Merge pull request #2578 from mDuo13/amm_trade_tutorial

Add tutorial on using Auction Slot to save on AMM fees
This commit is contained in:
Rome Reginelli
2024-06-21 17:30:54 -07:00
committed by GitHub
8 changed files with 572 additions and 0 deletions

View File

@@ -0,0 +1,163 @@
const BigNumber = require('bignumber.js')
/* Convert a trading fee to a value that can be multiplied
* by a total to "subtract" the fee from the total.
* @param tFee int {0, 1000}
* such that 1 = 1/100,000 and 1000 = 1% fee
* @returns BigNumber (1 - fee) as a decimal
*/
function feeMult(tFee) {
return BigNumber(1).minus( feeDecimal(tFee) )
}
/* Same as feeMult, but with half the trading fee. Single-asset deposits and
* withdrawals use this because half of the deposit is treated as being
* "swapped" for the other asset in the AMM's pool.
* @param tFee int {0, 1000}
* such that 1 = 1/100,000 and 1000 = 1% fee
* @returns BigNumber (1 - (fee/2)) as a decimal
*/
function feeMultHalf(tFee) {
return BigNumber(1).minus( feeDecimal(tFee).dividedBy(2) )
}
/* Convert a trading fee to a decimal BigNumber value,
* for example 1000 becomes 0.01
* @param tFee int {0, 1000}
* such that 1 = 1/100,000 and 1000 = 1% fee
* @returns BigNumber(fee) as a decimal
*/
function feeDecimal(tFee) {
const AUCTION_SLOT_FEE_SCALE_FACTOR = 100000
return BigNumber(tFee).dividedBy(AUCTION_SLOT_FEE_SCALE_FACTOR)
}
/* Implement the AMM SwapOut formula, as defined in XLS-30 section 2.4 AMM
* Swap, formula 10. The asset weights WA/WB are currently always 1/1 so
* they're canceled out.
* C++ source: https://github.com/XRPLF/rippled/blob/2d1854f354ff8bb2b5671fd51252c5acd837c433/src/ripple/app/misc/AMMHelpers.h#L253-L258
* @param asset_out_bn BigNumber - The target amount to receive from the AMM.
* @param pool_in_bn BigNumber - The amount of the input asset in the AMM's
* pool before the swap.
* @param pool_out_bn BigNumber - The amount of the output asset in the AMM's
* pool before the swap.
* @param trading_fee int - The trading fee as an integer {0, 1000} where 1000
* represents a 1% fee.
* @returns BigNumber - The amount of the input asset that must be swapped in
* to receive the target output amount. Unrounded, because
* the number of decimals depends on if this is drops of
* XRP or a decimal amount of a token; since this is a
* theoretical input to the pool, it should be rounded
* up (ceiling) to preserve the pool's constant product.
*/
function swapOut(asset_out_bn, pool_in_bn, pool_out_bn, trading_fee) {
return ( ( pool_in_bn.multipliedBy(pool_out_bn) ).dividedBy(
pool_out_bn.minus(asset_out_bn)
).minus(pool_in_bn)
).dividedBy(feeMult(trading_fee))
}
/* Compute the quadratic formula. Helper function for ammAssetIn.
* Params and return value are BigNumber instances.
*/
function solveQuadraticEq(a,b,c) {
const b2minus4ac = b.multipliedBy(b).minus(
a.multipliedBy(c).multipliedBy(4)
)
return ( b.negated().plus(b2minus4ac.sqrt()) ).dividedBy(a.multipliedBy(2))
}
/* Implement the AMM single-asset deposit formula to calculate how much to
* put in so that you receive a specific number of LP Tokens back.
* C++ source: https://github.com/XRPLF/rippled/blob/2d1854f354ff8bb2b5671fd51252c5acd837c433/src/ripple/app/misc/impl/AMMHelpers.cpp#L55-L83
* @param pool_in string - Quantity of input asset the pool already has
* @param lpt_balance string - Quantity of LP Tokens already issued by the AMM
* @param desired_lpt string - Quantity of new LP Tokens you want to receive
* @param trading_fee int - The trading fee as an integer {0,1000} where 1000
* represents a 1% fee.
*/
function ammAssetIn(pool_in, lpt_balance, desired_lpt, trading_fee) {
// convert inputs to BigNumber
const lpTokens = BigNumber(desired_lpt)
const lptAMMBalance = BigNumber(lpt_balance)
const asset1Balance = BigNumber(pool_in)
const f1 = feeMult(trading_fee)
const f2 = feeMultHalf(trading_fee).dividedBy(f1)
const t1 = lpTokens.dividedBy(lptAMMBalance)
const t2 = t1.plus(1)
const d = f2.minus( t1.dividedBy(t2) )
const a = BigNumber(1).dividedBy( t2.multipliedBy(t2))
const b = BigNumber(2).multipliedBy(d).dividedBy(t2).minus(
BigNumber(1).dividedBy(f1)
)
const c = d.multipliedBy(d).minus( f2.multipliedBy(f2) )
return asset1Balance.multipliedBy(solveQuadraticEq(a,b,c))
}
/* Calculate how much to deposit, in terms of LP Tokens out, to be able to win
* the auction slot. This is based on the slot pricing algorithm defined in
* XLS-30 section 4.1.1, but factors in the increase in the minimum bid as a
* result of having new LP Tokens issued to you from your deposit.
*/
function auctionDeposit(old_bid, time_interval, trading_fee, lpt_balance) {
const tfee_decimal = feeDecimal(trading_fee)
const lptokens = BigNumber(lpt_balance)
const b = BigNumber(old_bid)
let outbidAmount = BigNumber(0) // This is the case if time_interval >= 20
if (time_interval == 0) {
outbidAmount = b.multipliedBy("1.05")
} else if (time_interval <= 19) {
const t60 = BigNumber(time_interval).multipliedBy("0.05").exponentiatedBy(60)
outbidAmount = b.multipliedBy("1.05").multipliedBy(BigNumber(1).minus(t60))
}
const new_bid = lptokens.plus(outbidAmount).dividedBy(
BigNumber(25).dividedBy(tfee_decimal).minus(1)
).plus(outbidAmount)
// Significant digits for the deposit are limited by total LPTokens issued
// so we calculate lptokens + deposit - lptokens to determine where the
// rounding occurs. We use ceiling/floor to make sure the amount we receive
// after rounding is still enough to win the auction slot.
const rounded_bid = new_bid.plus(lptokens).precision(15, BigNumber.CEILING
).minus(lptokens).precision(15, BigNumber.FLOOR)
return rounded_bid
}
/* Calculate the necessary bid to win the AMM Auction slot, per the pricing
* algorithm defined in XLS-30 section 4.1.1, if you already hold LP Tokens.
*
* NOT USED in the Auction Slot tutorial, which assumes the user does not hold
* any LP Tokens.
*
* @returns BigNumber - the minimum amount of LP tokens to win the auction slot
*/
function auctionPrice(old_bid, time_interval, trading_fee, lpt_balance) {
const tfee_decimal = feeDecimal(trading_fee)
const lptokens = BigNumber(lpt_balance)
const min_bid = lptokens.multipliedBy(tfee_decimal).dividedBy(25)
const b = BigNumber(old_bid)
let new_bid = min_bid
if (time_interval == 0) {
new_bid = b.multipliedBy("1.05").plus(min_bid)
} else if (time_interval <= 19) {
const t60 = BigNumber(time_interval).multipliedBy("0.05"
).exponentiatedBy(60)
new_bid = b.multipliedBy("1.05").multipliedBy(
BigNumber(1).minus(t60)
).plus(min_bid)
}
const rounded_bid = new_bid.plus(lptokens).precision(15, BigNumber.CEILING
).minus(lptokens).precision(15, BigNumber.FLOOR)
return rounded_bid
}
module.exports = {
"auctionDeposit": auctionDeposit,
"auctionPrice": auctionPrice,
"ammAssetIn": ammAssetIn,
"swapOut": swapOut,
}

View File

@@ -0,0 +1,170 @@
const xrpl = require('xrpl')
const BigNumber = require('bignumber.js')
const {auctionDeposit, ammAssetIn, swapOut} = require("./amm-formulas.js")
async function main() {
// Connect ----------------------------------------------------------------
const client = new xrpl.Client('wss://s.altnet.rippletest.net:51233')
console.log("Connecting to Testnet...")
await client.connect()
// // Get credentials from the faucet -------------------------------------
console.log("Requesting test XRP from the faucet...")
const wallet = (await client.fundWallet()).wallet
console.log(`Got address ${wallet.address} / seed ${wallet.seed}.`)
// Look up AMM status -----------------------------------------------------
const from_asset = {
"currency": "XRP"
}
const to_asset = {
"currency": "TST",
"issuer": "rP9jPyP5kyvFRb6ZiRghAGw5u8SGAmU4bd"
}
const amm_info = (await client.request({
"command": "amm_info",
"asset": from_asset,
"asset2": to_asset
}))
console.dir(amm_info, {depth: null})
const lpt = amm_info.result.amm.lp_token
// XRP is always first if the pool is token←→XRP.
// For a token←→token AMM, you'd need to figure out which asset is first.
const pool_drops = amm_info.result.amm.amount
const pool_tst = amm_info.result.amm.amount2
const full_trading_fee = amm_info.result.amm.trading_fee
const discounted_fee = amm_info.result.amm.auction_slot.discounted_fee
const old_bid = amm_info.result.amm.auction_slot.price.value
const time_interval = amm_info.result.amm.auction_slot.time_interval
// Calculate price in XRP to get 10 TST from the AMM ----------------------
// Note, this ignores Offers from the non-AMM part of the DEX.
const to_amount = {
"currency": to_asset.currency,
"issuer": to_asset.issuer,
"value": "10.0"
}
// Convert values to BigNumbers with the appropriate precision.
// Tokens always have 15 significant digits;
// XRP is precise to integer drops, which can be as high as 10^17
const asset_out_bn = BigNumber(to_amount.value).precision(15)
const pool_in_bn = BigNumber(pool_drops).precision(17)
const pool_out_bn = BigNumber(pool_tst.value).precision(15)
if (to_amount.value > pool_out_bn) {
console.log(`Requested ${to_amount.value} ${to_amount.currency} ` +
`but AMM only holds ${pool_tst.value}. Quitting.`)
client.disconnect()
return
}
// Use AMM's SwapOut formula to figure out how much XRP we have to pay
// to receive the target amount of TST, under the current trading fee.
const unrounded_amount = swapOut(asset_out_bn, pool_in_bn,
pool_out_bn, full_trading_fee)
// Round XRP to integer drops. Round ceiling to make you pay in enough.
const from_amount = unrounded_amount.dp(0, BigNumber.ROUND_CEIL)
console.log(`Expected cost of ${to_amount.value} ${to_amount.currency}: ` +
`${xrpl.dropsToXrp(from_amount)} XRP`)
// Same calculation, but assume we have access to the discounted trading
// fee from the auction slot.
const raw_discounted = swapOut(asset_out_bn, pool_in_bn, pool_out_bn,
discounted_fee)
const discounted_from_amount = raw_discounted.dp(0, BigNumber.ROUND_CEIL)
console.log(`Expected cost with auction slot discount: `+
`${xrpl.dropsToXrp(discounted_from_amount)} XRP`)
// The potential savings is the difference between the necessary input
// amounts with the full vs discounted fee.
const potential_savings = from_amount.minus(discounted_from_amount)
console.log(`Potential savings: ${xrpl.dropsToXrp(potential_savings)} XRP`)
// Calculate the cost of winning the auction slot, in LP Tokens -----------
const auction_price = auctionDeposit(old_bid, time_interval,
full_trading_fee, lpt.value
).precision(15)
console.log(`Auction price after deposit: ${auction_price} LP Tokens`)
// Calculate how much XRP to deposit to receive that many LP Tokens -------
const deposit_for_bid = ammAssetIn(pool_in_bn, lpt.value, auction_price,
full_trading_fee
).dp(0, BigNumber.ROUND_CEIL)
console.log(`Auction price as XRP single-asset deposit amount: `+
`${xrpl.dropsToXrp(deposit_for_bid)} XRP`)
// Optional. Allow for costs to be 1% greater than estimated, in case other
// transactions affect the same AMM during this time.
const SLIPPAGE_MULT = BigNumber(1.01)
const deposit_max = deposit_for_bid.multipliedBy(SLIPPAGE_MULT).dp(0)
// Compare price of deposit+bid with potential savings. -------------------
// Don't forget XRP burned as transaction costs.
const fee_response = (await client.request({"command":"fee"}))
const tx_cost_drops = BigNumber(fee_response.result.drops.minimum_fee
).multipliedBy(client.feeCushion).dp(0)
const net_savings = potential_savings.minus(
tx_cost_drops.multipliedBy(2).plus(deposit_max)
)
if (net_savings > 0) {
console.log(`Estimated net savings from the auction slot: ` +
`${xrpl.dropsToXrp(net_savings)} XRP`)
} else {
console.log(`Estimated the auction slot to be MORE EXPENSIVE by `+
`${xrpl.dropsToXrp(net_savings.negated())} XRP. Quitting.`)
client.disconnect()
return
}
// Do a single-asset deposit to get LP Tokens to bid on the auction slot --
const auction_bid = {
"currency": lpt.currency,
"issuer": lpt.issuer,
"value": auction_price.toString()
}
const deposit_result = await client.submitAndWait({
"TransactionType": "AMMDeposit",
"Account": wallet.address,
"Asset": from_asset,
"Asset2": to_asset,
"Amount": deposit_max.toString(),
"LPTokenOut": auction_bid,
"Flags": xrpl.AMMDepositFlags.tfOneAssetLPToken
}, {autofill: true, wallet: wallet}
)
console.log("Deposit result:")
console.dir(deposit_result, {depth: null})
// Actually bid on the auction slot ---------------------------------------
const bid_result = await client.submitAndWait({
"TransactionType": "AMMBid",
"Account": wallet.address,
"Asset": from_asset,
"Asset2": to_asset,
"BidMax": auction_bid,
"BidMin": auction_bid, // So rounding doesn't leave dust amounts of LPT
}, {autofill: true, wallet: wallet}
)
console.log("Bid result:")
console.dir(bid_result, {depth: null})
// Trade using the discount -----------------------------------------------
const spend_drops = discounted_from_amount.multipliedBy(SLIPPAGE_MULT
).dp(0).toString()
const offer_result = await client.submitAndWait({
"TransactionType": "OfferCreate",
"Account": wallet.address,
"TakerPays": to_amount,
"TakerGets": spend_drops
}, {autofill: true, wallet: wallet})
console.log("Offer result:")
console.dir(offer_result, {depth: null})
console.log("Offer balance changes summary:")
console.dir(xrpl.getBalanceChanges(offer_result.result.meta), {depth:null})
// Done.
client.disconnect()
} // End of main()
main()

View File

View File

@@ -0,0 +1,6 @@
{
"dependencies": {
"xrpl": "^3.0.0",
"bignumber.js": "^9.0.0"
}
}