
}
plaintext.resize(flen + outlen);
if(hmac != makeHMAC(secret, plaintext))
// verify integrity
if(hmac != makeHMAC(hmacKey, plaintext))
{
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
throw std::runtime_error("plaintext had bad hmac");
}
secret.zero();
hmacKey.zero();
EVP_CIPHER_CTX_cleanup(&ctx);
return plaintext;
@@ -222,19 +258,25 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
bool checkECIES(void)
{
CKey senderPriv, recipientPriv, senderPub, recipientPub;
senderPriv.MakeNewKey();
recipientPriv.MakeNewKey();
if(!senderPub.SetPubKey(senderPriv.GetPubKey()))
throw std::runtime_error("key error");
if(!recipientPub.SetPubKey(recipientPriv.GetPubKey()))
throw std::runtime_error("key error");
for(int i=0; i<30000; i++)
{
if((i%100)==0)
{ // generate new keys every 100 times
// std::cerr << "new keys" << std::endl;
senderPriv.MakeNewKey();
recipientPriv.MakeNewKey();
if(!senderPub.SetPubKey(senderPriv.GetPubKey()))
throw std::runtime_error("key error");
if(!recipientPub.SetPubKey(recipientPriv.GetPubKey()))
throw std::runtime_error("key error");
}
// generate message
std::vector<unsigned char> message(4096);
int msglen=i%3000;
if(RAND_bytes(static_cast<unsigned char *>(&message.front()), msglen) != 1)
throw std::runtime_error("insufficient entropy");
message.resize(msglen);
@@ -245,7 +287,11 @@ bool checkECIES(void)
// decrypt message with recipient's private key and sender's public key
std::vector<unsigned char> decrypt=recipientPriv.decryptECIES(senderPub, ciphertext);
if(decrypt != message) return false;
if(decrypt != message)
{
assert(false);
return false;
}
// std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl;
}
return true;

3
src/SerializedLedger.cpp Normal file
View File

@@ -0,0 +1,3 @@
#include "SerializedLedger.h"

32
src/SerializedLedger.h Normal file
View File

@@ -0,0 +1,32 @@
#ifndef __SERIALIZEDLEDGER__
#define __SERIALIZEDLEDGER__
#include "SerializedObject.h"
#include "LedgerFormats.h"
class SerializedLedger : public STObject
{
public:
typedef boost::shared_ptr<SerializedLedger> pointer;
protected:
LedgerEntryType mType;
STUInt16 mVersion;
STObject mObject;
LedgerEntryFormat* mFormat;
public:
SerializedLedger(SerializerIterator& sit);
SerializedLedger(LedgerEntryType type);
int getLength() const { return mVersion.getLength() + mObject.getLength(); }
SerializedTypeID getType() const { return STI_LEDGERENTRY; }
SerializedLedger* duplicate() const { return new SerializedLedger(*this); }
std::string getFullText() const;
std::string getText() const;
void add(Serializer& s) const { mVersion.add(s); mObject.add(s); }
};
#endif

View File

@@ -3,7 +3,7 @@
SerializedTransaction::SerializedTransaction(TransactionType type)
{
mFormat=getFormat(type);
mFormat=getTxnFormat(type);
if(mFormat==NULL) throw(std::runtime_error("invalid transaction type"));
mMiddleTxn.giveObject(new STUInt32("Magic", TransactionMagic));
@@ -33,7 +33,7 @@ SerializedTransaction::SerializedTransaction(SerializerIterator& sit, int length
int type=sit.get32();
mMiddleTxn.giveObject(new STUInt32("Type", type));
mFormat=getFormat(static_cast<TransactionType>(type));
mFormat=getTxnFormat(static_cast<TransactionType>(type));
if(!mFormat) throw(std::runtime_error("Transaction has invalid type"));
mMiddleTxn.giveObject(new STUInt64("Fee", sit.get64()));

View File

@@ -17,7 +17,7 @@ enum SerializedTypeID
STI_HASH128=6, STI_HASH160=7, STI_HASH256=8, STI_VL=9, STI_TL=10,
// high level types
STI_ACCOUNT=100, STI_TRANSACTION=101
STI_ACCOUNT=100, STI_TRANSACTION=101, STI_LEDGERENTRY=102
};
class SerializedType

View File

@@ -45,7 +45,7 @@ TransactionFormat InnerTxnFormats[]=
{ NULL, ttINVALID }
};
TransactionFormat* getFormat(TransactionType t)
TransactionFormat* getTxnFormat(TransactionType t)
{
TransactionFormat* f=InnerTxnFormats;
while(f->t_name!=NULL)

View File

@@ -27,5 +27,5 @@ const int TransactionMinLen=32;
const int TransactionMaxLen=1048576;
extern TransactionFormat InnerTxnFormats[];
extern TransactionFormat* getFormat(TransactionType t);
extern TransactionFormat* getTxnFormat(TransactionType t);
#endif

View File

@@ -277,7 +277,7 @@ public:
// ECIES functions. These throw on failure
// returns a 32-byte secret unique to these two keys. At least one private key must be known.
uint256 getECIESSecret(CKey& otherKey);
void getECIESSecret(CKey& otherKey, uint256& enc_key, uint256& hmac_key);
// encrypt/decrypt functions with integrity checking.
// Note that the other side must somehow know what keys to use