Files
xahaud/include/xrpl/basics/Number.h
Elliot Lee 329c0ab1e1 Add a new serialized type: STNumber (#5121)
`STNumber` lets objects and transactions contain multiple fields for
quantities of XRP, IOU, or MPT without duplicating information about the
"issue" (represented by `STIssue`). It is a straightforward serialization of
the `Number` type that uniformly represents those quantities.

---------

Co-authored-by: John Freeman <jfreeman08@gmail.com>
Co-authored-by: Howard Hinnant <howard.hinnant@gmail.com>
2025-06-19 10:21:07 +09:00

428 lines
9.5 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2022 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_BASICS_NUMBER_H_INCLUDED
#define RIPPLE_BASICS_NUMBER_H_INCLUDED
#include <xrpl/basics/MPTAmount.h>
#include <xrpl/basics/XRPAmount.h>
#include <cstdint>
#include <limits>
#include <ostream>
#include <string>
namespace ripple {
class Number;
std::string
to_string(Number const& amount);
class Number
{
using rep = std::int64_t;
rep mantissa_{0};
int exponent_{std::numeric_limits<int>::lowest()};
public:
// The range for the mantissa when normalized
constexpr static std::int64_t minMantissa = 1'000'000'000'000'000LL;
constexpr static std::int64_t maxMantissa = 9'999'999'999'999'999LL;
// The range for the exponent when normalized
constexpr static int minExponent = -32768;
constexpr static int maxExponent = 32768;
struct unchecked
{
explicit unchecked() = default;
};
explicit constexpr Number() = default;
Number(rep mantissa);
explicit Number(rep mantissa, int exponent);
explicit constexpr Number(rep mantissa, int exponent, unchecked) noexcept;
Number(XRPAmount const& x);
Number(MPTAmount const& x);
constexpr rep
mantissa() const noexcept;
constexpr int
exponent() const noexcept;
constexpr Number
operator+() const noexcept;
constexpr Number
operator-() const noexcept;
Number&
operator++();
Number
operator++(int);
Number&
operator--();
Number
operator--(int);
Number&
operator+=(Number const& x);
Number&
operator-=(Number const& x);
Number&
operator*=(Number const& x);
Number&
operator/=(Number const& x);
static constexpr Number
min() noexcept;
static constexpr Number
max() noexcept;
static constexpr Number
lowest() noexcept;
/** Conversions to Number are implicit and conversions away from Number
* are explicit. This design encourages and facilitates the use of Number
* as the preferred type for floating point arithmetic as it makes
* "mixed mode" more convenient, e.g. MPTAmount + Number.
*/
explicit
operator XRPAmount() const; // round to nearest, even on tie
explicit
operator MPTAmount() const; // round to nearest, even on tie
explicit
operator rep() const; // round to nearest, even on tie
friend constexpr bool
operator==(Number const& x, Number const& y) noexcept
{
return x.mantissa_ == y.mantissa_ && x.exponent_ == y.exponent_;
}
friend constexpr bool
operator!=(Number const& x, Number const& y) noexcept
{
return !(x == y);
}
friend constexpr bool
operator<(Number const& x, Number const& y) noexcept
{
// If the two amounts have different signs (zero is treated as positive)
// then the comparison is true iff the left is negative.
bool const lneg = x.mantissa_ < 0;
bool const rneg = y.mantissa_ < 0;
if (lneg != rneg)
return lneg;
// Both have same sign and the left is zero: the right must be
// greater than 0.
if (x.mantissa_ == 0)
return y.mantissa_ > 0;
// Both have same sign, the right is zero and the left is non-zero.
if (y.mantissa_ == 0)
return false;
// Both have the same sign, compare by exponents:
if (x.exponent_ > y.exponent_)
return lneg;
if (x.exponent_ < y.exponent_)
return !lneg;
// If equal exponents, compare mantissas
return x.mantissa_ < y.mantissa_;
}
/** Return the sign of the amount */
constexpr int
signum() const noexcept
{
return (mantissa_ < 0) ? -1 : (mantissa_ ? 1 : 0);
}
friend constexpr bool
operator>(Number const& x, Number const& y) noexcept
{
return y < x;
}
friend constexpr bool
operator<=(Number const& x, Number const& y) noexcept
{
return !(y < x);
}
friend constexpr bool
operator>=(Number const& x, Number const& y) noexcept
{
return !(x < y);
}
friend std::ostream&
operator<<(std::ostream& os, Number const& x)
{
return os << to_string(x);
}
// Thread local rounding control. Default is to_nearest
enum rounding_mode { to_nearest, towards_zero, downward, upward };
static rounding_mode
getround();
// Returns previously set mode
static rounding_mode
setround(rounding_mode mode);
private:
static thread_local rounding_mode mode_;
void
normalize();
constexpr bool
isnormal() const noexcept;
class Guard;
};
inline constexpr Number::Number(rep mantissa, int exponent, unchecked) noexcept
: mantissa_{mantissa}, exponent_{exponent}
{
}
inline Number::Number(rep mantissa, int exponent)
: mantissa_{mantissa}, exponent_{exponent}
{
normalize();
}
inline Number::Number(rep mantissa) : Number{mantissa, 0}
{
}
inline Number::Number(XRPAmount const& x) : Number{x.drops()}
{
}
inline Number::Number(MPTAmount const& x) : Number{x.value()}
{
}
inline constexpr Number::rep
Number::mantissa() const noexcept
{
return mantissa_;
}
inline constexpr int
Number::exponent() const noexcept
{
return exponent_;
}
inline constexpr Number
Number::operator+() const noexcept
{
return *this;
}
inline constexpr Number
Number::operator-() const noexcept
{
auto x = *this;
x.mantissa_ = -x.mantissa_;
return x;
}
inline Number&
Number::operator++()
{
*this += Number{1000000000000000, -15, unchecked{}};
return *this;
}
inline Number
Number::operator++(int)
{
auto x = *this;
++(*this);
return x;
}
inline Number&
Number::operator--()
{
*this -= Number{1000000000000000, -15, unchecked{}};
return *this;
}
inline Number
Number::operator--(int)
{
auto x = *this;
--(*this);
return x;
}
inline Number&
Number::operator-=(Number const& x)
{
return *this += -x;
}
inline Number
operator+(Number const& x, Number const& y)
{
auto z = x;
z += y;
return z;
}
inline Number
operator-(Number const& x, Number const& y)
{
auto z = x;
z -= y;
return z;
}
inline Number
operator*(Number const& x, Number const& y)
{
auto z = x;
z *= y;
return z;
}
inline Number
operator/(Number const& x, Number const& y)
{
auto z = x;
z /= y;
return z;
}
inline constexpr Number
Number::min() noexcept
{
return Number{minMantissa, minExponent, unchecked{}};
}
inline constexpr Number
Number::max() noexcept
{
return Number{maxMantissa, maxExponent, unchecked{}};
}
inline constexpr Number
Number::lowest() noexcept
{
return -Number{maxMantissa, maxExponent, unchecked{}};
}
inline constexpr bool
Number::isnormal() const noexcept
{
auto const abs_m = mantissa_ < 0 ? -mantissa_ : mantissa_;
return minMantissa <= abs_m && abs_m <= maxMantissa &&
minExponent <= exponent_ && exponent_ <= maxExponent;
}
inline constexpr Number
abs(Number x) noexcept
{
if (x < Number{})
x = -x;
return x;
}
// Returns f^n
// Uses a log_2(n) number of multiplications
Number
power(Number const& f, unsigned n);
// Returns f^(1/d)
// Uses NewtonRaphson iterations until the result stops changing
// to find the root of the polynomial g(x) = x^d - f
Number
root(Number f, unsigned d);
Number
root2(Number f);
// Returns f^(n/d)
Number
power(Number const& f, unsigned n, unsigned d);
// Return 0 if abs(x) < limit, else returns x
inline constexpr Number
squelch(Number const& x, Number const& limit) noexcept
{
if (abs(x) < limit)
return Number{};
return x;
}
class saveNumberRoundMode
{
Number::rounding_mode mode_;
public:
~saveNumberRoundMode()
{
Number::setround(mode_);
}
explicit saveNumberRoundMode(Number::rounding_mode mode) noexcept
: mode_{mode}
{
}
saveNumberRoundMode(saveNumberRoundMode const&) = delete;
saveNumberRoundMode&
operator=(saveNumberRoundMode const&) = delete;
};
// saveNumberRoundMode doesn't do quite enough for us. What we want is a
// Number::RoundModeGuard that sets the new mode and restores the old mode
// when it leaves scope. Since Number doesn't have that facility, we'll
// build it here.
class NumberRoundModeGuard
{
saveNumberRoundMode saved_;
public:
explicit NumberRoundModeGuard(Number::rounding_mode mode) noexcept
: saved_{Number::setround(mode)}
{
}
NumberRoundModeGuard(NumberRoundModeGuard const&) = delete;
NumberRoundModeGuard&
operator=(NumberRoundModeGuard const&) = delete;
};
} // namespace ripple
#endif // RIPPLE_BASICS_NUMBER_H_INCLUDED