Add ecdsa Python library.

This commit is contained in:
Tom Ritchford
2015-04-16 19:54:47 -04:00
committed by seelabs
parent 18c51f4e4a
commit 6bf7de2415
12 changed files with 3621 additions and 0 deletions

View File

@@ -0,0 +1,14 @@
__all__ = ["curves", "der", "ecdsa", "ellipticcurve", "keys", "numbertheory",
"test_pyecdsa", "util", "six"]
from .keys import SigningKey, VerifyingKey, BadSignatureError, BadDigestError
from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1
_hush_pyflakes = [SigningKey, VerifyingKey, BadSignatureError, BadDigestError,
NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1]
del _hush_pyflakes
# This code comes from http://github.com/warner/python-ecdsa
from ._version import get_versions
__version__ = get_versions()['version']
del get_versions

View File

@@ -0,0 +1,183 @@
# This file helps to compute a version number in source trees obtained from
# git-archive tarball (such as those provided by githubs download-from-tag
# feature). Distribution tarballs (built by setup.py sdist) and build
# directories (produced by setup.py build) will contain a much shorter file
# that just contains the computed version number.
# This file is released into the public domain. Generated by
# versioneer-0.12 (https://github.com/warner/python-versioneer)
# these strings will be replaced by git during git-archive
git_refnames = " (HEAD, master)"
git_full = "e7a6daff51221b8edd888cff404596ef90432869"
# these strings are filled in when 'setup.py versioneer' creates _version.py
tag_prefix = "python-ecdsa-"
parentdir_prefix = "ecdsa-"
versionfile_source = "ecdsa/_version.py"
import os, sys, re, subprocess, errno
def run_command(commands, args, cwd=None, verbose=False, hide_stderr=False):
assert isinstance(commands, list)
p = None
for c in commands:
try:
# remember shell=False, so use git.cmd on windows, not just git
p = subprocess.Popen([c] + args, cwd=cwd, stdout=subprocess.PIPE,
stderr=(subprocess.PIPE if hide_stderr
else None))
break
except EnvironmentError:
e = sys.exc_info()[1]
if e.errno == errno.ENOENT:
continue
if verbose:
print("unable to run %s" % args[0])
print(e)
return None
else:
if verbose:
print("unable to find command, tried %s" % (commands,))
return None
stdout = p.communicate()[0].strip()
if sys.version >= '3':
stdout = stdout.decode()
if p.returncode != 0:
if verbose:
print("unable to run %s (error)" % args[0])
return None
return stdout
def versions_from_parentdir(parentdir_prefix, root, verbose=False):
# Source tarballs conventionally unpack into a directory that includes
# both the project name and a version string.
dirname = os.path.basename(root)
if not dirname.startswith(parentdir_prefix):
if verbose:
print("guessing rootdir is '%s', but '%s' doesn't start with prefix '%s'" %
(root, dirname, parentdir_prefix))
return None
return {"version": dirname[len(parentdir_prefix):], "full": ""}
def git_get_keywords(versionfile_abs):
# the code embedded in _version.py can just fetch the value of these
# keywords. When used from setup.py, we don't want to import _version.py,
# so we do it with a regexp instead. This function is not used from
# _version.py.
keywords = {}
try:
f = open(versionfile_abs,"r")
for line in f.readlines():
if line.strip().startswith("git_refnames ="):
mo = re.search(r'=\s*"(.*)"', line)
if mo:
keywords["refnames"] = mo.group(1)
if line.strip().startswith("git_full ="):
mo = re.search(r'=\s*"(.*)"', line)
if mo:
keywords["full"] = mo.group(1)
f.close()
except EnvironmentError:
pass
return keywords
def git_versions_from_keywords(keywords, tag_prefix, verbose=False):
if not keywords:
return {} # keyword-finding function failed to find keywords
refnames = keywords["refnames"].strip()
if refnames.startswith("$Format"):
if verbose:
print("keywords are unexpanded, not using")
return {} # unexpanded, so not in an unpacked git-archive tarball
refs = set([r.strip() for r in refnames.strip("()").split(",")])
# starting in git-1.8.3, tags are listed as "tag: foo-1.0" instead of
# just "foo-1.0". If we see a "tag: " prefix, prefer those.
TAG = "tag: "
tags = set([r[len(TAG):] for r in refs if r.startswith(TAG)])
if not tags:
# Either we're using git < 1.8.3, or there really are no tags. We use
# a heuristic: assume all version tags have a digit. The old git %d
# expansion behaves like git log --decorate=short and strips out the
# refs/heads/ and refs/tags/ prefixes that would let us distinguish
# between branches and tags. By ignoring refnames without digits, we
# filter out many common branch names like "release" and
# "stabilization", as well as "HEAD" and "master".
tags = set([r for r in refs if re.search(r'\d', r)])
if verbose:
print("discarding '%s', no digits" % ",".join(refs-tags))
if verbose:
print("likely tags: %s" % ",".join(sorted(tags)))
for ref in sorted(tags):
# sorting will prefer e.g. "2.0" over "2.0rc1"
if ref.startswith(tag_prefix):
r = ref[len(tag_prefix):]
if verbose:
print("picking %s" % r)
return { "version": r,
"full": keywords["full"].strip() }
# no suitable tags, so we use the full revision id
if verbose:
print("no suitable tags, using full revision id")
return { "version": keywords["full"].strip(),
"full": keywords["full"].strip() }
def git_versions_from_vcs(tag_prefix, root, verbose=False):
# this runs 'git' from the root of the source tree. This only gets called
# if the git-archive 'subst' keywords were *not* expanded, and
# _version.py hasn't already been rewritten with a short version string,
# meaning we're inside a checked out source tree.
if not os.path.exists(os.path.join(root, ".git")):
if verbose:
print("no .git in %s" % root)
return {}
GITS = ["git"]
if sys.platform == "win32":
GITS = ["git.cmd", "git.exe"]
stdout = run_command(GITS, ["describe", "--tags", "--dirty", "--always"],
cwd=root)
if stdout is None:
return {}
if not stdout.startswith(tag_prefix):
if verbose:
print("tag '%s' doesn't start with prefix '%s'" % (stdout, tag_prefix))
return {}
tag = stdout[len(tag_prefix):]
stdout = run_command(GITS, ["rev-parse", "HEAD"], cwd=root)
if stdout is None:
return {}
full = stdout.strip()
if tag.endswith("-dirty"):
full += "-dirty"
return {"version": tag, "full": full}
def get_versions(default={"version": "unknown", "full": ""}, verbose=False):
# I am in _version.py, which lives at ROOT/VERSIONFILE_SOURCE. If we have
# __file__, we can work backwards from there to the root. Some
# py2exe/bbfreeze/non-CPython implementations don't do __file__, in which
# case we can only use expanded keywords.
keywords = { "refnames": git_refnames, "full": git_full }
ver = git_versions_from_keywords(keywords, tag_prefix, verbose)
if ver:
return ver
try:
root = os.path.abspath(__file__)
# versionfile_source is the relative path from the top of the source
# tree (where the .git directory might live) to this file. Invert
# this to find the root from __file__.
for i in range(len(versionfile_source.split(os.sep))):
root = os.path.dirname(root)
except NameError:
return default
return (git_versions_from_vcs(tag_prefix, root, verbose)
or versions_from_parentdir(parentdir_prefix, root, verbose)
or default)

View File

@@ -0,0 +1,53 @@
from __future__ import division
from . import der, ecdsa
class UnknownCurveError(Exception):
pass
def orderlen(order):
return (1+len("%x"%order))//2 # bytes
# the NIST curves
class Curve:
def __init__(self, name, openssl_name,
curve, generator, oid):
self.name = name
self.openssl_name = openssl_name # maybe None
self.curve = curve
self.generator = generator
self.order = generator.order()
self.baselen = orderlen(self.order)
self.verifying_key_length = 2*self.baselen
self.signature_length = 2*self.baselen
self.oid = oid
self.encoded_oid = der.encode_oid(*oid)
NIST192p = Curve("NIST192p", "prime192v1",
ecdsa.curve_192, ecdsa.generator_192,
(1, 2, 840, 10045, 3, 1, 1))
NIST224p = Curve("NIST224p", "secp224r1",
ecdsa.curve_224, ecdsa.generator_224,
(1, 3, 132, 0, 33))
NIST256p = Curve("NIST256p", "prime256v1",
ecdsa.curve_256, ecdsa.generator_256,
(1, 2, 840, 10045, 3, 1, 7))
NIST384p = Curve("NIST384p", "secp384r1",
ecdsa.curve_384, ecdsa.generator_384,
(1, 3, 132, 0, 34))
NIST521p = Curve("NIST521p", "secp521r1",
ecdsa.curve_521, ecdsa.generator_521,
(1, 3, 132, 0, 35))
SECP256k1 = Curve("SECP256k1", "secp256k1",
ecdsa.curve_secp256k1, ecdsa.generator_secp256k1,
(1, 3, 132, 0, 10))
curves = [NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1]
def find_curve(oid_curve):
for c in curves:
if c.oid == oid_curve:
return c
raise UnknownCurveError("I don't know about the curve with oid %s."
"I only know about these: %s" %
(oid_curve, [c.name for c in curves]))

199
bin/python/ecdsa/der.py Normal file
View File

@@ -0,0 +1,199 @@
from __future__ import division
import binascii
import base64
from .six import int2byte, b, integer_types, text_type
class UnexpectedDER(Exception):
pass
def encode_constructed(tag, value):
return int2byte(0xa0+tag) + encode_length(len(value)) + value
def encode_integer(r):
assert r >= 0 # can't support negative numbers yet
h = ("%x" % r).encode()
if len(h) % 2:
h = b("0") + h
s = binascii.unhexlify(h)
num = s[0] if isinstance(s[0], integer_types) else ord(s[0])
if num <= 0x7f:
return b("\x02") + int2byte(len(s)) + s
else:
# DER integers are two's complement, so if the first byte is
# 0x80-0xff then we need an extra 0x00 byte to prevent it from
# looking negative.
return b("\x02") + int2byte(len(s)+1) + b("\x00") + s
def encode_bitstring(s):
return b("\x03") + encode_length(len(s)) + s
def encode_octet_string(s):
return b("\x04") + encode_length(len(s)) + s
def encode_oid(first, second, *pieces):
assert first <= 2
assert second <= 39
encoded_pieces = [int2byte(40*first+second)] + [encode_number(p)
for p in pieces]
body = b('').join(encoded_pieces)
return b('\x06') + encode_length(len(body)) + body
def encode_sequence(*encoded_pieces):
total_len = sum([len(p) for p in encoded_pieces])
return b('\x30') + encode_length(total_len) + b('').join(encoded_pieces)
def encode_number(n):
b128_digits = []
while n:
b128_digits.insert(0, (n & 0x7f) | 0x80)
n = n >> 7
if not b128_digits:
b128_digits.append(0)
b128_digits[-1] &= 0x7f
return b('').join([int2byte(d) for d in b128_digits])
def remove_constructed(string):
s0 = string[0] if isinstance(string[0], integer_types) else ord(string[0])
if (s0 & 0xe0) != 0xa0:
raise UnexpectedDER("wanted constructed tag (0xa0-0xbf), got 0x%02x"
% s0)
tag = s0 & 0x1f
length, llen = read_length(string[1:])
body = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
return tag, body, rest
def remove_sequence(string):
if not string.startswith(b("\x30")):
n = string[0] if isinstance(string[0], integer_types) else ord(string[0])
raise UnexpectedDER("wanted sequence (0x30), got 0x%02x" % n)
length, lengthlength = read_length(string[1:])
endseq = 1+lengthlength+length
return string[1+lengthlength:endseq], string[endseq:]
def remove_octet_string(string):
if not string.startswith(b("\x04")):
n = string[0] if isinstance(string[0], integer_types) else ord(string[0])
raise UnexpectedDER("wanted octetstring (0x04), got 0x%02x" % n)
length, llen = read_length(string[1:])
body = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
return body, rest
def remove_object(string):
if not string.startswith(b("\x06")):
n = string[0] if isinstance(string[0], integer_types) else ord(string[0])
raise UnexpectedDER("wanted object (0x06), got 0x%02x" % n)
length, lengthlength = read_length(string[1:])
body = string[1+lengthlength:1+lengthlength+length]
rest = string[1+lengthlength+length:]
numbers = []
while body:
n, ll = read_number(body)
numbers.append(n)
body = body[ll:]
n0 = numbers.pop(0)
first = n0//40
second = n0-(40*first)
numbers.insert(0, first)
numbers.insert(1, second)
return tuple(numbers), rest
def remove_integer(string):
if not string.startswith(b("\x02")):
n = string[0] if isinstance(string[0], integer_types) else ord(string[0])
raise UnexpectedDER("wanted integer (0x02), got 0x%02x" % n)
length, llen = read_length(string[1:])
numberbytes = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
nbytes = numberbytes[0] if isinstance(numberbytes[0], integer_types) else ord(numberbytes[0])
assert nbytes < 0x80 # can't support negative numbers yet
return int(binascii.hexlify(numberbytes), 16), rest
def read_number(string):
number = 0
llen = 0
# base-128 big endian, with b7 set in all but the last byte
while True:
if llen > len(string):
raise UnexpectedDER("ran out of length bytes")
number = number << 7
d = string[llen] if isinstance(string[llen], integer_types) else ord(string[llen])
number += (d & 0x7f)
llen += 1
if not d & 0x80:
break
return number, llen
def encode_length(l):
assert l >= 0
if l < 0x80:
return int2byte(l)
s = ("%x" % l).encode()
if len(s)%2:
s = b("0")+s
s = binascii.unhexlify(s)
llen = len(s)
return int2byte(0x80|llen) + s
def read_length(string):
num = string[0] if isinstance(string[0], integer_types) else ord(string[0])
if not (num & 0x80):
# short form
return (num & 0x7f), 1
# else long-form: b0&0x7f is number of additional base256 length bytes,
# big-endian
llen = num & 0x7f
if llen > len(string)-1:
raise UnexpectedDER("ran out of length bytes")
return int(binascii.hexlify(string[1:1+llen]), 16), 1+llen
def remove_bitstring(string):
num = string[0] if isinstance(string[0], integer_types) else ord(string[0])
if not string.startswith(b("\x03")):
raise UnexpectedDER("wanted bitstring (0x03), got 0x%02x" % num)
length, llen = read_length(string[1:])
body = string[1+llen:1+llen+length]
rest = string[1+llen+length:]
return body, rest
# SEQUENCE([1, STRING(secexp), cont[0], OBJECT(curvename), cont[1], BINTSTRING)
# signatures: (from RFC3279)
# ansi-X9-62 OBJECT IDENTIFIER ::= {
# iso(1) member-body(2) us(840) 10045 }
#
# id-ecSigType OBJECT IDENTIFIER ::= {
# ansi-X9-62 signatures(4) }
# ecdsa-with-SHA1 OBJECT IDENTIFIER ::= {
# id-ecSigType 1 }
## so 1,2,840,10045,4,1
## so 0x42, .. ..
# Ecdsa-Sig-Value ::= SEQUENCE {
# r INTEGER,
# s INTEGER }
# id-public-key-type OBJECT IDENTIFIER ::= { ansi-X9.62 2 }
#
# id-ecPublicKey OBJECT IDENTIFIER ::= { id-publicKeyType 1 }
# I think the secp224r1 identifier is (t=06,l=05,v=2b81040021)
# secp224r1 OBJECT IDENTIFIER ::= {
# iso(1) identified-organization(3) certicom(132) curve(0) 33 }
# and the secp384r1 is (t=06,l=05,v=2b81040022)
# secp384r1 OBJECT IDENTIFIER ::= {
# iso(1) identified-organization(3) certicom(132) curve(0) 34 }
def unpem(pem):
if isinstance(pem, text_type):
pem = pem.encode()
d = b("").join([l.strip() for l in pem.split(b("\n"))
if l and not l.startswith(b("-----"))])
return base64.b64decode(d)
def topem(der, name):
b64 = base64.b64encode(der)
lines = [("-----BEGIN %s-----\n" % name).encode()]
lines.extend([b64[start:start+64]+b("\n")
for start in range(0, len(b64), 64)])
lines.append(("-----END %s-----\n" % name).encode())
return b("").join(lines)

576
bin/python/ecdsa/ecdsa.py Normal file
View File

@@ -0,0 +1,576 @@
#! /usr/bin/env python
"""
Implementation of Elliptic-Curve Digital Signatures.
Classes and methods for elliptic-curve signatures:
private keys, public keys, signatures,
NIST prime-modulus curves with modulus lengths of
192, 224, 256, 384, and 521 bits.
Example:
# (In real-life applications, you would probably want to
# protect against defects in SystemRandom.)
from random import SystemRandom
randrange = SystemRandom().randrange
# Generate a public/private key pair using the NIST Curve P-192:
g = generator_192
n = g.order()
secret = randrange( 1, n )
pubkey = Public_key( g, g * secret )
privkey = Private_key( pubkey, secret )
# Signing a hash value:
hash = randrange( 1, n )
signature = privkey.sign( hash, randrange( 1, n ) )
# Verifying a signature for a hash value:
if pubkey.verifies( hash, signature ):
print_("Demo verification succeeded.")
else:
print_("*** Demo verification failed.")
# Verification fails if the hash value is modified:
if pubkey.verifies( hash-1, signature ):
print_("**** Demo verification failed to reject tampered hash.")
else:
print_("Demo verification correctly rejected tampered hash.")
Version of 2009.05.16.
Revision history:
2005.12.31 - Initial version.
2008.11.25 - Substantial revisions introducing new classes.
2009.05.16 - Warn against using random.randrange in real applications.
2009.05.17 - Use random.SystemRandom by default.
Written in 2005 by Peter Pearson and placed in the public domain.
"""
from .six import int2byte, b, print_
from . import ellipticcurve
from . import numbertheory
import random
class Signature( object ):
"""ECDSA signature.
"""
def __init__( self, r, s ):
self.r = r
self.s = s
class Public_key( object ):
"""Public key for ECDSA.
"""
def __init__( self, generator, point ):
"""generator is the Point that generates the group,
point is the Point that defines the public key.
"""
self.curve = generator.curve()
self.generator = generator
self.point = point
n = generator.order()
if not n:
raise RuntimeError("Generator point must have order.")
if not n * point == ellipticcurve.INFINITY:
raise RuntimeError("Generator point order is bad.")
if point.x() < 0 or n <= point.x() or point.y() < 0 or n <= point.y():
raise RuntimeError("Generator point has x or y out of range.")
def verifies( self, hash, signature ):
"""Verify that signature is a valid signature of hash.
Return True if the signature is valid.
"""
# From X9.62 J.3.1.
G = self.generator
n = G.order()
r = signature.r
s = signature.s
if r < 1 or r > n-1: return False
if s < 1 or s > n-1: return False
c = numbertheory.inverse_mod( s, n )
u1 = ( hash * c ) % n
u2 = ( r * c ) % n
xy = u1 * G + u2 * self.point
v = xy.x() % n
return v == r
class Private_key( object ):
"""Private key for ECDSA.
"""
def __init__( self, public_key, secret_multiplier ):
"""public_key is of class Public_key;
secret_multiplier is a large integer.
"""
self.public_key = public_key
self.secret_multiplier = secret_multiplier
def sign( self, hash, random_k ):
"""Return a signature for the provided hash, using the provided
random nonce. It is absolutely vital that random_k be an unpredictable
number in the range [1, self.public_key.point.order()-1]. If
an attacker can guess random_k, he can compute our private key from a
single signature. Also, if an attacker knows a few high-order
bits (or a few low-order bits) of random_k, he can compute our private
key from many signatures. The generation of nonces with adequate
cryptographic strength is very difficult and far beyond the scope
of this comment.
May raise RuntimeError, in which case retrying with a new
random value k is in order.
"""
G = self.public_key.generator
n = G.order()
k = random_k % n
p1 = k * G
r = p1.x()
if r == 0: raise RuntimeError("amazingly unlucky random number r")
s = ( numbertheory.inverse_mod( k, n ) * \
( hash + ( self.secret_multiplier * r ) % n ) ) % n
if s == 0: raise RuntimeError("amazingly unlucky random number s")
return Signature( r, s )
def int_to_string( x ):
"""Convert integer x into a string of bytes, as per X9.62."""
assert x >= 0
if x == 0: return b('\0')
result = []
while x:
ordinal = x & 0xFF
result.append(int2byte(ordinal))
x >>= 8
result.reverse()
return b('').join(result)
def string_to_int( s ):
"""Convert a string of bytes into an integer, as per X9.62."""
result = 0
for c in s:
if not isinstance(c, int): c = ord( c )
result = 256 * result + c
return result
def digest_integer( m ):
"""Convert an integer into a string of bytes, compute
its SHA-1 hash, and convert the result to an integer."""
#
# I don't expect this function to be used much. I wrote
# it in order to be able to duplicate the examples
# in ECDSAVS.
#
from hashlib import sha1
return string_to_int( sha1( int_to_string( m ) ).digest() )
def point_is_valid( generator, x, y ):
"""Is (x,y) a valid public key based on the specified generator?"""
# These are the tests specified in X9.62.
n = generator.order()
curve = generator.curve()
if x < 0 or n <= x or y < 0 or n <= y:
return False
if not curve.contains_point( x, y ):
return False
if not n*ellipticcurve.Point( curve, x, y ) == \
ellipticcurve.INFINITY:
return False
return True
# NIST Curve P-192:
_p = 6277101735386680763835789423207666416083908700390324961279
_r = 6277101735386680763835789423176059013767194773182842284081
# s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
# c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65L
_b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
_Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
_Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
curve_192 = ellipticcurve.CurveFp( _p, -3, _b )
generator_192 = ellipticcurve.Point( curve_192, _Gx, _Gy, _r )
# NIST Curve P-224:
_p = 26959946667150639794667015087019630673557916260026308143510066298881
_r = 26959946667150639794667015087019625940457807714424391721682722368061
# s = 0xbd71344799d5c7fcdc45b59fa3b9ab8f6a948bc5L
# c = 0x5b056c7e11dd68f40469ee7f3c7a7d74f7d121116506d031218291fbL
_b = 0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4
_Gx =0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21
_Gy = 0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34
curve_224 = ellipticcurve.CurveFp( _p, -3, _b )
generator_224 = ellipticcurve.Point( curve_224, _Gx, _Gy, _r )
# NIST Curve P-256:
_p = 115792089210356248762697446949407573530086143415290314195533631308867097853951
_r = 115792089210356248762697446949407573529996955224135760342422259061068512044369
# s = 0xc49d360886e704936a6678e1139d26b7819f7e90L
# c = 0x7efba1662985be9403cb055c75d4f7e0ce8d84a9c5114abcaf3177680104fa0dL
_b = 0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b
_Gx = 0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296
_Gy = 0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5
curve_256 = ellipticcurve.CurveFp( _p, -3, _b )
generator_256 = ellipticcurve.Point( curve_256, _Gx, _Gy, _r )
# NIST Curve P-384:
_p = 39402006196394479212279040100143613805079739270465446667948293404245721771496870329047266088258938001861606973112319
_r = 39402006196394479212279040100143613805079739270465446667946905279627659399113263569398956308152294913554433653942643
# s = 0xa335926aa319a27a1d00896a6773a4827acdac73L
# c = 0x79d1e655f868f02fff48dcdee14151ddb80643c1406d0ca10dfe6fc52009540a495e8042ea5f744f6e184667cc722483L
_b = 0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef
_Gx = 0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7
_Gy = 0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f
curve_384 = ellipticcurve.CurveFp( _p, -3, _b )
generator_384 = ellipticcurve.Point( curve_384, _Gx, _Gy, _r )
# NIST Curve P-521:
_p = 6864797660130609714981900799081393217269435300143305409394463459185543183397656052122559640661454554977296311391480858037121987999716643812574028291115057151
_r = 6864797660130609714981900799081393217269435300143305409394463459185543183397655394245057746333217197532963996371363321113864768612440380340372808892707005449
# s = 0xd09e8800291cb85396cc6717393284aaa0da64baL
# c = 0x0b48bfa5f420a34949539d2bdfc264eeeeb077688e44fbf0ad8f6d0edb37bd6b533281000518e19f1b9ffbe0fe9ed8a3c2200b8f875e523868c70c1e5bf55bad637L
_b = 0x051953eb9618e1c9a1f929a21a0b68540eea2da725b99b315f3b8b489918ef109e156193951ec7e937b1652c0bd3bb1bf073573df883d2c34f1ef451fd46b503f00
_Gx = 0xc6858e06b70404e9cd9e3ecb662395b4429c648139053fb521f828af606b4d3dbaa14b5e77efe75928fe1dc127a2ffa8de3348b3c1856a429bf97e7e31c2e5bd66
_Gy = 0x11839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650
curve_521 = ellipticcurve.CurveFp( _p, -3, _b )
generator_521 = ellipticcurve.Point( curve_521, _Gx, _Gy, _r )
# Certicom secp256-k1
_a = 0x0000000000000000000000000000000000000000000000000000000000000000
_b = 0x0000000000000000000000000000000000000000000000000000000000000007
_p = 0xfffffffffffffffffffffffffffffffffffffffffffffffffffffffefffffc2f
_Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
_Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8
_r = 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
curve_secp256k1 = ellipticcurve.CurveFp( _p, _a, _b)
generator_secp256k1 = ellipticcurve.Point( curve_secp256k1, _Gx, _Gy, _r)
def __main__():
class TestFailure(Exception): pass
def test_point_validity( generator, x, y, expected ):
"""generator defines the curve; is (x,y) a point on
this curve? "expected" is True if the right answer is Yes."""
if point_is_valid( generator, x, y ) == expected:
print_("Point validity tested as expected.")
else:
raise TestFailure("*** Point validity test gave wrong result.")
def test_signature_validity( Msg, Qx, Qy, R, S, expected ):
"""Msg = message, Qx and Qy represent the base point on
elliptic curve c192, R and S are the signature, and
"expected" is True iff the signature is expected to be valid."""
pubk = Public_key( generator_192,
ellipticcurve.Point( curve_192, Qx, Qy ) )
got = pubk.verifies( digest_integer( Msg ), Signature( R, S ) )
if got == expected:
print_("Signature tested as expected: got %s, expected %s." % \
( got, expected ))
else:
raise TestFailure("*** Signature test failed: got %s, expected %s." % \
( got, expected ))
print_("NIST Curve P-192:")
p192 = generator_192
# From X9.62:
d = 651056770906015076056810763456358567190100156695615665659
Q = d * p192
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
raise TestFailure("*** p192 * d came out wrong.")
else:
print_("p192 * d came out right.")
k = 6140507067065001063065065565667405560006161556565665656654
R = k * p192
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
raise TestFailure("*** k * p192 came out wrong.")
else:
print_("k * p192 came out right.")
u1 = 2563697409189434185194736134579731015366492496392189760599
u2 = 6266643813348617967186477710235785849136406323338782220568
temp = u1 * p192 + u2 * Q
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
raise TestFailure("*** u1 * p192 + u2 * Q came out wrong.")
else:
print_("u1 * p192 + u2 * Q came out right.")
e = 968236873715988614170569073515315707566766479517
pubk = Public_key( generator_192, generator_192 * d )
privk = Private_key( pubk, d )
sig = privk.sign( e, k )
r, s = sig.r, sig.s
if r != 3342403536405981729393488334694600415596881826869351677613 \
or s != 5735822328888155254683894997897571951568553642892029982342:
raise TestFailure("*** r or s came out wrong.")
else:
print_("r and s came out right.")
valid = pubk.verifies( e, sig )
if valid: print_("Signature verified OK.")
else: raise TestFailure("*** Signature failed verification.")
valid = pubk.verifies( e-1, sig )
if not valid: print_("Forgery was correctly rejected.")
else: raise TestFailure("*** Forgery was erroneously accepted.")
print_("Testing point validity, as per ECDSAVS.pdf B.2.2:")
test_point_validity( \
p192, \
0xcd6d0f029a023e9aaca429615b8f577abee685d8257cc83a, \
0x00019c410987680e9fb6c0b6ecc01d9a2647c8bae27721bacdfc, \
False )
test_point_validity(
p192, \
0x00017f2fce203639e9eaf9fb50b81fc32776b30e3b02af16c73b, \
0x95da95c5e72dd48e229d4748d4eee658a9a54111b23b2adb, \
False )
test_point_validity(
p192, \
0x4f77f8bc7fccbadd5760f4938746d5f253ee2168c1cf2792, \
0x000147156ff824d131629739817edb197717c41aab5c2a70f0f6, \
False )
test_point_validity(
p192, \
0xc58d61f88d905293bcd4cd0080bcb1b7f811f2ffa41979f6, \
0x8804dc7a7c4c7f8b5d437f5156f3312ca7d6de8a0e11867f, \
True )
test_point_validity(
p192, \
0xcdf56c1aa3d8afc53c521adf3ffb96734a6a630a4a5b5a70, \
0x97c1c44a5fb229007b5ec5d25f7413d170068ffd023caa4e, \
True )
test_point_validity(
p192, \
0x89009c0dc361c81e99280c8e91df578df88cdf4b0cdedced, \
0x27be44a529b7513e727251f128b34262a0fd4d8ec82377b9, \
True )
test_point_validity(
p192, \
0x6a223d00bd22c52833409a163e057e5b5da1def2a197dd15, \
0x7b482604199367f1f303f9ef627f922f97023e90eae08abf, \
True )
test_point_validity(
p192, \
0x6dccbde75c0948c98dab32ea0bc59fe125cf0fb1a3798eda, \
0x0001171a3e0fa60cf3096f4e116b556198de430e1fbd330c8835, \
False )
test_point_validity(
p192, \
0xd266b39e1f491fc4acbbbc7d098430931cfa66d55015af12, \
0x193782eb909e391a3148b7764e6b234aa94e48d30a16dbb2, \
False )
test_point_validity(
p192, \
0x9d6ddbcd439baa0c6b80a654091680e462a7d1d3f1ffeb43, \
0x6ad8efc4d133ccf167c44eb4691c80abffb9f82b932b8caa, \
False )
test_point_validity(
p192, \
0x146479d944e6bda87e5b35818aa666a4c998a71f4e95edbc, \
0xa86d6fe62bc8fbd88139693f842635f687f132255858e7f6, \
False )
test_point_validity(
p192, \
0xe594d4a598046f3598243f50fd2c7bd7d380edb055802253, \
0x509014c0c4d6b536e3ca750ec09066af39b4c8616a53a923, \
False )
print_("Trying signature-verification tests from ECDSAVS.pdf B.2.4:")
print_("P-192:")
Msg = 0x84ce72aa8699df436059f052ac51b6398d2511e49631bcb7e71f89c499b9ee425dfbc13a5f6d408471b054f2655617cbbaf7937b7c80cd8865cf02c8487d30d2b0fbd8b2c4e102e16d828374bbc47b93852f212d5043c3ea720f086178ff798cc4f63f787b9c2e419efa033e7644ea7936f54462dc21a6c4580725f7f0e7d158
Qx = 0xd9dbfb332aa8e5ff091e8ce535857c37c73f6250ffb2e7ac
Qy = 0x282102e364feded3ad15ddf968f88d8321aa268dd483ebc4
R = 0x64dca58a20787c488d11d6dd96313f1b766f2d8efe122916
S = 0x1ecba28141e84ab4ecad92f56720e2cc83eb3d22dec72479
test_signature_validity( Msg, Qx, Qy, R, S, True )
Msg = 0x94bb5bacd5f8ea765810024db87f4224ad71362a3c28284b2b9f39fab86db12e8beb94aae899768229be8fdb6c4f12f28912bb604703a79ccff769c1607f5a91450f30ba0460d359d9126cbd6296be6d9c4bb96c0ee74cbb44197c207f6db326ab6f5a659113a9034e54be7b041ced9dcf6458d7fb9cbfb2744d999f7dfd63f4
Qx = 0x3e53ef8d3112af3285c0e74842090712cd324832d4277ae7
Qy = 0xcc75f8952d30aec2cbb719fc6aa9934590b5d0ff5a83adb7
R = 0x8285261607283ba18f335026130bab31840dcfd9c3e555af
S = 0x356d89e1b04541afc9704a45e9c535ce4a50929e33d7e06c
test_signature_validity( Msg, Qx, Qy, R, S, True )
Msg = 0xf6227a8eeb34afed1621dcc89a91d72ea212cb2f476839d9b4243c66877911b37b4ad6f4448792a7bbba76c63bdd63414b6facab7dc71c3396a73bd7ee14cdd41a659c61c99b779cecf07bc51ab391aa3252386242b9853ea7da67fd768d303f1b9b513d401565b6f1eb722dfdb96b519fe4f9bd5de67ae131e64b40e78c42dd
Qx = 0x16335dbe95f8e8254a4e04575d736befb258b8657f773cb7
Qy = 0x421b13379c59bc9dce38a1099ca79bbd06d647c7f6242336
R = 0x4141bd5d64ea36c5b0bd21ef28c02da216ed9d04522b1e91
S = 0x159a6aa852bcc579e821b7bb0994c0861fb08280c38daa09
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x16b5f93afd0d02246f662761ed8e0dd9504681ed02a253006eb36736b563097ba39f81c8e1bce7a16c1339e345efabbc6baa3efb0612948ae51103382a8ee8bc448e3ef71e9f6f7a9676694831d7f5dd0db5446f179bcb737d4a526367a447bfe2c857521c7f40b6d7d7e01a180d92431fb0bbd29c04a0c420a57b3ed26ccd8a
Qx = 0xfd14cdf1607f5efb7b1793037b15bdf4baa6f7c16341ab0b
Qy = 0x83fa0795cc6c4795b9016dac928fd6bac32f3229a96312c4
R = 0x8dfdb832951e0167c5d762a473c0416c5c15bc1195667dc1
S = 0x1720288a2dc13fa1ec78f763f8fe2ff7354a7e6fdde44520
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x08a2024b61b79d260e3bb43ef15659aec89e5b560199bc82cf7c65c77d39192e03b9a895d766655105edd9188242b91fbde4167f7862d4ddd61e5d4ab55196683d4f13ceb90d87aea6e07eb50a874e33086c4a7cb0273a8e1c4408f4b846bceae1ebaac1b2b2ea851a9b09de322efe34cebe601653efd6ddc876ce8c2f2072fb
Qx = 0x674f941dc1a1f8b763c9334d726172d527b90ca324db8828
Qy = 0x65adfa32e8b236cb33a3e84cf59bfb9417ae7e8ede57a7ff
R = 0x9508b9fdd7daf0d8126f9e2bc5a35e4c6d800b5b804d7796
S = 0x36f2bf6b21b987c77b53bb801b3435a577e3d493744bfab0
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x1843aba74b0789d4ac6b0b8923848023a644a7b70afa23b1191829bbe4397ce15b629bf21a8838298653ed0c19222b95fa4f7390d1b4c844d96e645537e0aae98afb5c0ac3bd0e4c37f8daaff25556c64e98c319c52687c904c4de7240a1cc55cd9756b7edaef184e6e23b385726e9ffcba8001b8f574987c1a3fedaaa83ca6d
Qx = 0x10ecca1aad7220b56a62008b35170bfd5e35885c4014a19f
Qy = 0x04eb61984c6c12ade3bc47f3c629ece7aa0a033b9948d686
R = 0x82bfa4e82c0dfe9274169b86694e76ce993fd83b5c60f325
S = 0xa97685676c59a65dbde002fe9d613431fb183e8006d05633
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x5a478f4084ddd1a7fea038aa9732a822106385797d02311aeef4d0264f824f698df7a48cfb6b578cf3da416bc0799425bb491be5b5ecc37995b85b03420a98f2c4dc5c31a69a379e9e322fbe706bbcaf0f77175e05cbb4fa162e0da82010a278461e3e974d137bc746d1880d6eb02aa95216014b37480d84b87f717bb13f76e1
Qx = 0x6636653cb5b894ca65c448277b29da3ad101c4c2300f7c04
Qy = 0xfdf1cbb3fc3fd6a4f890b59e554544175fa77dbdbeb656c1
R = 0xeac2ddecddfb79931a9c3d49c08de0645c783a24cb365e1c
S = 0x3549fee3cfa7e5f93bc47d92d8ba100e881a2a93c22f8d50
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0xc598774259a058fa65212ac57eaa4f52240e629ef4c310722088292d1d4af6c39b49ce06ba77e4247b20637174d0bd67c9723feb57b5ead232b47ea452d5d7a089f17c00b8b6767e434a5e16c231ba0efa718a340bf41d67ea2d295812ff1b9277daacb8bc27b50ea5e6443bcf95ef4e9f5468fe78485236313d53d1c68f6ba2
Qx = 0xa82bd718d01d354001148cd5f69b9ebf38ff6f21898f8aaa
Qy = 0xe67ceede07fc2ebfafd62462a51e4b6c6b3d5b537b7caf3e
R = 0x4d292486c620c3de20856e57d3bb72fcde4a73ad26376955
S = 0xa85289591a6081d5728825520e62ff1c64f94235c04c7f95
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0xca98ed9db081a07b7557f24ced6c7b9891269a95d2026747add9e9eb80638a961cf9c71a1b9f2c29744180bd4c3d3db60f2243c5c0b7cc8a8d40a3f9a7fc910250f2187136ee6413ffc67f1a25e1c4c204fa9635312252ac0e0481d89b6d53808f0c496ba87631803f6c572c1f61fa049737fdacce4adff757afed4f05beb658
Qx = 0x7d3b016b57758b160c4fca73d48df07ae3b6b30225126c2f
Qy = 0x4af3790d9775742bde46f8da876711be1b65244b2b39e7ec
R = 0x95f778f5f656511a5ab49a5d69ddd0929563c29cbc3a9e62
S = 0x75c87fc358c251b4c83d2dd979faad496b539f9f2ee7a289
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x31dd9a54c8338bea06b87eca813d555ad1850fac9742ef0bbe40dad400e10288acc9c11ea7dac79eb16378ebea9490e09536099f1b993e2653cd50240014c90a9c987f64545abc6a536b9bd2435eb5e911fdfde2f13be96ea36ad38df4ae9ea387b29cced599af777338af2794820c9cce43b51d2112380a35802ab7e396c97a
Qx = 0x9362f28c4ef96453d8a2f849f21e881cd7566887da8beb4a
Qy = 0xe64d26d8d74c48a024ae85d982ee74cd16046f4ee5333905
R = 0xf3923476a296c88287e8de914b0b324ad5a963319a4fe73b
S = 0xf0baeed7624ed00d15244d8ba2aede085517dbdec8ac65f5
test_signature_validity( Msg, Qx, Qy, R, S, True )
Msg = 0xb2b94e4432267c92f9fdb9dc6040c95ffa477652761290d3c7de312283f6450d89cc4aabe748554dfb6056b2d8e99c7aeaad9cdddebdee9dbc099839562d9064e68e7bb5f3a6bba0749ca9a538181fc785553a4000785d73cc207922f63e8ce1112768cb1de7b673aed83a1e4a74592f1268d8e2a4e9e63d414b5d442bd0456d
Qx = 0xcc6fc032a846aaac25533eb033522824f94e670fa997ecef
Qy = 0xe25463ef77a029eccda8b294fd63dd694e38d223d30862f1
R = 0x066b1d07f3a40e679b620eda7f550842a35c18b80c5ebe06
S = 0xa0b0fb201e8f2df65e2c4508ef303bdc90d934016f16b2dc
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x4366fcadf10d30d086911de30143da6f579527036937007b337f7282460eae5678b15cccda853193ea5fc4bc0a6b9d7a31128f27e1214988592827520b214eed5052f7775b750b0c6b15f145453ba3fee24a085d65287e10509eb5d5f602c440341376b95c24e5c4727d4b859bfe1483d20538acdd92c7997fa9c614f0f839d7
Qx = 0x955c908fe900a996f7e2089bee2f6376830f76a19135e753
Qy = 0xba0c42a91d3847de4a592a46dc3fdaf45a7cc709b90de520
R = 0x1f58ad77fc04c782815a1405b0925e72095d906cbf52a668
S = 0xf2e93758b3af75edf784f05a6761c9b9a6043c66b845b599
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x543f8af57d750e33aa8565e0cae92bfa7a1ff78833093421c2942cadf9986670a5ff3244c02a8225e790fbf30ea84c74720abf99cfd10d02d34377c3d3b41269bea763384f372bb786b5846f58932defa68023136cd571863b304886e95e52e7877f445b9364b3f06f3c28da12707673fecb4b8071de06b6e0a3c87da160cef3
Qx = 0x31f7fa05576d78a949b24812d4383107a9a45bb5fccdd835
Qy = 0x8dc0eb65994a90f02b5e19bd18b32d61150746c09107e76b
R = 0xbe26d59e4e883dde7c286614a767b31e49ad88789d3a78ff
S = 0x8762ca831c1ce42df77893c9b03119428e7a9b819b619068
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0xd2e8454143ce281e609a9d748014dcebb9d0bc53adb02443a6aac2ffe6cb009f387c346ecb051791404f79e902ee333ad65e5c8cb38dc0d1d39a8dc90add5023572720e5b94b190d43dd0d7873397504c0c7aef2727e628eb6a74411f2e400c65670716cb4a815dc91cbbfeb7cfe8c929e93184c938af2c078584da045e8f8d1
Qx = 0x66aa8edbbdb5cf8e28ceb51b5bda891cae2df84819fe25c0
Qy = 0x0c6bc2f69030a7ce58d4a00e3b3349844784a13b8936f8da
R = 0xa4661e69b1734f4a71b788410a464b71e7ffe42334484f23
S = 0x738421cf5e049159d69c57a915143e226cac8355e149afe9
test_signature_validity( Msg, Qx, Qy, R, S, False )
Msg = 0x6660717144040f3e2f95a4e25b08a7079c702a8b29babad5a19a87654bc5c5afa261512a11b998a4fb36b5d8fe8bd942792ff0324b108120de86d63f65855e5461184fc96a0a8ffd2ce6d5dfb0230cbbdd98f8543e361b3205f5da3d500fdc8bac6db377d75ebef3cb8f4d1ff738071ad0938917889250b41dd1d98896ca06fb
Qx = 0xbcfacf45139b6f5f690a4c35a5fffa498794136a2353fc77
Qy = 0x6f4a6c906316a6afc6d98fe1f0399d056f128fe0270b0f22
R = 0x9db679a3dafe48f7ccad122933acfe9da0970b71c94c21c1
S = 0x984c2db99827576c0a41a5da41e07d8cc768bc82f18c9da9
test_signature_validity( Msg, Qx, Qy, R, S, False )
print_("Testing the example code:")
# Building a public/private key pair from the NIST Curve P-192:
g = generator_192
n = g.order()
# (random.SystemRandom is supposed to provide
# crypto-quality random numbers, but as Debian recently
# illustrated, a systems programmer can accidentally
# demolish this security, so in serious applications
# further precautions are appropriate.)
randrange = random.SystemRandom().randrange
secret = randrange( 1, n )
pubkey = Public_key( g, g * secret )
privkey = Private_key( pubkey, secret )
# Signing a hash value:
hash = randrange( 1, n )
signature = privkey.sign( hash, randrange( 1, n ) )
# Verifying a signature for a hash value:
if pubkey.verifies( hash, signature ):
print_("Demo verification succeeded.")
else:
raise TestFailure("*** Demo verification failed.")
if pubkey.verifies( hash-1, signature ):
raise TestFailure( "**** Demo verification failed to reject tampered hash.")
else:
print_("Demo verification correctly rejected tampered hash.")
if __name__ == "__main__":
__main__()

View File

@@ -0,0 +1,293 @@
#! /usr/bin/env python
#
# Implementation of elliptic curves, for cryptographic applications.
#
# This module doesn't provide any way to choose a random elliptic
# curve, nor to verify that an elliptic curve was chosen randomly,
# because one can simply use NIST's standard curves.
#
# Notes from X9.62-1998 (draft):
# Nomenclature:
# - Q is a public key.
# The "Elliptic Curve Domain Parameters" include:
# - q is the "field size", which in our case equals p.
# - p is a big prime.
# - G is a point of prime order (5.1.1.1).
# - n is the order of G (5.1.1.1).
# Public-key validation (5.2.2):
# - Verify that Q is not the point at infinity.
# - Verify that X_Q and Y_Q are in [0,p-1].
# - Verify that Q is on the curve.
# - Verify that nQ is the point at infinity.
# Signature generation (5.3):
# - Pick random k from [1,n-1].
# Signature checking (5.4.2):
# - Verify that r and s are in [1,n-1].
#
# Version of 2008.11.25.
#
# Revision history:
# 2005.12.31 - Initial version.
# 2008.11.25 - Change CurveFp.is_on to contains_point.
#
# Written in 2005 by Peter Pearson and placed in the public domain.
from __future__ import division
from .six import print_
from . import numbertheory
class CurveFp( object ):
"""Elliptic Curve over the field of integers modulo a prime."""
def __init__( self, p, a, b ):
"""The curve of points satisfying y^2 = x^3 + a*x + b (mod p)."""
self.__p = p
self.__a = a
self.__b = b
def p( self ):
return self.__p
def a( self ):
return self.__a
def b( self ):
return self.__b
def contains_point( self, x, y ):
"""Is the point (x,y) on this curve?"""
return ( y * y - ( x * x * x + self.__a * x + self.__b ) ) % self.__p == 0
class Point( object ):
"""A point on an elliptic curve. Altering x and y is forbidding,
but they can be read by the x() and y() methods."""
def __init__( self, curve, x, y, order = None ):
"""curve, x, y, order; order (optional) is the order of this point."""
self.__curve = curve
self.__x = x
self.__y = y
self.__order = order
# self.curve is allowed to be None only for INFINITY:
if self.__curve: assert self.__curve.contains_point( x, y )
if order: assert self * order == INFINITY
def __eq__( self, other ):
"""Return True if the points are identical, False otherwise."""
if self.__curve == other.__curve \
and self.__x == other.__x \
and self.__y == other.__y:
return True
else:
return False
def __add__( self, other ):
"""Add one point to another point."""
# X9.62 B.3:
if other == INFINITY: return self
if self == INFINITY: return other
assert self.__curve == other.__curve
if self.__x == other.__x:
if ( self.__y + other.__y ) % self.__curve.p() == 0:
return INFINITY
else:
return self.double()
p = self.__curve.p()
l = ( ( other.__y - self.__y ) * \
numbertheory.inverse_mod( other.__x - self.__x, p ) ) % p
x3 = ( l * l - self.__x - other.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def __mul__( self, other ):
"""Multiply a point by an integer."""
def leftmost_bit( x ):
assert x > 0
result = 1
while result <= x: result = 2 * result
return result // 2
e = other
if self.__order: e = e % self.__order
if e == 0: return INFINITY
if self == INFINITY: return INFINITY
assert e > 0
# From X9.62 D.3.2:
e3 = 3 * e
negative_self = Point( self.__curve, self.__x, -self.__y, self.__order )
i = leftmost_bit( e3 ) // 2
result = self
# print_("Multiplying %s by %d (e3 = %d):" % ( self, other, e3 ))
while i > 1:
result = result.double()
if ( e3 & i ) != 0 and ( e & i ) == 0: result = result + self
if ( e3 & i ) == 0 and ( e & i ) != 0: result = result + negative_self
# print_(". . . i = %d, result = %s" % ( i, result ))
i = i // 2
return result
def __rmul__( self, other ):
"""Multiply a point by an integer."""
return self * other
def __str__( self ):
if self == INFINITY: return "infinity"
return "(%d,%d)" % ( self.__x, self.__y )
def double( self ):
"""Return a new point that is twice the old."""
if self == INFINITY:
return INFINITY
# X9.62 B.3:
p = self.__curve.p()
a = self.__curve.a()
l = ( ( 3 * self.__x * self.__x + a ) * \
numbertheory.inverse_mod( 2 * self.__y, p ) ) % p
x3 = ( l * l - 2 * self.__x ) % p
y3 = ( l * ( self.__x - x3 ) - self.__y ) % p
return Point( self.__curve, x3, y3 )
def x( self ):
return self.__x
def y( self ):
return self.__y
def curve( self ):
return self.__curve
def order( self ):
return self.__order
# This one point is the Point At Infinity for all purposes:
INFINITY = Point( None, None, None )
def __main__():
class FailedTest(Exception): pass
def test_add( c, x1, y1, x2, y2, x3, y3 ):
"""We expect that on curve c, (x1,y1) + (x2, y2 ) = (x3, y3)."""
p1 = Point( c, x1, y1 )
p2 = Point( c, x2, y2 )
p3 = p1 + p2
print_("%s + %s = %s" % ( p1, p2, p3 ), end=' ')
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print_(" Good.")
def test_double( c, x1, y1, x3, y3 ):
"""We expect that on curve c, 2*(x1,y1) = (x3, y3)."""
p1 = Point( c, x1, y1 )
p3 = p1.double()
print_("%s doubled = %s" % ( p1, p3 ), end=' ')
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print_(" Good.")
def test_double_infinity( c ):
"""We expect that on curve c, 2*INFINITY = INFINITY."""
p1 = INFINITY
p3 = p1.double()
print_("%s doubled = %s" % ( p1, p3 ), end=' ')
if p3.x() != INFINITY.x() or p3.y() != INFINITY.y():
raise FailedTest("Failure: should give (%d,%d)." % ( INFINITY.x(), INFINITY.y() ))
else:
print_(" Good.")
def test_multiply( c, x1, y1, m, x3, y3 ):
"""We expect that on curve c, m*(x1,y1) = (x3,y3)."""
p1 = Point( c, x1, y1 )
p3 = p1 * m
print_("%s * %d = %s" % ( p1, m, p3 ), end=' ')
if p3.x() != x3 or p3.y() != y3:
raise FailedTest("Failure: should give (%d,%d)." % ( x3, y3 ))
else:
print_(" Good.")
# A few tests from X9.62 B.3:
c = CurveFp( 23, 1, 1 )
test_add( c, 3, 10, 9, 7, 17, 20 )
test_double( c, 3, 10, 7, 12 )
test_add( c, 3, 10, 3, 10, 7, 12 ) # (Should just invoke double.)
test_multiply( c, 3, 10, 2, 7, 12 )
test_double_infinity(c)
# From X9.62 I.1 (p. 96):
g = Point( c, 13, 7, 7 )
check = INFINITY
for i in range( 7 + 1 ):
p = ( i % 7 ) * g
print_("%s * %d = %s, expected %s . . ." % ( g, i, p, check ), end=' ')
if p == check:
print_(" Good.")
else:
raise FailedTest("Bad.")
check = check + g
# NIST Curve P-192:
p = 6277101735386680763835789423207666416083908700390324961279
r = 6277101735386680763835789423176059013767194773182842284081
#s = 0x3045ae6fc8422f64ed579528d38120eae12196d5L
c = 0x3099d2bbbfcb2538542dcd5fb078b6ef5f3d6fe2c745de65
b = 0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
Gx = 0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
Gy = 0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811
c192 = CurveFp( p, -3, b )
p192 = Point( c192, Gx, Gy, r )
# Checking against some sample computations presented
# in X9.62:
d = 651056770906015076056810763456358567190100156695615665659
Q = d * p192
if Q.x() != 0x62B12D60690CDCF330BABAB6E69763B471F994DD702D16A5:
raise FailedTest("p192 * d came out wrong.")
else:
print_("p192 * d came out right.")
k = 6140507067065001063065065565667405560006161556565665656654
R = k * p192
if R.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
or R.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
raise FailedTest("k * p192 came out wrong.")
else:
print_("k * p192 came out right.")
u1 = 2563697409189434185194736134579731015366492496392189760599
u2 = 6266643813348617967186477710235785849136406323338782220568
temp = u1 * p192 + u2 * Q
if temp.x() != 0x885052380FF147B734C330C43D39B2C4A89F29B0F749FEAD \
or temp.y() != 0x9CF9FA1CBEFEFB917747A3BB29C072B9289C2547884FD835:
raise FailedTest("u1 * p192 + u2 * Q came out wrong.")
else:
print_("u1 * p192 + u2 * Q came out right.")
if __name__ == "__main__":
__main__()

283
bin/python/ecdsa/keys.py Normal file
View File

@@ -0,0 +1,283 @@
import binascii
from . import ecdsa
from . import der
from . import rfc6979
from .curves import NIST192p, find_curve
from .util import string_to_number, number_to_string, randrange
from .util import sigencode_string, sigdecode_string
from .util import oid_ecPublicKey, encoded_oid_ecPublicKey
from .six import PY3, b
from hashlib import sha1
class BadSignatureError(Exception):
pass
class BadDigestError(Exception):
pass
class VerifyingKey:
def __init__(self, _error__please_use_generate=None):
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
@classmethod
def from_public_point(klass, point, curve=NIST192p, hashfunc=sha1):
self = klass(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.pubkey = ecdsa.Public_key(curve.generator, point)
self.pubkey.order = curve.order
return self
@classmethod
def from_string(klass, string, curve=NIST192p, hashfunc=sha1,
validate_point=True):
order = curve.order
assert len(string) == curve.verifying_key_length, \
(len(string), curve.verifying_key_length)
xs = string[:curve.baselen]
ys = string[curve.baselen:]
assert len(xs) == curve.baselen, (len(xs), curve.baselen)
assert len(ys) == curve.baselen, (len(ys), curve.baselen)
x = string_to_number(xs)
y = string_to_number(ys)
if validate_point:
assert ecdsa.point_is_valid(curve.generator, x, y)
from . import ellipticcurve
point = ellipticcurve.Point(curve.curve, x, y, order)
return klass.from_public_point(point, curve, hashfunc)
@classmethod
def from_pem(klass, string):
return klass.from_der(der.unpem(string))
@classmethod
def from_der(klass, string):
# [[oid_ecPublicKey,oid_curve], point_str_bitstring]
s1,empty = der.remove_sequence(string)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER pubkey: %s" %
binascii.hexlify(empty))
s2,point_str_bitstring = der.remove_sequence(s1)
# s2 = oid_ecPublicKey,oid_curve
oid_pk, rest = der.remove_object(s2)
oid_curve, empty = der.remove_object(rest)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER pubkey objects: %s" %
binascii.hexlify(empty))
assert oid_pk == oid_ecPublicKey, (oid_pk, oid_ecPublicKey)
curve = find_curve(oid_curve)
point_str, empty = der.remove_bitstring(point_str_bitstring)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after pubkey pointstring: %s" %
binascii.hexlify(empty))
assert point_str.startswith(b("\x00\x04"))
return klass.from_string(point_str[2:], curve)
def to_string(self):
# VerifyingKey.from_string(vk.to_string()) == vk as long as the
# curves are the same: the curve itself is not included in the
# serialized form
order = self.pubkey.order
x_str = number_to_string(self.pubkey.point.x(), order)
y_str = number_to_string(self.pubkey.point.y(), order)
return x_str + y_str
def to_pem(self):
return der.topem(self.to_der(), "PUBLIC KEY")
def to_der(self):
order = self.pubkey.order
x_str = number_to_string(self.pubkey.point.x(), order)
y_str = number_to_string(self.pubkey.point.y(), order)
point_str = b("\x00\x04") + x_str + y_str
return der.encode_sequence(der.encode_sequence(encoded_oid_ecPublicKey,
self.curve.encoded_oid),
der.encode_bitstring(point_str))
def verify(self, signature, data, hashfunc=None, sigdecode=sigdecode_string):
hashfunc = hashfunc or self.default_hashfunc
digest = hashfunc(data).digest()
return self.verify_digest(signature, digest, sigdecode)
def verify_digest(self, signature, digest, sigdecode=sigdecode_string):
if len(digest) > self.curve.baselen:
raise BadDigestError("this curve (%s) is too short "
"for your digest (%d)" % (self.curve.name,
8*len(digest)))
number = string_to_number(digest)
r, s = sigdecode(signature, self.pubkey.order)
sig = ecdsa.Signature(r, s)
if self.pubkey.verifies(number, sig):
return True
raise BadSignatureError
class SigningKey:
def __init__(self, _error__please_use_generate=None):
if not _error__please_use_generate:
raise TypeError("Please use SigningKey.generate() to construct me")
@classmethod
def generate(klass, curve=NIST192p, entropy=None, hashfunc=sha1):
secexp = randrange(curve.order, entropy)
return klass.from_secret_exponent(secexp, curve, hashfunc)
# to create a signing key from a short (arbitrary-length) seed, convert
# that seed into an integer with something like
# secexp=util.randrange_from_seed__X(seed, curve.order), and then pass
# that integer into SigningKey.from_secret_exponent(secexp, curve)
@classmethod
def from_secret_exponent(klass, secexp, curve=NIST192p, hashfunc=sha1):
self = klass(_error__please_use_generate=True)
self.curve = curve
self.default_hashfunc = hashfunc
self.baselen = curve.baselen
n = curve.order
assert 1 <= secexp < n
pubkey_point = curve.generator*secexp
pubkey = ecdsa.Public_key(curve.generator, pubkey_point)
pubkey.order = n
self.verifying_key = VerifyingKey.from_public_point(pubkey_point, curve,
hashfunc)
self.privkey = ecdsa.Private_key(pubkey, secexp)
self.privkey.order = n
return self
@classmethod
def from_string(klass, string, curve=NIST192p, hashfunc=sha1):
assert len(string) == curve.baselen, (len(string), curve.baselen)
secexp = string_to_number(string)
return klass.from_secret_exponent(secexp, curve, hashfunc)
@classmethod
def from_pem(klass, string, hashfunc=sha1):
# the privkey pem file has two sections: "EC PARAMETERS" and "EC
# PRIVATE KEY". The first is redundant.
if PY3 and isinstance(string, str):
string = string.encode()
privkey_pem = string[string.index(b("-----BEGIN EC PRIVATE KEY-----")):]
return klass.from_der(der.unpem(privkey_pem), hashfunc)
@classmethod
def from_der(klass, string, hashfunc=sha1):
# SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
# cont[1],bitstring])
s, empty = der.remove_sequence(string)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER privkey: %s" %
binascii.hexlify(empty))
one, s = der.remove_integer(s)
if one != 1:
raise der.UnexpectedDER("expected '1' at start of DER privkey,"
" got %d" % one)
privkey_str, s = der.remove_octet_string(s)
tag, curve_oid_str, s = der.remove_constructed(s)
if tag != 0:
raise der.UnexpectedDER("expected tag 0 in DER privkey,"
" got %d" % tag)
curve_oid, empty = der.remove_object(curve_oid_str)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER privkey "
"curve_oid: %s" % binascii.hexlify(empty))
curve = find_curve(curve_oid)
# we don't actually care about the following fields
#
#tag, pubkey_bitstring, s = der.remove_constructed(s)
#if tag != 1:
# raise der.UnexpectedDER("expected tag 1 in DER privkey, got %d"
# % tag)
#pubkey_str = der.remove_bitstring(pubkey_bitstring)
#if empty != "":
# raise der.UnexpectedDER("trailing junk after DER privkey "
# "pubkeystr: %s" % binascii.hexlify(empty))
# our from_string method likes fixed-length privkey strings
if len(privkey_str) < curve.baselen:
privkey_str = b("\x00")*(curve.baselen-len(privkey_str)) + privkey_str
return klass.from_string(privkey_str, curve, hashfunc)
def to_string(self):
secexp = self.privkey.secret_multiplier
s = number_to_string(secexp, self.privkey.order)
return s
def to_pem(self):
# TODO: "BEGIN ECPARAMETERS"
return der.topem(self.to_der(), "EC PRIVATE KEY")
def to_der(self):
# SEQ([int(1), octetstring(privkey),cont[0], oid(secp224r1),
# cont[1],bitstring])
encoded_vk = b("\x00\x04") + self.get_verifying_key().to_string()
return der.encode_sequence(der.encode_integer(1),
der.encode_octet_string(self.to_string()),
der.encode_constructed(0, self.curve.encoded_oid),
der.encode_constructed(1, der.encode_bitstring(encoded_vk)),
)
def get_verifying_key(self):
return self.verifying_key
def sign_deterministic(self, data, hashfunc=None, sigencode=sigencode_string):
hashfunc = hashfunc or self.default_hashfunc
digest = hashfunc(data).digest()
return self.sign_digest_deterministic(digest, hashfunc=hashfunc, sigencode=sigencode)
def sign_digest_deterministic(self, digest, hashfunc=None, sigencode=sigencode_string):
"""
Calculates 'k' from data itself, removing the need for strong
random generator and producing deterministic (reproducible) signatures.
See RFC 6979 for more details.
"""
secexp = self.privkey.secret_multiplier
k = rfc6979.generate_k(
self.curve.generator.order(), secexp, hashfunc, digest)
return self.sign_digest(digest, sigencode=sigencode, k=k)
def sign(self, data, entropy=None, hashfunc=None, sigencode=sigencode_string, k=None):
"""
hashfunc= should behave like hashlib.sha1 . The output length of the
hash (in bytes) must not be longer than the length of the curve order
(rounded up to the nearest byte), so using SHA256 with nist256p is
ok, but SHA256 with nist192p is not. (In the 2**-96ish unlikely event
of a hash output larger than the curve order, the hash will
effectively be wrapped mod n).
Use hashfunc=hashlib.sha1 to match openssl's -ecdsa-with-SHA1 mode,
or hashfunc=hashlib.sha256 for openssl-1.0.0's -ecdsa-with-SHA256.
"""
hashfunc = hashfunc or self.default_hashfunc
h = hashfunc(data).digest()
return self.sign_digest(h, entropy, sigencode, k)
def sign_digest(self, digest, entropy=None, sigencode=sigencode_string, k=None):
if len(digest) > self.curve.baselen:
raise BadDigestError("this curve (%s) is too short "
"for your digest (%d)" % (self.curve.name,
8*len(digest)))
number = string_to_number(digest)
r, s = self.sign_number(number, entropy, k)
return sigencode(r, s, self.privkey.order)
def sign_number(self, number, entropy=None, k=None):
# returns a pair of numbers
order = self.privkey.order
# privkey.sign() may raise RuntimeError in the amazingly unlikely
# (2**-192) event that r=0 or s=0, because that would leak the key.
# We could re-try with a different 'k', but we couldn't test that
# code, so I choose to allow the signature to fail instead.
# If k is set, it is used directly. In other cases
# it is generated using entropy function
if k is not None:
_k = k
else:
_k = randrange(order, entropy)
assert 1 <= _k < order
sig = self.privkey.sign(number, _k)
return sig.r, sig.s

View File

@@ -0,0 +1,613 @@
#! /usr/bin/env python
#
# Provide some simple capabilities from number theory.
#
# Version of 2008.11.14.
#
# Written in 2005 and 2006 by Peter Pearson and placed in the public domain.
# Revision history:
# 2008.11.14: Use pow( base, exponent, modulus ) for modular_exp.
# Make gcd and lcm accept arbitrarly many arguments.
from __future__ import division
from .six import print_, integer_types
from .six.moves import reduce
import math
class Error( Exception ):
"""Base class for exceptions in this module."""
pass
class SquareRootError( Error ):
pass
class NegativeExponentError( Error ):
pass
def modular_exp( base, exponent, modulus ):
"Raise base to exponent, reducing by modulus"
if exponent < 0:
raise NegativeExponentError( "Negative exponents (%d) not allowed" \
% exponent )
return pow( base, exponent, modulus )
# result = 1L
# x = exponent
# b = base + 0L
# while x > 0:
# if x % 2 > 0: result = (result * b) % modulus
# x = x // 2
# b = ( b * b ) % modulus
# return result
def polynomial_reduce_mod( poly, polymod, p ):
"""Reduce poly by polymod, integer arithmetic modulo p.
Polynomials are represented as lists of coefficients
of increasing powers of x."""
# This module has been tested only by extensive use
# in calculating modular square roots.
# Just to make this easy, require a monic polynomial:
assert polymod[-1] == 1
assert len( polymod ) > 1
while len( poly ) >= len( polymod ):
if poly[-1] != 0:
for i in range( 2, len( polymod ) + 1 ):
poly[-i] = ( poly[-i] - poly[-1] * polymod[-i] ) % p
poly = poly[0:-1]
return poly
def polynomial_multiply_mod( m1, m2, polymod, p ):
"""Polynomial multiplication modulo a polynomial over ints mod p.
Polynomials are represented as lists of coefficients
of increasing powers of x."""
# This is just a seat-of-the-pants implementation.
# This module has been tested only by extensive use
# in calculating modular square roots.
# Initialize the product to zero:
prod = ( len( m1 ) + len( m2 ) - 1 ) * [0]
# Add together all the cross-terms:
for i in range( len( m1 ) ):
for j in range( len( m2 ) ):
prod[i+j] = ( prod[i+j] + m1[i] * m2[j] ) % p
return polynomial_reduce_mod( prod, polymod, p )
def polynomial_exp_mod( base, exponent, polymod, p ):
"""Polynomial exponentiation modulo a polynomial over ints mod p.
Polynomials are represented as lists of coefficients
of increasing powers of x."""
# Based on the Handbook of Applied Cryptography, algorithm 2.227.
# This module has been tested only by extensive use
# in calculating modular square roots.
assert exponent < p
if exponent == 0: return [ 1 ]
G = base
k = exponent
if k%2 == 1: s = G
else: s = [ 1 ]
while k > 1:
k = k // 2
G = polynomial_multiply_mod( G, G, polymod, p )
if k%2 == 1: s = polynomial_multiply_mod( G, s, polymod, p )
return s
def jacobi( a, n ):
"""Jacobi symbol"""
# Based on the Handbook of Applied Cryptography (HAC), algorithm 2.149.
# This function has been tested by comparison with a small
# table printed in HAC, and by extensive use in calculating
# modular square roots.
assert n >= 3
assert n%2 == 1
a = a % n
if a == 0: return 0
if a == 1: return 1
a1, e = a, 0
while a1%2 == 0:
a1, e = a1//2, e+1
if e%2 == 0 or n%8 == 1 or n%8 == 7: s = 1
else: s = -1
if a1 == 1: return s
if n%4 == 3 and a1%4 == 3: s = -s
return s * jacobi( n % a1, a1 )
def square_root_mod_prime( a, p ):
"""Modular square root of a, mod p, p prime."""
# Based on the Handbook of Applied Cryptography, algorithms 3.34 to 3.39.
# This module has been tested for all values in [0,p-1] for
# every prime p from 3 to 1229.
assert 0 <= a < p
assert 1 < p
if a == 0: return 0
if p == 2: return a
jac = jacobi( a, p )
if jac == -1: raise SquareRootError( "%d has no square root modulo %d" \
% ( a, p ) )
if p % 4 == 3: return modular_exp( a, (p+1)//4, p )
if p % 8 == 5:
d = modular_exp( a, (p-1)//4, p )
if d == 1: return modular_exp( a, (p+3)//8, p )
if d == p-1: return ( 2 * a * modular_exp( 4*a, (p-5)//8, p ) ) % p
raise RuntimeError("Shouldn't get here.")
for b in range( 2, p ):
if jacobi( b*b-4*a, p ) == -1:
f = ( a, -b, 1 )
ff = polynomial_exp_mod( ( 0, 1 ), (p+1)//2, f, p )
assert ff[1] == 0
return ff[0]
raise RuntimeError("No b found.")
def inverse_mod( a, m ):
"""Inverse of a mod m."""
if a < 0 or m <= a: a = a % m
# From Ferguson and Schneier, roughly:
c, d = a, m
uc, vc, ud, vd = 1, 0, 0, 1
while c != 0:
q, c, d = divmod( d, c ) + ( c, )
uc, vc, ud, vd = ud - q*uc, vd - q*vc, uc, vc
# At this point, d is the GCD, and ud*a+vd*m = d.
# If d == 1, this means that ud is a inverse.
assert d == 1
if ud > 0: return ud
else: return ud + m
def gcd2(a, b):
"""Greatest common divisor using Euclid's algorithm."""
while a:
a, b = b%a, a
return b
def gcd( *a ):
"""Greatest common divisor.
Usage: gcd( [ 2, 4, 6 ] )
or: gcd( 2, 4, 6 )
"""
if len( a ) > 1: return reduce( gcd2, a )
if hasattr( a[0], "__iter__" ): return reduce( gcd2, a[0] )
return a[0]
def lcm2(a,b):
"""Least common multiple of two integers."""
return (a*b)//gcd(a,b)
def lcm( *a ):
"""Least common multiple.
Usage: lcm( [ 3, 4, 5 ] )
or: lcm( 3, 4, 5 )
"""
if len( a ) > 1: return reduce( lcm2, a )
if hasattr( a[0], "__iter__" ): return reduce( lcm2, a[0] )
return a[0]
def factorization( n ):
"""Decompose n into a list of (prime,exponent) pairs."""
assert isinstance( n, integer_types )
if n < 2: return []
result = []
d = 2
# Test the small primes:
for d in smallprimes:
if d > n: break
q, r = divmod( n, d )
if r == 0:
count = 1
while d <= n:
n = q
q, r = divmod( n, d )
if r != 0: break
count = count + 1
result.append( ( d, count ) )
# If n is still greater than the last of our small primes,
# it may require further work:
if n > smallprimes[-1]:
if is_prime( n ): # If what's left is prime, it's easy:
result.append( ( n, 1 ) )
else: # Ugh. Search stupidly for a divisor:
d = smallprimes[-1]
while 1:
d = d + 2 # Try the next divisor.
q, r = divmod( n, d )
if q < d: break # n < d*d means we're done, n = 1 or prime.
if r == 0: # d divides n. How many times?
count = 1
n = q
while d <= n: # As long as d might still divide n,
q, r = divmod( n, d ) # see if it does.
if r != 0: break
n = q # It does. Reduce n, increase count.
count = count + 1
result.append( ( d, count ) )
if n > 1: result.append( ( n, 1 ) )
return result
def phi( n ):
"""Return the Euler totient function of n."""
assert isinstance( n, integer_types )
if n < 3: return 1
result = 1
ff = factorization( n )
for f in ff:
e = f[1]
if e > 1:
result = result * f[0] ** (e-1) * ( f[0] - 1 )
else:
result = result * ( f[0] - 1 )
return result
def carmichael( n ):
"""Return Carmichael function of n.
Carmichael(n) is the smallest integer x such that
m**x = 1 mod n for all m relatively prime to n.
"""
return carmichael_of_factorized( factorization( n ) )
def carmichael_of_factorized( f_list ):
"""Return the Carmichael function of a number that is
represented as a list of (prime,exponent) pairs.
"""
if len( f_list ) < 1: return 1
result = carmichael_of_ppower( f_list[0] )
for i in range( 1, len( f_list ) ):
result = lcm( result, carmichael_of_ppower( f_list[i] ) )
return result
def carmichael_of_ppower( pp ):
"""Carmichael function of the given power of the given prime.
"""
p, a = pp
if p == 2 and a > 2: return 2**(a-2)
else: return (p-1) * p**(a-1)
def order_mod( x, m ):
"""Return the order of x in the multiplicative group mod m.
"""
# Warning: this implementation is not very clever, and will
# take a long time if m is very large.
if m <= 1: return 0
assert gcd( x, m ) == 1
z = x
result = 1
while z != 1:
z = ( z * x ) % m
result = result + 1
return result
def largest_factor_relatively_prime( a, b ):
"""Return the largest factor of a relatively prime to b.
"""
while 1:
d = gcd( a, b )
if d <= 1: break
b = d
while 1:
q, r = divmod( a, d )
if r > 0:
break
a = q
return a
def kinda_order_mod( x, m ):
"""Return the order of x in the multiplicative group mod m',
where m' is the largest factor of m relatively prime to x.
"""
return order_mod( x, largest_factor_relatively_prime( m, x ) )
def is_prime( n ):
"""Return True if x is prime, False otherwise.
We use the Miller-Rabin test, as given in Menezes et al. p. 138.
This test is not exact: there are composite values n for which
it returns True.
In testing the odd numbers from 10000001 to 19999999,
about 66 composites got past the first test,
5 got past the second test, and none got past the third.
Since factors of 2, 3, 5, 7, and 11 were detected during
preliminary screening, the number of numbers tested by
Miller-Rabin was (19999999 - 10000001)*(2/3)*(4/5)*(6/7)
= 4.57 million.
"""
# (This is used to study the risk of false positives:)
global miller_rabin_test_count
miller_rabin_test_count = 0
if n <= smallprimes[-1]:
if n in smallprimes: return True
else: return False
if gcd( n, 2*3*5*7*11 ) != 1: return False
# Choose a number of iterations sufficient to reduce the
# probability of accepting a composite below 2**-80
# (from Menezes et al. Table 4.4):
t = 40
n_bits = 1 + int( math.log( n, 2 ) )
for k, tt in ( ( 100, 27 ),
( 150, 18 ),
( 200, 15 ),
( 250, 12 ),
( 300, 9 ),
( 350, 8 ),
( 400, 7 ),
( 450, 6 ),
( 550, 5 ),
( 650, 4 ),
( 850, 3 ),
( 1300, 2 ),
):
if n_bits < k: break
t = tt
# Run the test t times:
s = 0
r = n - 1
while ( r % 2 ) == 0:
s = s + 1
r = r // 2
for i in range( t ):
a = smallprimes[ i ]
y = modular_exp( a, r, n )
if y != 1 and y != n-1:
j = 1
while j <= s - 1 and y != n - 1:
y = modular_exp( y, 2, n )
if y == 1:
miller_rabin_test_count = i + 1
return False
j = j + 1
if y != n-1:
miller_rabin_test_count = i + 1
return False
return True
def next_prime( starting_value ):
"Return the smallest prime larger than the starting value."
if starting_value < 2: return 2
result = ( starting_value + 1 ) | 1
while not is_prime( result ): result = result + 2
return result
smallprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,
43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
151, 157, 163, 167, 173, 179, 181, 191, 193, 197,
199, 211, 223, 227, 229, 233, 239, 241, 251, 257,
263, 269, 271, 277, 281, 283, 293, 307, 311, 313,
317, 331, 337, 347, 349, 353, 359, 367, 373, 379,
383, 389, 397, 401, 409, 419, 421, 431, 433, 439,
443, 449, 457, 461, 463, 467, 479, 487, 491, 499,
503, 509, 521, 523, 541, 547, 557, 563, 569, 571,
577, 587, 593, 599, 601, 607, 613, 617, 619, 631,
641, 643, 647, 653, 659, 661, 673, 677, 683, 691,
701, 709, 719, 727, 733, 739, 743, 751, 757, 761,
769, 773, 787, 797, 809, 811, 821, 823, 827, 829,
839, 853, 857, 859, 863, 877, 881, 883, 887, 907,
911, 919, 929, 937, 941, 947, 953, 967, 971, 977,
983, 991, 997, 1009, 1013, 1019, 1021, 1031, 1033,
1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093,
1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163,
1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229]
miller_rabin_test_count = 0
def __main__():
# Making sure locally defined exceptions work:
# p = modular_exp( 2, -2, 3 )
# p = square_root_mod_prime( 2, 3 )
print_("Testing gcd...")
assert gcd( 3*5*7, 3*5*11, 3*5*13 ) == 3*5
assert gcd( [ 3*5*7, 3*5*11, 3*5*13 ] ) == 3*5
assert gcd( 3 ) == 3
print_("Testing lcm...")
assert lcm( 3, 5*3, 7*3 ) == 3*5*7
assert lcm( [ 3, 5*3, 7*3 ] ) == 3*5*7
assert lcm( 3 ) == 3
print_("Testing next_prime...")
bigprimes = ( 999671,
999683,
999721,
999727,
999749,
999763,
999769,
999773,
999809,
999853,
999863,
999883,
999907,
999917,
999931,
999953,
999959,
999961,
999979,
999983 )
for i in range( len( bigprimes ) - 1 ):
assert next_prime( bigprimes[i] ) == bigprimes[ i+1 ]
error_tally = 0
# Test the square_root_mod_prime function:
for p in smallprimes:
print_("Testing square_root_mod_prime for modulus p = %d." % p)
squares = []
for root in range( 0, 1+p//2 ):
sq = ( root * root ) % p
squares.append( sq )
calculated = square_root_mod_prime( sq, p )
if ( calculated * calculated ) % p != sq:
error_tally = error_tally + 1
print_("Failed to find %d as sqrt( %d ) mod %d. Said %d." % \
( root, sq, p, calculated ))
for nonsquare in range( 0, p ):
if nonsquare not in squares:
try:
calculated = square_root_mod_prime( nonsquare, p )
except SquareRootError:
pass
else:
error_tally = error_tally + 1
print_("Failed to report no root for sqrt( %d ) mod %d." % \
( nonsquare, p ))
# Test the jacobi function:
for m in range( 3, 400, 2 ):
print_("Testing jacobi for modulus m = %d." % m)
if is_prime( m ):
squares = []
for root in range( 1, m ):
if jacobi( root * root, m ) != 1:
error_tally = error_tally + 1
print_("jacobi( %d * %d, %d ) != 1" % ( root, root, m ))
squares.append( root * root % m )
for i in range( 1, m ):
if not i in squares:
if jacobi( i, m ) != -1:
error_tally = error_tally + 1
print_("jacobi( %d, %d ) != -1" % ( i, m ))
else: # m is not prime.
f = factorization( m )
for a in range( 1, m ):
c = 1
for i in f:
c = c * jacobi( a, i[0] ) ** i[1]
if c != jacobi( a, m ):
error_tally = error_tally + 1
print_("%d != jacobi( %d, %d )" % ( c, a, m ))
# Test the inverse_mod function:
print_("Testing inverse_mod . . .")
import random
n_tests = 0
for i in range( 100 ):
m = random.randint( 20, 10000 )
for j in range( 100 ):
a = random.randint( 1, m-1 )
if gcd( a, m ) == 1:
n_tests = n_tests + 1
inv = inverse_mod( a, m )
if inv <= 0 or inv >= m or ( a * inv ) % m != 1:
error_tally = error_tally + 1
print_("%d = inverse_mod( %d, %d ) is wrong." % ( inv, a, m ))
assert n_tests > 1000
print_(n_tests, " tests of inverse_mod completed.")
class FailedTest(Exception): pass
print_(error_tally, "errors detected.")
if error_tally != 0:
raise FailedTest("%d errors detected" % error_tally)
if __name__ == '__main__':
__main__()

103
bin/python/ecdsa/rfc6979.py Normal file
View File

@@ -0,0 +1,103 @@
'''
RFC 6979:
Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA)
http://tools.ietf.org/html/rfc6979
Many thanks to Coda Hale for his implementation in Go language:
https://github.com/codahale/rfc6979
'''
import hmac
from binascii import hexlify
from .util import number_to_string, number_to_string_crop
from .six import b
try:
bin(0)
except NameError:
binmap = {"0": "0000", "1": "0001", "2": "0010", "3": "0011",
"4": "0100", "5": "0101", "6": "0110", "7": "0111",
"8": "1000", "9": "1001", "a": "1010", "b": "1011",
"c": "1100", "d": "1101", "e": "1110", "f": "1111"}
def bin(value): # for python2.5
v = "".join(binmap[x] for x in "%x"%abs(value)).lstrip("0")
if value < 0:
return "-0b" + v
return "0b" + v
def bit_length(num):
# http://docs.python.org/dev/library/stdtypes.html#int.bit_length
s = bin(num) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') --> 6
def bits2int(data, qlen):
x = int(hexlify(data), 16)
l = len(data) * 8
if l > qlen:
return x >> (l-qlen)
return x
def bits2octets(data, order):
z1 = bits2int(data, bit_length(order))
z2 = z1 - order
if z2 < 0:
z2 = z1
return number_to_string_crop(z2, order)
# https://tools.ietf.org/html/rfc6979#section-3.2
def generate_k(order, secexp, hash_func, data):
'''
generator - order of the DSA generator used in the signature
secexp - secure exponent (private key) in numeric form
hash_func - reference to the same hash function used for generating hash
data - hash in binary form of the signing data
'''
qlen = bit_length(order)
holen = hash_func().digest_size
rolen = (qlen + 7) / 8
bx = number_to_string(secexp, order) + bits2octets(data, order)
# Step B
v = b('\x01') * holen
# Step C
k = b('\x00') * holen
# Step D
k = hmac.new(k, v+b('\x00')+bx, hash_func).digest()
# Step E
v = hmac.new(k, v, hash_func).digest()
# Step F
k = hmac.new(k, v+b('\x01')+bx, hash_func).digest()
# Step G
v = hmac.new(k, v, hash_func).digest()
# Step H
while True:
# Step H1
t = b('')
# Step H2
while len(t) < rolen:
v = hmac.new(k, v, hash_func).digest()
t += v
# Step H3
secret = bits2int(t, qlen)
if secret >= 1 and secret < order:
return secret
k = hmac.new(k, v+b('\x00'), hash_func).digest()
v = hmac.new(k, v, hash_func).digest()

394
bin/python/ecdsa/six.py Normal file
View File

@@ -0,0 +1,394 @@
"""Utilities for writing code that runs on Python 2 and 3"""
# Copyright (c) 2010-2012 Benjamin Peterson
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
import operator
import sys
import types
__author__ = "Benjamin Peterson <benjamin@python.org>"
__version__ = "1.2.0"
# True if we are running on Python 3.
PY3 = sys.version_info[0] == 3
if PY3:
string_types = str,
integer_types = int,
class_types = type,
text_type = str
binary_type = bytes
MAXSIZE = sys.maxsize
else:
string_types = basestring,
integer_types = (int, long)
class_types = (type, types.ClassType)
text_type = unicode
binary_type = str
if sys.platform.startswith("java"):
# Jython always uses 32 bits.
MAXSIZE = int((1 << 31) - 1)
else:
# It's possible to have sizeof(long) != sizeof(Py_ssize_t).
class X(object):
def __len__(self):
return 1 << 31
try:
len(X())
except OverflowError:
# 32-bit
MAXSIZE = int((1 << 31) - 1)
else:
# 64-bit
MAXSIZE = int((1 << 63) - 1)
del X
def _add_doc(func, doc):
"""Add documentation to a function."""
func.__doc__ = doc
def _import_module(name):
"""Import module, returning the module after the last dot."""
__import__(name)
return sys.modules[name]
class _LazyDescr(object):
def __init__(self, name):
self.name = name
def __get__(self, obj, tp):
result = self._resolve()
setattr(obj, self.name, result)
# This is a bit ugly, but it avoids running this again.
delattr(tp, self.name)
return result
class MovedModule(_LazyDescr):
def __init__(self, name, old, new=None):
super(MovedModule, self).__init__(name)
if PY3:
if new is None:
new = name
self.mod = new
else:
self.mod = old
def _resolve(self):
return _import_module(self.mod)
class MovedAttribute(_LazyDescr):
def __init__(self, name, old_mod, new_mod, old_attr=None, new_attr=None):
super(MovedAttribute, self).__init__(name)
if PY3:
if new_mod is None:
new_mod = name
self.mod = new_mod
if new_attr is None:
if old_attr is None:
new_attr = name
else:
new_attr = old_attr
self.attr = new_attr
else:
self.mod = old_mod
if old_attr is None:
old_attr = name
self.attr = old_attr
def _resolve(self):
module = _import_module(self.mod)
return getattr(module, self.attr)
class _MovedItems(types.ModuleType):
"""Lazy loading of moved objects"""
_moved_attributes = [
MovedAttribute("cStringIO", "cStringIO", "io", "StringIO"),
MovedAttribute("filter", "itertools", "builtins", "ifilter", "filter"),
MovedAttribute("input", "__builtin__", "builtins", "raw_input", "input"),
MovedAttribute("map", "itertools", "builtins", "imap", "map"),
MovedAttribute("reload_module", "__builtin__", "imp", "reload"),
MovedAttribute("reduce", "__builtin__", "functools"),
MovedAttribute("StringIO", "StringIO", "io"),
MovedAttribute("xrange", "__builtin__", "builtins", "xrange", "range"),
MovedAttribute("zip", "itertools", "builtins", "izip", "zip"),
MovedModule("builtins", "__builtin__"),
MovedModule("configparser", "ConfigParser"),
MovedModule("copyreg", "copy_reg"),
MovedModule("http_cookiejar", "cookielib", "http.cookiejar"),
MovedModule("http_cookies", "Cookie", "http.cookies"),
MovedModule("html_entities", "htmlentitydefs", "html.entities"),
MovedModule("html_parser", "HTMLParser", "html.parser"),
MovedModule("http_client", "httplib", "http.client"),
MovedModule("email_mime_multipart", "email.MIMEMultipart", "email.mime.multipart"),
MovedModule("email_mime_text", "email.MIMEText", "email.mime.text"),
MovedModule("email_mime_base", "email.MIMEBase", "email.mime.base"),
MovedModule("BaseHTTPServer", "BaseHTTPServer", "http.server"),
MovedModule("CGIHTTPServer", "CGIHTTPServer", "http.server"),
MovedModule("SimpleHTTPServer", "SimpleHTTPServer", "http.server"),
MovedModule("cPickle", "cPickle", "pickle"),
MovedModule("queue", "Queue"),
MovedModule("reprlib", "repr"),
MovedModule("socketserver", "SocketServer"),
MovedModule("tkinter", "Tkinter"),
MovedModule("tkinter_dialog", "Dialog", "tkinter.dialog"),
MovedModule("tkinter_filedialog", "FileDialog", "tkinter.filedialog"),
MovedModule("tkinter_scrolledtext", "ScrolledText", "tkinter.scrolledtext"),
MovedModule("tkinter_simpledialog", "SimpleDialog", "tkinter.simpledialog"),
MovedModule("tkinter_tix", "Tix", "tkinter.tix"),
MovedModule("tkinter_constants", "Tkconstants", "tkinter.constants"),
MovedModule("tkinter_dnd", "Tkdnd", "tkinter.dnd"),
MovedModule("tkinter_colorchooser", "tkColorChooser",
"tkinter.colorchooser"),
MovedModule("tkinter_commondialog", "tkCommonDialog",
"tkinter.commondialog"),
MovedModule("tkinter_tkfiledialog", "tkFileDialog", "tkinter.filedialog"),
MovedModule("tkinter_font", "tkFont", "tkinter.font"),
MovedModule("tkinter_messagebox", "tkMessageBox", "tkinter.messagebox"),
MovedModule("tkinter_tksimpledialog", "tkSimpleDialog",
"tkinter.simpledialog"),
MovedModule("urllib_robotparser", "robotparser", "urllib.robotparser"),
MovedModule("winreg", "_winreg"),
]
for attr in _moved_attributes:
setattr(_MovedItems, attr.name, attr)
del attr
moves = sys.modules[__name__ + ".moves"] = _MovedItems("moves")
def add_move(move):
"""Add an item to six.moves."""
setattr(_MovedItems, move.name, move)
def remove_move(name):
"""Remove item from six.moves."""
try:
delattr(_MovedItems, name)
except AttributeError:
try:
del moves.__dict__[name]
except KeyError:
raise AttributeError("no such move, %r" % (name,))
if PY3:
_meth_func = "__func__"
_meth_self = "__self__"
_func_code = "__code__"
_func_defaults = "__defaults__"
_iterkeys = "keys"
_itervalues = "values"
_iteritems = "items"
else:
_meth_func = "im_func"
_meth_self = "im_self"
_func_code = "func_code"
_func_defaults = "func_defaults"
_iterkeys = "iterkeys"
_itervalues = "itervalues"
_iteritems = "iteritems"
try:
advance_iterator = next
except NameError:
def advance_iterator(it):
return it.next()
next = advance_iterator
try:
callable = callable
except NameError:
def callable(obj):
return any("__call__" in klass.__dict__ for klass in type(obj).__mro__)
if PY3:
def get_unbound_function(unbound):
return unbound
Iterator = object
else:
def get_unbound_function(unbound):
return unbound.im_func
class Iterator(object):
def next(self):
return type(self).__next__(self)
callable = callable
_add_doc(get_unbound_function,
"""Get the function out of a possibly unbound function""")
get_method_function = operator.attrgetter(_meth_func)
get_method_self = operator.attrgetter(_meth_self)
get_function_code = operator.attrgetter(_func_code)
get_function_defaults = operator.attrgetter(_func_defaults)
def iterkeys(d):
"""Return an iterator over the keys of a dictionary."""
return iter(getattr(d, _iterkeys)())
def itervalues(d):
"""Return an iterator over the values of a dictionary."""
return iter(getattr(d, _itervalues)())
def iteritems(d):
"""Return an iterator over the (key, value) pairs of a dictionary."""
return iter(getattr(d, _iteritems)())
if PY3:
def b(s):
return s.encode("latin-1")
def u(s):
return s
if sys.version_info[1] <= 1:
def int2byte(i):
return bytes((i,))
else:
# This is about 2x faster than the implementation above on 3.2+
int2byte = operator.methodcaller("to_bytes", 1, "big")
import io
StringIO = io.StringIO
BytesIO = io.BytesIO
else:
def b(s):
return s
def u(s):
if isinstance(s, unicode):
return s
return unicode(s, "unicode_escape")
int2byte = chr
import StringIO
StringIO = BytesIO = StringIO.StringIO
_add_doc(b, """Byte literal""")
_add_doc(u, """Text literal""")
if PY3:
import builtins
exec_ = getattr(builtins, "exec")
def reraise(tp, value, tb=None):
if value.__traceback__ is not tb:
raise value.with_traceback(tb)
raise value
print_ = getattr(builtins, "print")
del builtins
else:
def exec_(_code_, _globs_=None, _locs_=None):
"""Execute code in a namespace."""
if _globs_ is None:
frame = sys._getframe(1)
_globs_ = frame.f_globals
if _locs_ is None:
_locs_ = frame.f_locals
del frame
elif _locs_ is None:
_locs_ = _globs_
exec("""exec _code_ in _globs_, _locs_""")
exec_("""def reraise(tp, value, tb=None):
raise tp, value, tb
""")
def print_(*args, **kwargs):
"""The new-style print function."""
fp = kwargs.pop("file", sys.stdout)
if fp is None:
return
def write(data):
if not isinstance(data, basestring):
data = str(data)
fp.write(data)
want_unicode = False
sep = kwargs.pop("sep", None)
if sep is not None:
if isinstance(sep, unicode):
want_unicode = True
elif not isinstance(sep, str):
raise TypeError("sep must be None or a string")
end = kwargs.pop("end", None)
if end is not None:
if isinstance(end, unicode):
want_unicode = True
elif not isinstance(end, str):
raise TypeError("end must be None or a string")
if kwargs:
raise TypeError("invalid keyword arguments to print()")
if not want_unicode:
for arg in args:
if isinstance(arg, unicode):
want_unicode = True
break
if want_unicode:
newline = unicode("\n")
space = unicode(" ")
else:
newline = "\n"
space = " "
if sep is None:
sep = space
if end is None:
end = newline
for i, arg in enumerate(args):
if i:
write(sep)
write(arg)
write(end)
_add_doc(reraise, """Reraise an exception.""")
def with_metaclass(meta, base=object):
"""Create a base class with a metaclass."""
return meta("NewBase", (base,), {})

View File

@@ -0,0 +1,663 @@
from __future__ import with_statement, division
import unittest
import os
import time
import shutil
import subprocess
from binascii import hexlify, unhexlify
from hashlib import sha1, sha256, sha512
from .six import b, print_, binary_type
from .keys import SigningKey, VerifyingKey
from .keys import BadSignatureError
from . import util
from .util import sigencode_der, sigencode_strings
from .util import sigdecode_der, sigdecode_strings
from .curves import Curve, UnknownCurveError
from .curves import NIST192p, NIST224p, NIST256p, NIST384p, NIST521p, SECP256k1
from .ellipticcurve import Point
from . import der
from . import rfc6979
class SubprocessError(Exception):
pass
def run_openssl(cmd):
OPENSSL = "openssl"
p = subprocess.Popen([OPENSSL] + cmd.split(),
stdout=subprocess.PIPE,
stderr=subprocess.STDOUT)
stdout, ignored = p.communicate()
if p.returncode != 0:
raise SubprocessError("cmd '%s %s' failed: rc=%s, stdout/err was %s" %
(OPENSSL, cmd, p.returncode, stdout))
return stdout.decode()
BENCH = False
class ECDSA(unittest.TestCase):
def test_basic(self):
priv = SigningKey.generate()
pub = priv.get_verifying_key()
data = b("blahblah")
sig = priv.sign(data)
self.assertTrue(pub.verify(sig, data))
self.assertRaises(BadSignatureError, pub.verify, sig, data+b("bad"))
pub2 = VerifyingKey.from_string(pub.to_string())
self.assertTrue(pub2.verify(sig, data))
def test_deterministic(self):
data = b("blahblah")
secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16)
priv = SigningKey.from_secret_exponent(secexp, SECP256k1, sha256)
pub = priv.get_verifying_key()
k = rfc6979.generate_k(
SECP256k1.generator.order(), secexp, sha256, sha256(data).digest())
sig1 = priv.sign(data, k=k)
self.assertTrue(pub.verify(sig1, data))
sig2 = priv.sign(data, k=k)
self.assertTrue(pub.verify(sig2, data))
sig3 = priv.sign_deterministic(data, sha256)
self.assertTrue(pub.verify(sig3, data))
self.assertEqual(sig1, sig2)
self.assertEqual(sig1, sig3)
def test_bad_usage(self):
# sk=SigningKey() is wrong
self.assertRaises(TypeError, SigningKey)
self.assertRaises(TypeError, VerifyingKey)
def test_lengths(self):
default = NIST192p
priv = SigningKey.generate()
pub = priv.get_verifying_key()
self.assertEqual(len(pub.to_string()), default.verifying_key_length)
sig = priv.sign(b("data"))
self.assertEqual(len(sig), default.signature_length)
if BENCH:
print_()
for curve in (NIST192p, NIST224p, NIST256p, NIST384p, NIST521p):
start = time.time()
priv = SigningKey.generate(curve=curve)
pub1 = priv.get_verifying_key()
keygen_time = time.time() - start
pub2 = VerifyingKey.from_string(pub1.to_string(), curve)
self.assertEqual(pub1.to_string(), pub2.to_string())
self.assertEqual(len(pub1.to_string()),
curve.verifying_key_length)
start = time.time()
sig = priv.sign(b("data"))
sign_time = time.time() - start
self.assertEqual(len(sig), curve.signature_length)
if BENCH:
start = time.time()
pub1.verify(sig, b("data"))
verify_time = time.time() - start
print_("%s: siglen=%d, keygen=%0.3fs, sign=%0.3f, verify=%0.3f" \
% (curve.name, curve.signature_length,
keygen_time, sign_time, verify_time))
def test_serialize(self):
seed = b("secret")
curve = NIST192p
secexp1 = util.randrange_from_seed__trytryagain(seed, curve.order)
secexp2 = util.randrange_from_seed__trytryagain(seed, curve.order)
self.assertEqual(secexp1, secexp2)
priv1 = SigningKey.from_secret_exponent(secexp1, curve)
priv2 = SigningKey.from_secret_exponent(secexp2, curve)
self.assertEqual(hexlify(priv1.to_string()),
hexlify(priv2.to_string()))
self.assertEqual(priv1.to_pem(), priv2.to_pem())
pub1 = priv1.get_verifying_key()
pub2 = priv2.get_verifying_key()
data = b("data")
sig1 = priv1.sign(data)
sig2 = priv2.sign(data)
self.assertTrue(pub1.verify(sig1, data))
self.assertTrue(pub2.verify(sig1, data))
self.assertTrue(pub1.verify(sig2, data))
self.assertTrue(pub2.verify(sig2, data))
self.assertEqual(hexlify(pub1.to_string()),
hexlify(pub2.to_string()))
def test_nonrandom(self):
s = b("all the entropy in the entire world, compressed into one line")
def not_much_entropy(numbytes):
return s[:numbytes]
# we control the entropy source, these two keys should be identical:
priv1 = SigningKey.generate(entropy=not_much_entropy)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(hexlify(priv1.get_verifying_key().to_string()),
hexlify(priv2.get_verifying_key().to_string()))
# likewise, signatures should be identical. Obviously you'd never
# want to do this with keys you care about, because the secrecy of
# the private key depends upon using different random numbers for
# each signature
sig1 = priv1.sign(b("data"), entropy=not_much_entropy)
sig2 = priv2.sign(b("data"), entropy=not_much_entropy)
self.assertEqual(hexlify(sig1), hexlify(sig2))
def assertTruePrivkeysEqual(self, priv1, priv2):
self.assertEqual(priv1.privkey.secret_multiplier,
priv2.privkey.secret_multiplier)
self.assertEqual(priv1.privkey.public_key.generator,
priv2.privkey.public_key.generator)
def failIfPrivkeysEqual(self, priv1, priv2):
self.failIfEqual(priv1.privkey.secret_multiplier,
priv2.privkey.secret_multiplier)
def test_privkey_creation(self):
s = b("all the entropy in the entire world, compressed into one line")
def not_much_entropy(numbytes):
return s[:numbytes]
priv1 = SigningKey.generate()
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv1 = SigningKey.generate(curve=NIST224p)
self.assertEqual(priv1.baselen, NIST224p.baselen)
priv1 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.generate(entropy=not_much_entropy)
self.assertEqual(priv2.baselen, NIST192p.baselen)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=3)
self.assertEqual(priv1.baselen, NIST192p.baselen)
priv2 = SigningKey.from_secret_exponent(secexp=3)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.from_secret_exponent(secexp=4, curve=NIST224p)
self.assertEqual(priv1.baselen, NIST224p.baselen)
def test_privkey_strings(self):
priv1 = SigningKey.generate()
s1 = priv1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST192p.baselen)
priv2 = SigningKey.from_string(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----")))
self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----")))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
priv1 = SigningKey.generate(curve=NIST256p)
s1 = priv1.to_pem()
self.assertEqual(type(s1), binary_type)
self.assertTrue(s1.startswith(b("-----BEGIN EC PRIVATE KEY-----")))
self.assertTrue(s1.strip().endswith(b("-----END EC PRIVATE KEY-----")))
priv2 = SigningKey.from_pem(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
s1 = priv1.to_der()
self.assertEqual(type(s1), binary_type)
priv2 = SigningKey.from_der(s1)
self.assertTruePrivkeysEqual(priv1, priv2)
def assertTruePubkeysEqual(self, pub1, pub2):
self.assertEqual(pub1.pubkey.point, pub2.pubkey.point)
self.assertEqual(pub1.pubkey.generator, pub2.pubkey.generator)
self.assertEqual(pub1.curve, pub2.curve)
def test_pubkey_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST192p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1)
self.assertTruePubkeysEqual(pub1, pub2)
priv1 = SigningKey.generate(curve=NIST256p)
pub1 = priv1.get_verifying_key()
s1 = pub1.to_string()
self.assertEqual(type(s1), binary_type)
self.assertEqual(len(s1), NIST256p.verifying_key_length)
pub2 = VerifyingKey.from_string(s1, curve=NIST256p)
self.assertTruePubkeysEqual(pub1, pub2)
pub1_der = pub1.to_der()
self.assertEqual(type(pub1_der), binary_type)
pub2 = VerifyingKey.from_der(pub1_der)
self.assertTruePubkeysEqual(pub1, pub2)
self.assertRaises(der.UnexpectedDER,
VerifyingKey.from_der, pub1_der+b("junk"))
badpub = VerifyingKey.from_der(pub1_der)
class FakeGenerator:
def order(self): return 123456789
badcurve = Curve("unknown", None, None, FakeGenerator(), (1,2,3,4,5,6))
badpub.curve = badcurve
badder = badpub.to_der()
self.assertRaises(UnknownCurveError, VerifyingKey.from_der, badder)
pem = pub1.to_pem()
self.assertEqual(type(pem), binary_type)
self.assertTrue(pem.startswith(b("-----BEGIN PUBLIC KEY-----")), pem)
self.assertTrue(pem.strip().endswith(b("-----END PUBLIC KEY-----")), pem)
pub2 = VerifyingKey.from_pem(pem)
self.assertTruePubkeysEqual(pub1, pub2)
def test_signature_strings(self):
priv1 = SigningKey.generate()
pub1 = priv1.get_verifying_key()
data = b("data")
sig = priv1.sign(data)
self.assertEqual(type(sig), binary_type)
self.assertEqual(len(sig), NIST192p.signature_length)
self.assertTrue(pub1.verify(sig, data))
sig = priv1.sign(data, sigencode=sigencode_strings)
self.assertEqual(type(sig), tuple)
self.assertEqual(len(sig), 2)
self.assertEqual(type(sig[0]), binary_type)
self.assertEqual(type(sig[1]), binary_type)
self.assertEqual(len(sig[0]), NIST192p.baselen)
self.assertEqual(len(sig[1]), NIST192p.baselen)
self.assertTrue(pub1.verify(sig, data, sigdecode=sigdecode_strings))
sig_der = priv1.sign(data, sigencode=sigencode_der)
self.assertEqual(type(sig_der), binary_type)
self.assertTrue(pub1.verify(sig_der, data, sigdecode=sigdecode_der))
def test_hashfunc(self):
sk = SigningKey.generate(curve=NIST256p, hashfunc=sha256)
data = b("security level is 128 bits")
sig = sk.sign(data)
vk = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
curve=NIST256p, hashfunc=sha256)
self.assertTrue(vk.verify(sig, data))
sk2 = SigningKey.generate(curve=NIST256p)
sig2 = sk2.sign(data, hashfunc=sha256)
vk2 = VerifyingKey.from_string(sk2.get_verifying_key().to_string(),
curve=NIST256p, hashfunc=sha256)
self.assertTrue(vk2.verify(sig2, data))
vk3 = VerifyingKey.from_string(sk.get_verifying_key().to_string(),
curve=NIST256p)
self.assertTrue(vk3.verify(sig, data, hashfunc=sha256))
class OpenSSL(unittest.TestCase):
# test interoperability with OpenSSL tools. Note that openssl's ECDSA
# sign/verify arguments changed between 0.9.8 and 1.0.0: the early
# versions require "-ecdsa-with-SHA1", the later versions want just
# "-SHA1" (or to leave out that argument entirely, which means the
# signature will use some default digest algorithm, probably determined
# by the key, probably always SHA1).
#
# openssl ecparam -name secp224r1 -genkey -out privkey.pem
# openssl ec -in privkey.pem -text -noout # get the priv/pub keys
# openssl dgst -ecdsa-with-SHA1 -sign privkey.pem -out data.sig data.txt
# openssl asn1parse -in data.sig -inform DER
# data.sig is 64 bytes, probably 56b plus ASN1 overhead
# openssl dgst -ecdsa-with-SHA1 -prverify privkey.pem -signature data.sig data.txt ; echo $?
# openssl ec -in privkey.pem -pubout -out pubkey.pem
# openssl ec -in privkey.pem -pubout -outform DER -out pubkey.der
def get_openssl_messagedigest_arg(self):
v = run_openssl("version")
# e.g. "OpenSSL 1.0.0 29 Mar 2010", or "OpenSSL 1.0.0a 1 Jun 2010",
# or "OpenSSL 0.9.8o 01 Jun 2010"
vs = v.split()[1].split(".")
if vs >= ["1","0","0"]:
return "-SHA1"
else:
return "-ecdsa-with-SHA1"
# sk: 1:OpenSSL->python 2:python->OpenSSL
# vk: 3:OpenSSL->python 4:python->OpenSSL
# sig: 5:OpenSSL->python 6:python->OpenSSL
def test_from_openssl_nist192p(self):
return self.do_test_from_openssl(NIST192p)
def test_from_openssl_nist224p(self):
return self.do_test_from_openssl(NIST224p)
def test_from_openssl_nist256p(self):
return self.do_test_from_openssl(NIST256p)
def test_from_openssl_nist384p(self):
return self.do_test_from_openssl(NIST384p)
def test_from_openssl_nist521p(self):
return self.do_test_from_openssl(NIST521p)
def test_from_openssl_secp256k1(self):
return self.do_test_from_openssl(SECP256k1)
def do_test_from_openssl(self, curve):
curvename = curve.openssl_name
assert curvename
# OpenSSL: create sk, vk, sign.
# Python: read vk(3), checksig(5), read sk(1), sign, check
mdarg = self.get_openssl_messagedigest_arg()
if os.path.isdir("t"):
shutil.rmtree("t")
os.mkdir("t")
run_openssl("ecparam -name %s -genkey -out t/privkey.pem" % curvename)
run_openssl("ec -in t/privkey.pem -pubout -out t/pubkey.pem")
data = b("data")
with open("t/data.txt","wb") as e: e.write(data)
run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig t/data.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig t/data.txt" % mdarg)
with open("t/pubkey.pem","rb") as e: pubkey_pem = e.read()
vk = VerifyingKey.from_pem(pubkey_pem) # 3
with open("t/data.sig","rb") as e: sig_der = e.read()
self.assertTrue(vk.verify(sig_der, data, # 5
hashfunc=sha1, sigdecode=sigdecode_der))
with open("t/privkey.pem") as e: fp = e.read()
sk = SigningKey.from_pem(fp) # 1
sig = sk.sign(data)
self.assertTrue(vk.verify(sig, data))
def test_to_openssl_nist192p(self):
self.do_test_to_openssl(NIST192p)
def test_to_openssl_nist224p(self):
self.do_test_to_openssl(NIST224p)
def test_to_openssl_nist256p(self):
self.do_test_to_openssl(NIST256p)
def test_to_openssl_nist384p(self):
self.do_test_to_openssl(NIST384p)
def test_to_openssl_nist521p(self):
self.do_test_to_openssl(NIST521p)
def test_to_openssl_secp256k1(self):
self.do_test_to_openssl(SECP256k1)
def do_test_to_openssl(self, curve):
curvename = curve.openssl_name
assert curvename
# Python: create sk, vk, sign.
# OpenSSL: read vk(4), checksig(6), read sk(2), sign, check
mdarg = self.get_openssl_messagedigest_arg()
if os.path.isdir("t"):
shutil.rmtree("t")
os.mkdir("t")
sk = SigningKey.generate(curve=curve)
vk = sk.get_verifying_key()
data = b("data")
with open("t/pubkey.der","wb") as e: e.write(vk.to_der()) # 4
with open("t/pubkey.pem","wb") as e: e.write(vk.to_pem()) # 4
sig_der = sk.sign(data, hashfunc=sha1, sigencode=sigencode_der)
with open("t/data.sig","wb") as e: e.write(sig_der) # 6
with open("t/data.txt","wb") as e: e.write(data)
with open("t/baddata.txt","wb") as e: e.write(data+b("corrupt"))
self.assertRaises(SubprocessError, run_openssl,
"dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/baddata.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.der -keyform DER -signature t/data.sig t/data.txt" % mdarg)
with open("t/privkey.pem","wb") as e: e.write(sk.to_pem()) # 2
run_openssl("dgst %s -sign t/privkey.pem -out t/data.sig2 t/data.txt" % mdarg)
run_openssl("dgst %s -verify t/pubkey.pem -signature t/data.sig2 t/data.txt" % mdarg)
class DER(unittest.TestCase):
def test_oids(self):
oid_ecPublicKey = der.encode_oid(1, 2, 840, 10045, 2, 1)
self.assertEqual(hexlify(oid_ecPublicKey), b("06072a8648ce3d0201"))
self.assertEqual(hexlify(NIST224p.encoded_oid), b("06052b81040021"))
self.assertEqual(hexlify(NIST256p.encoded_oid),
b("06082a8648ce3d030107"))
x = oid_ecPublicKey + b("more")
x1, rest = der.remove_object(x)
self.assertEqual(x1, (1, 2, 840, 10045, 2, 1))
self.assertEqual(rest, b("more"))
def test_integer(self):
self.assertEqual(der.encode_integer(0), b("\x02\x01\x00"))
self.assertEqual(der.encode_integer(1), b("\x02\x01\x01"))
self.assertEqual(der.encode_integer(127), b("\x02\x01\x7f"))
self.assertEqual(der.encode_integer(128), b("\x02\x02\x00\x80"))
self.assertEqual(der.encode_integer(256), b("\x02\x02\x01\x00"))
#self.assertEqual(der.encode_integer(-1), b("\x02\x01\xff"))
def s(n): return der.remove_integer(der.encode_integer(n) + b("junk"))
self.assertEqual(s(0), (0, b("junk")))
self.assertEqual(s(1), (1, b("junk")))
self.assertEqual(s(127), (127, b("junk")))
self.assertEqual(s(128), (128, b("junk")))
self.assertEqual(s(256), (256, b("junk")))
self.assertEqual(s(1234567890123456789012345678901234567890),
(1234567890123456789012345678901234567890,b("junk")))
def test_number(self):
self.assertEqual(der.encode_number(0), b("\x00"))
self.assertEqual(der.encode_number(127), b("\x7f"))
self.assertEqual(der.encode_number(128), b("\x81\x00"))
self.assertEqual(der.encode_number(3*128+7), b("\x83\x07"))
#self.assertEqual(der.read_number("\x81\x9b"+"more"), (155, 2))
#self.assertEqual(der.encode_number(155), b("\x81\x9b"))
for n in (0, 1, 2, 127, 128, 3*128+7, 840, 10045): #, 155):
x = der.encode_number(n) + b("more")
n1, llen = der.read_number(x)
self.assertEqual(n1, n)
self.assertEqual(x[llen:], b("more"))
def test_length(self):
self.assertEqual(der.encode_length(0), b("\x00"))
self.assertEqual(der.encode_length(127), b("\x7f"))
self.assertEqual(der.encode_length(128), b("\x81\x80"))
self.assertEqual(der.encode_length(255), b("\x81\xff"))
self.assertEqual(der.encode_length(256), b("\x82\x01\x00"))
self.assertEqual(der.encode_length(3*256+7), b("\x82\x03\x07"))
self.assertEqual(der.read_length(b("\x81\x9b")+b("more")), (155, 2))
self.assertEqual(der.encode_length(155), b("\x81\x9b"))
for n in (0, 1, 2, 127, 128, 255, 256, 3*256+7, 155):
x = der.encode_length(n) + b("more")
n1, llen = der.read_length(x)
self.assertEqual(n1, n)
self.assertEqual(x[llen:], b("more"))
def test_sequence(self):
x = der.encode_sequence(b("ABC"), b("DEF")) + b("GHI")
self.assertEqual(x, b("\x30\x06ABCDEFGHI"))
x1, rest = der.remove_sequence(x)
self.assertEqual(x1, b("ABCDEF"))
self.assertEqual(rest, b("GHI"))
def test_constructed(self):
x = der.encode_constructed(0, NIST224p.encoded_oid)
self.assertEqual(hexlify(x), b("a007") + b("06052b81040021"))
x = der.encode_constructed(1, unhexlify(b("0102030a0b0c")))
self.assertEqual(hexlify(x), b("a106") + b("0102030a0b0c"))
class Util(unittest.TestCase):
def test_trytryagain(self):
tta = util.randrange_from_seed__trytryagain
for i in range(1000):
seed = "seed-%d" % i
for order in (2**8-2, 2**8-1, 2**8, 2**8+1, 2**8+2,
2**16-1, 2**16+1):
n = tta(seed, order)
self.assertTrue(1 <= n < order, (1, n, order))
# this trytryagain *does* provide long-term stability
self.assertEqual(("%x"%(tta("seed", NIST224p.order))).encode(),
b("6fa59d73bf0446ae8743cf748fc5ac11d5585a90356417e97155c3bc"))
def test_randrange(self):
# util.randrange does not provide long-term stability: we might
# change the algorithm in the future.
for i in range(1000):
entropy = util.PRNG("seed-%d" % i)
for order in (2**8-2, 2**8-1, 2**8,
2**16-1, 2**16+1,
):
# that oddball 2**16+1 takes half our runtime
n = util.randrange(order, entropy=entropy)
self.assertTrue(1 <= n < order, (1, n, order))
def OFF_test_prove_uniformity(self):
order = 2**8-2
counts = dict([(i, 0) for i in range(1, order)])
assert 0 not in counts
assert order not in counts
for i in range(1000000):
seed = "seed-%d" % i
n = util.randrange_from_seed__trytryagain(seed, order)
counts[n] += 1
# this technique should use the full range
self.assertTrue(counts[order-1])
for i in range(1, order):
print_("%3d: %s" % (i, "*"*(counts[i]//100)))
class RFC6979(unittest.TestCase):
# https://tools.ietf.org/html/rfc6979#appendix-A.1
def _do(self, generator, secexp, hsh, hash_func, expected):
actual = rfc6979.generate_k(generator.order(), secexp, hash_func, hsh)
self.assertEqual(expected, actual)
def test_SECP256k1(self):
'''RFC doesn't contain test vectors for SECP256k1 used in bitcoin.
This vector has been computed by Golang reference implementation instead.'''
self._do(
generator = SECP256k1.generator,
secexp = int("9d0219792467d7d37b4d43298a7d0c05", 16),
hsh = sha256(b("sample")).digest(),
hash_func = sha256,
expected = int("8fa1f95d514760e498f28957b824ee6ec39ed64826ff4fecc2b5739ec45b91cd", 16))
def test_SECP256k1_2(self):
self._do(
generator=SECP256k1.generator,
secexp=int("cca9fbcc1b41e5a95d369eaa6ddcff73b61a4efaa279cfc6567e8daa39cbaf50", 16),
hsh=sha256(b("sample")).digest(),
hash_func=sha256,
expected=int("2df40ca70e639d89528a6b670d9d48d9165fdc0febc0974056bdce192b8e16a3", 16))
def test_SECP256k1_3(self):
self._do(
generator=SECP256k1.generator,
secexp=0x1,
hsh=sha256(b("Satoshi Nakamoto")).digest(),
hash_func=sha256,
expected=0x8F8A276C19F4149656B280621E358CCE24F5F52542772691EE69063B74F15D15)
def test_SECP256k1_4(self):
self._do(
generator=SECP256k1.generator,
secexp=0x1,
hsh=sha256(b("All those moments will be lost in time, like tears in rain. Time to die...")).digest(),
hash_func=sha256,
expected=0x38AA22D72376B4DBC472E06C3BA403EE0A394DA63FC58D88686C611ABA98D6B3)
def test_SECP256k1_5(self):
self._do(
generator=SECP256k1.generator,
secexp=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364140,
hsh=sha256(b("Satoshi Nakamoto")).digest(),
hash_func=sha256,
expected=0x33A19B60E25FB6F4435AF53A3D42D493644827367E6453928554F43E49AA6F90)
def test_SECP256k1_6(self):
self._do(
generator=SECP256k1.generator,
secexp=0xf8b8af8ce3c7cca5e300d33939540c10d45ce001b8f252bfbc57ba0342904181,
hsh=sha256(b("Alan Turing")).digest(),
hash_func=sha256,
expected=0x525A82B70E67874398067543FD84C83D30C175FDC45FDEEE082FE13B1D7CFDF1)
def test_1(self):
# Basic example of the RFC, it also tests 'try-try-again' from Step H of rfc6979
self._do(
generator = Point(None, 0, 0, int("4000000000000000000020108A2E0CC0D99F8A5EF", 16)),
secexp = int("09A4D6792295A7F730FC3F2B49CBC0F62E862272F", 16),
hsh = unhexlify(b("AF2BDBE1AA9B6EC1E2ADE1D694F41FC71A831D0268E9891562113D8A62ADD1BF")),
hash_func = sha256,
expected = int("23AF4074C90A02B3FE61D286D5C87F425E6BDD81B", 16))
def test_2(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha1(b("sample")).digest(),
hash_func = sha1,
expected = int("37D7CA00D2C7B0E5E412AC03BD44BA837FDD5B28CD3B0021", 16))
def test_3(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha256(b("sample")).digest(),
hash_func = sha256,
expected = int("32B1B6D7D42A05CB449065727A84804FB1A3E34D8F261496", 16))
def test_4(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha512(b("sample")).digest(),
hash_func = sha512,
expected = int("A2AC7AB055E4F20692D49209544C203A7D1F2C0BFBC75DB1", 16))
def test_5(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha1(b("test")).digest(),
hash_func = sha1,
expected = int("D9CF9C3D3297D3260773A1DA7418DB5537AB8DD93DE7FA25", 16))
def test_6(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha256(b("test")).digest(),
hash_func = sha256,
expected = int("5C4CE89CF56D9E7C77C8585339B006B97B5F0680B4306C6C", 16))
def test_7(self):
self._do(
generator=NIST192p.generator,
secexp = int("6FAB034934E4C0FC9AE67F5B5659A9D7D1FEFD187EE09FD4", 16),
hsh = sha512(b("test")).digest(),
hash_func = sha512,
expected = int("0758753A5254759C7CFBAD2E2D9B0792EEE44136C9480527", 16))
def test_8(self):
self._do(
generator=NIST521p.generator,
secexp = int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16),
hsh = sha1(b("sample")).digest(),
hash_func = sha1,
expected = int("089C071B419E1C2820962321787258469511958E80582E95D8378E0C2CCDB3CB42BEDE42F50E3FA3C71F5A76724281D31D9C89F0F91FC1BE4918DB1C03A5838D0F9", 16))
def test_9(self):
self._do(
generator=NIST521p.generator,
secexp = int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16),
hsh = sha256(b("sample")).digest(),
hash_func = sha256,
expected = int("0EDF38AFCAAECAB4383358B34D67C9F2216C8382AAEA44A3DAD5FDC9C32575761793FEF24EB0FC276DFC4F6E3EC476752F043CF01415387470BCBD8678ED2C7E1A0", 16))
def test_10(self):
self._do(
generator=NIST521p.generator,
secexp = int("0FAD06DAA62BA3B25D2FB40133DA757205DE67F5BB0018FEE8C86E1B68C7E75CAA896EB32F1F47C70855836A6D16FCC1466F6D8FBEC67DB89EC0C08B0E996B83538", 16),
hsh = sha512(b("test")).digest(),
hash_func = sha512,
expected = int("16200813020EC986863BEDFC1B121F605C1215645018AEA1A7B215A564DE9EB1B38A67AA1128B80CE391C4FB71187654AAA3431027BFC7F395766CA988C964DC56D", 16))
def __main__():
unittest.main()
if __name__ == "__main__":
__main__()

247
bin/python/ecdsa/util.py Normal file
View File

@@ -0,0 +1,247 @@
from __future__ import division
import os
import math
import binascii
from hashlib import sha256
from . import der
from .curves import orderlen
from .six import PY3, int2byte, b, next
# RFC5480:
# The "unrestricted" algorithm identifier is:
# id-ecPublicKey OBJECT IDENTIFIER ::= {
# iso(1) member-body(2) us(840) ansi-X9-62(10045) keyType(2) 1 }
oid_ecPublicKey = (1, 2, 840, 10045, 2, 1)
encoded_oid_ecPublicKey = der.encode_oid(*oid_ecPublicKey)
def randrange(order, entropy=None):
"""Return a random integer k such that 1 <= k < order, uniformly
distributed across that range. For simplicity, this only behaves well if
'order' is fairly close (but below) a power of 256. The try-try-again
algorithm we use takes longer and longer time (on average) to complete as
'order' falls, rising to a maximum of avg=512 loops for the worst-case
(256**k)+1 . All of the standard curves behave well. There is a cutoff at
10k loops (which raises RuntimeError) to prevent an infinite loop when
something is really broken like the entropy function not working.
Note that this function is not declared to be forwards-compatible: we may
change the behavior in future releases. The entropy= argument (which
should get a callable that behaves like os.urandom) can be used to
achieve stability within a given release (for repeatable unit tests), but
should not be used as a long-term-compatible key generation algorithm.
"""
# we could handle arbitrary orders (even 256**k+1) better if we created
# candidates bit-wise instead of byte-wise, which would reduce the
# worst-case behavior to avg=2 loops, but that would be more complex. The
# change would be to round the order up to a power of 256, subtract one
# (to get 0xffff..), use that to get a byte-long mask for the top byte,
# generate the len-1 entropy bytes, generate one extra byte and mask off
# the top bits, then combine it with the rest. Requires jumping back and
# forth between strings and integers a lot.
if entropy is None:
entropy = os.urandom
assert order > 1
bytes = orderlen(order)
dont_try_forever = 10000 # gives about 2**-60 failures for worst case
while dont_try_forever > 0:
dont_try_forever -= 1
candidate = string_to_number(entropy(bytes)) + 1
if 1 <= candidate < order:
return candidate
continue
raise RuntimeError("randrange() tried hard but gave up, either something"
" is very wrong or you got realllly unlucky. Order was"
" %x" % order)
class PRNG:
# this returns a callable which, when invoked with an integer N, will
# return N pseudorandom bytes. Note: this is a short-term PRNG, meant
# primarily for the needs of randrange_from_seed__trytryagain(), which
# only needs to run it a few times per seed. It does not provide
# protection against state compromise (forward security).
def __init__(self, seed):
self.generator = self.block_generator(seed)
def __call__(self, numbytes):
a = [next(self.generator) for i in range(numbytes)]
if PY3:
return bytes(a)
else:
return "".join(a)
def block_generator(self, seed):
counter = 0
while True:
for byte in sha256(("prng-%d-%s" % (counter, seed)).encode()).digest():
yield byte
counter += 1
def randrange_from_seed__overshoot_modulo(seed, order):
# hash the data, then turn the digest into a number in [1,order).
#
# We use David-Sarah Hopwood's suggestion: turn it into a number that's
# sufficiently larger than the group order, then modulo it down to fit.
# This should give adequate (but not perfect) uniformity, and simple
# code. There are other choices: try-try-again is the main one.
base = PRNG(seed)(2*orderlen(order))
number = (int(binascii.hexlify(base), 16) % (order-1)) + 1
assert 1 <= number < order, (1, number, order)
return number
def lsb_of_ones(numbits):
return (1 << numbits) - 1
def bits_and_bytes(order):
bits = int(math.log(order-1, 2)+1)
bytes = bits // 8
extrabits = bits % 8
return bits, bytes, extrabits
# the following randrange_from_seed__METHOD() functions take an
# arbitrarily-sized secret seed and turn it into a number that obeys the same
# range limits as randrange() above. They are meant for deriving consistent
# signing keys from a secret rather than generating them randomly, for
# example a protocol in which three signing keys are derived from a master
# secret. You should use a uniformly-distributed unguessable seed with about
# curve.baselen bytes of entropy. To use one, do this:
# seed = os.urandom(curve.baselen) # or other starting point
# secexp = ecdsa.util.randrange_from_seed__trytryagain(sed, curve.order)
# sk = SigningKey.from_secret_exponent(secexp, curve)
def randrange_from_seed__truncate_bytes(seed, order, hashmod=sha256):
# hash the seed, then turn the digest into a number in [1,order), but
# don't worry about trying to uniformly fill the range. This will lose,
# on average, four bits of entropy.
bits, bytes, extrabits = bits_and_bytes(order)
if extrabits:
bytes += 1
base = hashmod(seed).digest()[:bytes]
base = "\x00"*(bytes-len(base)) + base
number = 1+int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__truncate_bits(seed, order, hashmod=sha256):
# like string_to_randrange_truncate_bytes, but only lose an average of
# half a bit
bits = int(math.log(order-1, 2)+1)
maxbytes = (bits+7) // 8
base = hashmod(seed).digest()[:maxbytes]
base = "\x00"*(maxbytes-len(base)) + base
topbits = 8*maxbytes - bits
if topbits:
base = int2byte(ord(base[0]) & lsb_of_ones(topbits)) + base[1:]
number = 1+int(binascii.hexlify(base), 16)
assert 1 <= number < order
return number
def randrange_from_seed__trytryagain(seed, order):
# figure out exactly how many bits we need (rounded up to the nearest
# bit), so we can reduce the chance of looping to less than 0.5 . This is
# specified to feed from a byte-oriented PRNG, and discards the
# high-order bits of the first byte as necessary to get the right number
# of bits. The average number of loops will range from 1.0 (when
# order=2**k-1) to 2.0 (when order=2**k+1).
assert order > 1
bits, bytes, extrabits = bits_and_bytes(order)
generate = PRNG(seed)
while True:
extrabyte = b("")
if extrabits:
extrabyte = int2byte(ord(generate(1)) & lsb_of_ones(extrabits))
guess = string_to_number(extrabyte + generate(bytes)) + 1
if 1 <= guess < order:
return guess
def number_to_string(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2*l) + "x"
string = binascii.unhexlify((fmt_str % num).encode())
assert len(string) == l, (len(string), l)
return string
def number_to_string_crop(num, order):
l = orderlen(order)
fmt_str = "%0" + str(2*l) + "x"
string = binascii.unhexlify((fmt_str % num).encode())
return string[:l]
def string_to_number(string):
return int(binascii.hexlify(string), 16)
def string_to_number_fixedlen(string, order):
l = orderlen(order)
assert len(string) == l, (len(string), l)
return int(binascii.hexlify(string), 16)
# these methods are useful for the sigencode= argument to SK.sign() and the
# sigdecode= argument to VK.verify(), and control how the signature is packed
# or unpacked.
def sigencode_strings(r, s, order):
r_str = number_to_string(r, order)
s_str = number_to_string(s, order)
return (r_str, s_str)
def sigencode_string(r, s, order):
# for any given curve, the size of the signature numbers is
# fixed, so just use simple concatenation
r_str, s_str = sigencode_strings(r, s, order)
return r_str + s_str
def sigencode_der(r, s, order):
return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
# canonical versions of sigencode methods
# these enforce low S values, by negating the value (modulo the order) if above order/2
# see CECKey::Sign() https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp#L214
def sigencode_strings_canonize(r, s, order):
if s > order / 2:
s = order - s
return sigencode_strings(r, s, order)
def sigencode_string_canonize(r, s, order):
if s > order / 2:
s = order - s
return sigencode_string(r, s, order)
def sigencode_der_canonize(r, s, order):
if s > order / 2:
s = order - s
return sigencode_der(r, s, order)
def sigdecode_string(signature, order):
l = orderlen(order)
assert len(signature) == 2*l, (len(signature), 2*l)
r = string_to_number_fixedlen(signature[:l], order)
s = string_to_number_fixedlen(signature[l:], order)
return r, s
def sigdecode_strings(rs_strings, order):
(r_str, s_str) = rs_strings
l = orderlen(order)
assert len(r_str) == l, (len(r_str), l)
assert len(s_str) == l, (len(s_str), l)
r = string_to_number_fixedlen(r_str, order)
s = string_to_number_fixedlen(s_str, order)
return r, s
def sigdecode_der(sig_der, order):
#return der.encode_sequence(der.encode_integer(r), der.encode_integer(s))
rs_strings, empty = der.remove_sequence(sig_der)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER sig: %s" %
binascii.hexlify(empty))
r, rest = der.remove_integer(rs_strings)
s, empty = der.remove_integer(rest)
if empty != b(""):
raise der.UnexpectedDER("trailing junk after DER numbers: %s" %
binascii.hexlify(empty))
return r, s