mirror of
https://github.com/Xahau/xahaud.git
synced 2025-12-06 17:27:52 +00:00
* Fix AMM offer rounding and low quality LOB offer blocking AMM: A single-path AMM offer with account offer on DEX, is always generated starting with the takerPays first, which is rounded up, and then the takerGets, which is rounded down. This rounding ensures that the pool's product invariant is maintained. However, when one of the offer's side is XRP, this rounding can result in the AMM offer having a lower quality, potentially causing offer generation to fail if the quality is lower than the account's offer quality. To address this issue, the proposed fix adjusts the offer generation process to start with the XRP side first and always rounds it down. This results in a smaller offer size, improving the offer's quality. Regardless if the offer has XRP or not, the rounding is done so that the offer size is minimized. This change still ensures the product invariant, as the other generated side is the exact result of the swap-in or swap-out equations. If a liquidity can be provided by both AMM and LOB offer on offer crossing then AMM offer is generated so that it matches LOB offer quality. If LOB offer quality is less than limit quality then generated AMM offer quality is also less than limit quality and the offer doesn't cross. To address this issue, if LOB quality is better than limit quality then use LOB quality to generate AMM offer. Otherwise, don't use the quality to generate AMM offer. In this case, limitOut() function in StrandFlow limits the out amount to match strand's quality to limit quality and consume maximum AMM liquidity.
222 lines
6.9 KiB
C++
222 lines
6.9 KiB
C++
//------------------------------------------------------------------------------
|
|
/*
|
|
This file is part of rippled: https://github.com/ripple/rippled
|
|
Copyright (c) 2023 Ripple Labs Inc.
|
|
|
|
Permission to use, copy, modify, and/or distribute this software for any
|
|
purpose with or without fee is hereby granted, provided that the above
|
|
copyright notice and this permission notice appear in all copies.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
|
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
|
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
//==============================================================================
|
|
|
|
#include <ripple/app/misc/AMMHelpers.h>
|
|
|
|
namespace ripple {
|
|
|
|
STAmount
|
|
ammLPTokens(
|
|
STAmount const& asset1,
|
|
STAmount const& asset2,
|
|
Issue const& lptIssue)
|
|
{
|
|
auto const tokens = root2(asset1 * asset2);
|
|
return toSTAmount(lptIssue, tokens);
|
|
}
|
|
|
|
/*
|
|
* Equation 3:
|
|
* t = T * [(b/B - (sqrt(f2**2 - b/(B*f1)) - f2)) /
|
|
* (1 + sqrt(f2**2 - b/(B*f1)) - f2)]
|
|
* where f1 = 1 - tfee, f2 = (1 - tfee/2)/f1
|
|
*/
|
|
STAmount
|
|
lpTokensIn(
|
|
STAmount const& asset1Balance,
|
|
STAmount const& asset1Deposit,
|
|
STAmount const& lptAMMBalance,
|
|
std::uint16_t tfee)
|
|
{
|
|
auto const f1 = feeMult(tfee);
|
|
auto const f2 = feeMultHalf(tfee) / f1;
|
|
Number const r = asset1Deposit / asset1Balance;
|
|
auto const c = root2(f2 * f2 + r / f1) - f2;
|
|
auto const t = lptAMMBalance * (r - c) / (1 + c);
|
|
return toSTAmount(lptAMMBalance.issue(), t);
|
|
}
|
|
|
|
/* Equation 4 solves equation 3 for b:
|
|
* Let f1 = 1 - tfee, f2 = (1 - tfee/2)/f1, t1 = t/T, t2 = 1 + t1, R = b/B
|
|
* then
|
|
* t1 = [R - sqrt(f2**2 + R/f1) + f2] / [1 + sqrt(f2**2 + R/f1] - f2] =>
|
|
* sqrt(f2**2 + R/f1)*(t1 + 1) = R + f2 + t1*f2 - t1 =>
|
|
* sqrt(f2**2 + R/f1)*t2 = R + t2*f2 - t1 =>
|
|
* sqrt(f2**2 + R/f1) = R/t2 + f2 - t1/t2, let d = f2 - t1/t2 =>
|
|
* sqrt(f2**2 + R/f1) = R/t2 + d =>
|
|
* f2**2 + R/f1 = (R/t2)**2 +2*d*R/t2 + d**2 =>
|
|
* (R/t2)**2 + R*(2*d/t2 - 1/f1) + d**2 - f2**2 = 0
|
|
*/
|
|
STAmount
|
|
ammAssetIn(
|
|
STAmount const& asset1Balance,
|
|
STAmount const& lptAMMBalance,
|
|
STAmount const& lpTokens,
|
|
std::uint16_t tfee)
|
|
{
|
|
auto const f1 = feeMult(tfee);
|
|
auto const f2 = feeMultHalf(tfee) / f1;
|
|
auto const t1 = lpTokens / lptAMMBalance;
|
|
auto const t2 = 1 + t1;
|
|
auto const d = f2 - t1 / t2;
|
|
auto const a = 1 / (t2 * t2);
|
|
auto const b = 2 * d / t2 - 1 / f1;
|
|
auto const c = d * d - f2 * f2;
|
|
return toSTAmount(
|
|
asset1Balance.issue(), asset1Balance * solveQuadraticEq(a, b, c));
|
|
}
|
|
|
|
/* Equation 7:
|
|
* t = T * (c - sqrt(c**2 - 4*R))/2
|
|
* where R = b/B, c = R*fee + 2 - fee
|
|
*/
|
|
STAmount
|
|
lpTokensOut(
|
|
STAmount const& asset1Balance,
|
|
STAmount const& asset1Withdraw,
|
|
STAmount const& lptAMMBalance,
|
|
std::uint16_t tfee)
|
|
{
|
|
Number const fr = asset1Withdraw / asset1Balance;
|
|
auto const f1 = getFee(tfee);
|
|
auto const c = fr * f1 + 2 - f1;
|
|
auto const t = lptAMMBalance * (c - root2(c * c - 4 * fr)) / 2;
|
|
return toSTAmount(lptAMMBalance.issue(), t);
|
|
}
|
|
|
|
/* Equation 8 solves equation 7 for b:
|
|
* c - 2*t/T = sqrt(c**2 - 4*R) =>
|
|
* c**2 - 4*c*t/T + 4*t**2/T**2 = c**2 - 4*R =>
|
|
* -4*c*t/T + 4*t**2/T**2 = -4*R =>
|
|
* -c*t/T + t**2/T**2 = -R -=>
|
|
* substitute c = R*f + 2 - f =>
|
|
* -(t/T)*(R*f + 2 - f) + (t/T)**2 = -R, let t1 = t/T =>
|
|
* -t1*R*f -2*t1 +t1*f +t1**2 = -R =>
|
|
* R = (t1**2 + t1*(f - 2)) / (t1*f - 1)
|
|
*/
|
|
STAmount
|
|
withdrawByTokens(
|
|
STAmount const& assetBalance,
|
|
STAmount const& lptAMMBalance,
|
|
STAmount const& lpTokens,
|
|
std::uint16_t tfee)
|
|
{
|
|
auto const f = getFee(tfee);
|
|
Number const t1 = lpTokens / lptAMMBalance;
|
|
auto const b = assetBalance * (t1 * t1 - t1 * (2 - f)) / (t1 * f - 1);
|
|
return toSTAmount(assetBalance.issue(), b);
|
|
}
|
|
|
|
Number
|
|
square(Number const& n)
|
|
{
|
|
return n * n;
|
|
}
|
|
|
|
STAmount
|
|
adjustLPTokens(
|
|
STAmount const& lptAMMBalance,
|
|
STAmount const& lpTokens,
|
|
bool isDeposit)
|
|
{
|
|
// Force rounding downward to ensure adjusted tokens are less or equal
|
|
// to requested tokens.
|
|
saveNumberRoundMode rm(Number::setround(Number::rounding_mode::downward));
|
|
if (isDeposit)
|
|
return (lptAMMBalance + lpTokens) - lptAMMBalance;
|
|
return (lpTokens - lptAMMBalance) + lptAMMBalance;
|
|
}
|
|
|
|
std::tuple<STAmount, std::optional<STAmount>, STAmount>
|
|
adjustAmountsByLPTokens(
|
|
STAmount const& amountBalance,
|
|
STAmount const& amount,
|
|
std::optional<STAmount> const& amount2,
|
|
STAmount const& lptAMMBalance,
|
|
STAmount const& lpTokens,
|
|
std::uint16_t tfee,
|
|
bool isDeposit)
|
|
{
|
|
auto const lpTokensActual =
|
|
adjustLPTokens(lptAMMBalance, lpTokens, isDeposit);
|
|
|
|
if (lpTokensActual == beast::zero)
|
|
{
|
|
auto const amount2Opt =
|
|
amount2 ? std::make_optional(STAmount{}) : std::nullopt;
|
|
return std::make_tuple(STAmount{}, amount2Opt, lpTokensActual);
|
|
}
|
|
|
|
if (lpTokensActual < lpTokens)
|
|
{
|
|
// Equal trade
|
|
if (amount2)
|
|
{
|
|
Number const fr = lpTokensActual / lpTokens;
|
|
auto const amountActual = toSTAmount(amount.issue(), fr * amount);
|
|
auto const amount2Actual =
|
|
toSTAmount(amount2->issue(), fr * *amount2);
|
|
return std::make_tuple(
|
|
amountActual < amount ? amountActual : amount,
|
|
amount2Actual < amount2 ? amount2Actual : amount2,
|
|
lpTokensActual);
|
|
}
|
|
|
|
// Single trade
|
|
auto const amountActual = [&]() {
|
|
if (isDeposit)
|
|
return ammAssetIn(
|
|
amountBalance, lptAMMBalance, lpTokensActual, tfee);
|
|
else
|
|
return withdrawByTokens(
|
|
amountBalance, lptAMMBalance, lpTokens, tfee);
|
|
}();
|
|
return amountActual < amount
|
|
? std::make_tuple(amountActual, std::nullopt, lpTokensActual)
|
|
: std::make_tuple(amount, std::nullopt, lpTokensActual);
|
|
}
|
|
|
|
assert(lpTokensActual == lpTokens);
|
|
|
|
return {amount, amount2, lpTokensActual};
|
|
}
|
|
|
|
Number
|
|
solveQuadraticEq(Number const& a, Number const& b, Number const& c)
|
|
{
|
|
return (-b + root2(b * b - 4 * a * c)) / (2 * a);
|
|
}
|
|
|
|
// Minimize takerGets or takerPays
|
|
std::optional<Number>
|
|
solveQuadraticEqSmallest(Number const& a, Number const& b, Number const& c)
|
|
{
|
|
auto const d = b * b - 4 * a * c;
|
|
if (d < 0)
|
|
return std::nullopt;
|
|
// use numerically stable citardauq formula for quadratic equation solution
|
|
// https://people.csail.mit.edu/bkph/articles/Quadratics.pdf
|
|
if (b > 0)
|
|
return (2 * c) / (-b - root2(d));
|
|
else
|
|
return (2 * c) / (-b + root2(d));
|
|
}
|
|
|
|
} // namespace ripple
|