Files
xahaud/src/ripple/app/misc/impl/AMMHelpers.cpp
Gregory Tsipenyuk e1f2e62c08 Add the fixAMMOfferRounding amendment: (#4983)
* Fix AMM offer rounding and low quality LOB offer blocking AMM:

A single-path AMM offer with account offer on DEX, is always generated
starting with the takerPays first, which is rounded up, and then
the takerGets, which is rounded down. This rounding ensures that the pool's
product invariant is maintained. However, when one of the offer's side
is XRP, this rounding can result in the AMM offer having a lower
quality, potentially causing offer generation to fail if the quality
is lower than the account's offer quality.

To address this issue, the proposed fix adjusts the offer generation process
to start with the XRP side first and always rounds it down. This results
in a smaller offer size, improving the offer's quality. Regardless if the offer
has XRP or not, the rounding is done so that the offer size is minimized.
This change still ensures the product invariant, as the other generated
side is the exact result of the swap-in or swap-out equations.

If a liquidity can be provided by both AMM and LOB offer on offer crossing
then AMM offer is generated so that it matches LOB offer quality. If LOB
offer quality is less than limit quality then generated AMM offer quality
is also less than limit quality and the offer doesn't cross. To address
this issue, if LOB quality is better than limit quality then use LOB
quality to generate AMM offer. Otherwise, don't use the quality to generate
AMM offer. In this case, limitOut() function in StrandFlow limits
the out amount to match strand's quality to limit quality and consume
maximum AMM liquidity.
2025-06-17 12:32:21 +09:00

222 lines
6.9 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2023 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <ripple/app/misc/AMMHelpers.h>
namespace ripple {
STAmount
ammLPTokens(
STAmount const& asset1,
STAmount const& asset2,
Issue const& lptIssue)
{
auto const tokens = root2(asset1 * asset2);
return toSTAmount(lptIssue, tokens);
}
/*
* Equation 3:
* t = T * [(b/B - (sqrt(f2**2 - b/(B*f1)) - f2)) /
* (1 + sqrt(f2**2 - b/(B*f1)) - f2)]
* where f1 = 1 - tfee, f2 = (1 - tfee/2)/f1
*/
STAmount
lpTokensIn(
STAmount const& asset1Balance,
STAmount const& asset1Deposit,
STAmount const& lptAMMBalance,
std::uint16_t tfee)
{
auto const f1 = feeMult(tfee);
auto const f2 = feeMultHalf(tfee) / f1;
Number const r = asset1Deposit / asset1Balance;
auto const c = root2(f2 * f2 + r / f1) - f2;
auto const t = lptAMMBalance * (r - c) / (1 + c);
return toSTAmount(lptAMMBalance.issue(), t);
}
/* Equation 4 solves equation 3 for b:
* Let f1 = 1 - tfee, f2 = (1 - tfee/2)/f1, t1 = t/T, t2 = 1 + t1, R = b/B
* then
* t1 = [R - sqrt(f2**2 + R/f1) + f2] / [1 + sqrt(f2**2 + R/f1] - f2] =>
* sqrt(f2**2 + R/f1)*(t1 + 1) = R + f2 + t1*f2 - t1 =>
* sqrt(f2**2 + R/f1)*t2 = R + t2*f2 - t1 =>
* sqrt(f2**2 + R/f1) = R/t2 + f2 - t1/t2, let d = f2 - t1/t2 =>
* sqrt(f2**2 + R/f1) = R/t2 + d =>
* f2**2 + R/f1 = (R/t2)**2 +2*d*R/t2 + d**2 =>
* (R/t2)**2 + R*(2*d/t2 - 1/f1) + d**2 - f2**2 = 0
*/
STAmount
ammAssetIn(
STAmount const& asset1Balance,
STAmount const& lptAMMBalance,
STAmount const& lpTokens,
std::uint16_t tfee)
{
auto const f1 = feeMult(tfee);
auto const f2 = feeMultHalf(tfee) / f1;
auto const t1 = lpTokens / lptAMMBalance;
auto const t2 = 1 + t1;
auto const d = f2 - t1 / t2;
auto const a = 1 / (t2 * t2);
auto const b = 2 * d / t2 - 1 / f1;
auto const c = d * d - f2 * f2;
return toSTAmount(
asset1Balance.issue(), asset1Balance * solveQuadraticEq(a, b, c));
}
/* Equation 7:
* t = T * (c - sqrt(c**2 - 4*R))/2
* where R = b/B, c = R*fee + 2 - fee
*/
STAmount
lpTokensOut(
STAmount const& asset1Balance,
STAmount const& asset1Withdraw,
STAmount const& lptAMMBalance,
std::uint16_t tfee)
{
Number const fr = asset1Withdraw / asset1Balance;
auto const f1 = getFee(tfee);
auto const c = fr * f1 + 2 - f1;
auto const t = lptAMMBalance * (c - root2(c * c - 4 * fr)) / 2;
return toSTAmount(lptAMMBalance.issue(), t);
}
/* Equation 8 solves equation 7 for b:
* c - 2*t/T = sqrt(c**2 - 4*R) =>
* c**2 - 4*c*t/T + 4*t**2/T**2 = c**2 - 4*R =>
* -4*c*t/T + 4*t**2/T**2 = -4*R =>
* -c*t/T + t**2/T**2 = -R -=>
* substitute c = R*f + 2 - f =>
* -(t/T)*(R*f + 2 - f) + (t/T)**2 = -R, let t1 = t/T =>
* -t1*R*f -2*t1 +t1*f +t1**2 = -R =>
* R = (t1**2 + t1*(f - 2)) / (t1*f - 1)
*/
STAmount
withdrawByTokens(
STAmount const& assetBalance,
STAmount const& lptAMMBalance,
STAmount const& lpTokens,
std::uint16_t tfee)
{
auto const f = getFee(tfee);
Number const t1 = lpTokens / lptAMMBalance;
auto const b = assetBalance * (t1 * t1 - t1 * (2 - f)) / (t1 * f - 1);
return toSTAmount(assetBalance.issue(), b);
}
Number
square(Number const& n)
{
return n * n;
}
STAmount
adjustLPTokens(
STAmount const& lptAMMBalance,
STAmount const& lpTokens,
bool isDeposit)
{
// Force rounding downward to ensure adjusted tokens are less or equal
// to requested tokens.
saveNumberRoundMode rm(Number::setround(Number::rounding_mode::downward));
if (isDeposit)
return (lptAMMBalance + lpTokens) - lptAMMBalance;
return (lpTokens - lptAMMBalance) + lptAMMBalance;
}
std::tuple<STAmount, std::optional<STAmount>, STAmount>
adjustAmountsByLPTokens(
STAmount const& amountBalance,
STAmount const& amount,
std::optional<STAmount> const& amount2,
STAmount const& lptAMMBalance,
STAmount const& lpTokens,
std::uint16_t tfee,
bool isDeposit)
{
auto const lpTokensActual =
adjustLPTokens(lptAMMBalance, lpTokens, isDeposit);
if (lpTokensActual == beast::zero)
{
auto const amount2Opt =
amount2 ? std::make_optional(STAmount{}) : std::nullopt;
return std::make_tuple(STAmount{}, amount2Opt, lpTokensActual);
}
if (lpTokensActual < lpTokens)
{
// Equal trade
if (amount2)
{
Number const fr = lpTokensActual / lpTokens;
auto const amountActual = toSTAmount(amount.issue(), fr * amount);
auto const amount2Actual =
toSTAmount(amount2->issue(), fr * *amount2);
return std::make_tuple(
amountActual < amount ? amountActual : amount,
amount2Actual < amount2 ? amount2Actual : amount2,
lpTokensActual);
}
// Single trade
auto const amountActual = [&]() {
if (isDeposit)
return ammAssetIn(
amountBalance, lptAMMBalance, lpTokensActual, tfee);
else
return withdrawByTokens(
amountBalance, lptAMMBalance, lpTokens, tfee);
}();
return amountActual < amount
? std::make_tuple(amountActual, std::nullopt, lpTokensActual)
: std::make_tuple(amount, std::nullopt, lpTokensActual);
}
assert(lpTokensActual == lpTokens);
return {amount, amount2, lpTokensActual};
}
Number
solveQuadraticEq(Number const& a, Number const& b, Number const& c)
{
return (-b + root2(b * b - 4 * a * c)) / (2 * a);
}
// Minimize takerGets or takerPays
std::optional<Number>
solveQuadraticEqSmallest(Number const& a, Number const& b, Number const& c)
{
auto const d = b * b - 4 * a * c;
if (d < 0)
return std::nullopt;
// use numerically stable citardauq formula for quadratic equation solution
// https://people.csail.mit.edu/bkph/articles/Quadratics.pdf
if (b > 0)
return (2 * c) / (-b - root2(d));
else
return (2 * c) / (-b + root2(d));
}
} // namespace ripple