Files
xrpl-dev-portal/_code-samples/quickstart/js/ripplex13b-amm-formulas.js
2024-10-02 21:10:16 -07:00

154 lines
7.0 KiB
JavaScript

/* Convert a trading fee to a value that can be multiplied
* by a total to "subtract" the fee from the total.
* @param tFee int {0, 1000}
* such that 1 = 1/100,000 and 1000 = 1% fee
* @returns BigNumber (1 - fee) as a decimal
*/
function feeMult(tFee) {
return BigNumber(1).minus( feeDecimal(tFee) )
}
/* Same as feeMult, but with half the trading fee. Single-asset deposits and
* withdrawals use this because half of the deposit is treated as being
* "swapped" for the other asset in the AMM's pool.
* @param tFee int {0, 1000}
* such that 1 = 1/100,000 and 1000 = 1% fee
* @returns BigNumber (1 - (fee/2)) as a decimal
*/
function feeMultHalf(tFee) {
return BigNumber(1).minus( feeDecimal(tFee).dividedBy(2) )
}
/* Convert a trading fee to a decimal BigNumber value,
* for example 1000 becomes 0.01
* @param tFee int {0, 1000}
* such that 1 = 1/100,000 and 1000 = 1% fee
* @returns BigNumber(fee) as a decimal
*/
function feeDecimal(tFee) {
const AUCTION_SLOT_FEE_SCALE_FACTOR = 100000
return BigNumber(tFee).dividedBy(AUCTION_SLOT_FEE_SCALE_FACTOR)
}
/* Implement the AMM SwapOut formula, as defined in XLS-30 section 2.4 AMM
* Swap, formula 10. The asset weights WA/WB are currently always 1/1 so
* they're canceled out.
* C++ source: https://github.com/XRPLF/rippled/blob/2d1854f354ff8bb2b5671fd51252c5acd837c433/src/ripple/app/misc/AMMHelpers.h#L253-L258
* @param asset_out_bn BigNumber - The target amount to receive from the AMM.
* @param pool_in_bn BigNumber - The amount of the input asset in the AMM's
* pool before the swap.
* @param pool_out_bn BigNumber - The amount of the output asset in the AMM's
* pool before the swap.
* @param trading_fee int - The trading fee as an integer {0, 1000} where 1000
* represents a 1% fee.
* @returns BigNumber - The amount of the input asset that must be swapped in
* to receive the target output amount. Unrounded, because
* the number of decimals depends on if this is drops of
* XRP or a decimal amount of a token; since this is a
* theoretical input to the pool, it should be rounded
* up (ceiling) to preserve the pool's constant product.
*/
function swapOut(asset_out_bn, pool_in_bn, pool_out_bn, trading_fee) {
return ( ( pool_in_bn.multipliedBy(pool_out_bn) ).dividedBy(
pool_out_bn.minus(asset_out_bn)
).minus(pool_in_bn)
).dividedBy(feeMult(trading_fee))
}
/* Compute the quadratic formula. Helper function for ammAssetIn.
* Params and return value are BigNumber instances.
*/
function solveQuadraticEq(a,b,c) {
const b2minus4ac = b.multipliedBy(b).minus(
a.multipliedBy(c).multipliedBy(4)
)
return ( b.negated().plus(b2minus4ac.sqrt()) ).dividedBy(a.multipliedBy(2))
}
/* Implement the AMM single-asset deposit formula to calculate how much to
* put in so that you receive a specific number of LP Tokens back.
* C++ source: https://github.com/XRPLF/rippled/blob/2d1854f354ff8bb2b5671fd51252c5acd837c433/src/ripple/app/misc/impl/AMMHelpers.cpp#L55-L83
* @param pool_in string - Quantity of input asset the pool already has
* @param lpt_balance string - Quantity of LP Tokens already issued by the AMM
* @param desired_lpt string - Quantity of new LP Tokens you want to receive
* @param trading_fee int - The trading fee as an integer {0,1000} where 1000
* represents a 1% fee.
*/
function ammAssetIn(pool_in, lpt_balance, desired_lpt, trading_fee) {
// convert inputs to BigNumber
const lpTokens = BigNumber(desired_lpt)
const lptAMMBalance = BigNumber(lpt_balance)
const asset1Balance = BigNumber(pool_in)
const f1 = feeMult(trading_fee)
const f2 = feeMultHalf(trading_fee).dividedBy(f1)
const t1 = lpTokens.dividedBy(lptAMMBalance)
const t2 = t1.plus(1)
const d = f2.minus( t1.dividedBy(t2) )
const a = BigNumber(1).dividedBy( t2.multipliedBy(t2))
const b = BigNumber(2).multipliedBy(d).dividedBy(t2).minus(
BigNumber(1).dividedBy(f1)
)
const c = d.multipliedBy(d).minus( f2.multipliedBy(f2) )
return asset1Balance.multipliedBy(solveQuadraticEq(a,b,c))
}
/* Calculate how much to deposit, in terms of LP Tokens out, to be able to win
* the auction slot. This is based on the slot pricing algorithm defined in
* XLS-30 section 4.1.1, but factors in the increase in the minimum bid as a
* result of having new LP Tokens issued to you from your deposit.
*/
function auctionDeposit(old_bid, time_interval, trading_fee, lpt_balance) {
const tfee_decimal = feeDecimal(trading_fee)
const lptokens = BigNumber(lpt_balance)
const b = BigNumber(old_bid)
let outbidAmount = BigNumber(0) // This is the case if time_interval >= 20
if (time_interval == 0) {
outbidAmount = b.multipliedBy("1.05")
} else if (time_interval <= 19) {
const t60 = BigNumber(time_interval).multipliedBy("0.05").exponentiatedBy(60)
outbidAmount = b.multipliedBy("1.05").multipliedBy(BigNumber(1).minus(t60))
}
const new_bid = lptokens.plus(outbidAmount).dividedBy(
BigNumber(25).dividedBy(tfee_decimal).minus(1)
).plus(outbidAmount)
// Significant digits for the deposit are limited by total LPTokens issued
// so we calculate lptokens + deposit - lptokens to determine where the
// rounding occurs. We use ceiling/floor to make sure the amount we receive
// after rounding is still enough to win the auction slot.
const rounded_bid = new_bid.plus(lptokens).precision(15, BigNumber.CEILING
).minus(lptokens).precision(15, BigNumber.FLOOR)
return rounded_bid
}
/* Calculate the necessary bid to win the AMM Auction slot, per the pricing
* algorithm defined in XLS-30 section 4.1.1, if you already hold LP Tokens.
*
* NOT USED in the Auction Slot tutorial, which assumes the user does not hold
* any LP Tokens.
*
* @returns BigNumber - the minimum amount of LP tokens to win the auction slot
*/
function auctionPrice(old_bid, time_interval, trading_fee, lpt_balance) {
const tfee_decimal = feeDecimal(trading_fee)
const lptokens = BigNumber(lpt_balance)
const min_bid = lptokens.multipliedBy(tfee_decimal).dividedBy(25)
const b = BigNumber(old_bid)
let new_bid = min_bid
if (time_interval == 0) {
new_bid = b.multipliedBy("1.05").plus(min_bid)
} else if (time_interval <= 19) {
const t60 = BigNumber(time_interval).multipliedBy("0.05"
).exponentiatedBy(60)
new_bid = b.multipliedBy("1.05").multipliedBy(
BigNumber(1).minus(t60)
).plus(min_bid)
}
const rounded_bid = new_bid.plus(lptokens).precision(15, BigNumber.CEILING
).minus(lptokens).precision(15, BigNumber.FLOOR)
return rounded_bid
}