Files
xahaud/src/ripple/protocol/impl/SecretKey.cpp
Nikolaos D. Bougalis d5f981f5fc Address issues identified by external review:
* RIPD-1617, RIPD-1619, RIPD-1621:
  Verify serialized public keys more strictly before
  using them.

* RIPD-1618:
    * Simplify the base58 decoder logic.
    * Reduce the complexity of the base58 encoder and
      eliminate a potential out-of-bounds memory access.
    * Improve type safety by using an `enum class` to
      enforce strict type checking for token types.

* RIPD-1616:
  Avoid calling `memcpy` with a null pointer even if the
  size is specified as zero, since it results in undefined
  behavior.

Acknowledgements:
Ripple thanks Guido Vranken for responsibly disclosing these
issues.

Bug Bounties and Responsible Disclosures:
We welcome reviews of the rippled code and urge researchers
to responsibly disclose any issues that they may find. For
more on Ripple's Bug Bounty program, please visit:
https://ripple.com/bug-bounty
2018-03-21 20:39:18 -07:00

307 lines
8.8 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <BeastConfig.h>
#include <ripple/basics/strHex.h>
#include <ripple/protocol/SecretKey.h>
#include <ripple/protocol/digest.h>
#include <ripple/protocol/impl/secp256k1.h>
#include <ripple/basics/contract.h>
#include <ripple/crypto/GenerateDeterministicKey.h>
#include <ripple/crypto/csprng.h>
#include <ripple/beast/crypto/secure_erase.h>
#include <ripple/beast/utility/rngfill.h>
#include <ed25519-donna/ed25519.h>
#include <cstring>
namespace ripple {
SecretKey::~SecretKey()
{
beast::secure_erase(buf_, sizeof(buf_));
}
SecretKey::SecretKey (std::array<std::uint8_t, 32> const& key)
{
std::memcpy(buf_, key.data(), key.size());
}
SecretKey::SecretKey (Slice const& slice)
{
if (slice.size() != sizeof(buf_))
LogicError("SecretKey::SecretKey: invalid size");
std::memcpy(buf_, slice.data(), sizeof(buf_));
}
std::string
SecretKey::to_string() const
{
return strHex(data(), size());
}
//------------------------------------------------------------------------------
/** Produces a sequence of secp256k1 key pairs. */
class Generator
{
private:
Blob gen_; // VFALCO compile time size?
public:
explicit
Generator (Seed const& seed)
{
// FIXME: Avoid copying the seed into a uint128 key only to have
// generateRootDeterministicPublicKey copy out of it.
uint128 ui;
std::memcpy(ui.data(),
seed.data(), seed.size());
gen_ = generateRootDeterministicPublicKey(ui);
}
/** Generate the nth key pair.
The seed is required to produce the private key.
*/
std::pair<PublicKey, SecretKey>
operator()(Seed const& seed, std::size_t ordinal) const
{
// FIXME: Avoid copying the seed into a uint128 key only to have
// generatePrivateDeterministicKey copy out of it.
uint128 ui;
std::memcpy(ui.data(), seed.data(), seed.size());
auto gsk = generatePrivateDeterministicKey(gen_, ui, ordinal);
auto gpk = generatePublicDeterministicKey(gen_, ordinal);
SecretKey const sk(Slice{ gsk.data(), gsk.size() });
PublicKey const pk(Slice{ gpk.data(), gpk.size() });
beast::secure_erase(ui.data(), ui.size());
beast::secure_erase(gsk.data(), gsk.size());
return {pk, sk};
}
};
//------------------------------------------------------------------------------
Buffer
signDigest (PublicKey const& pk, SecretKey const& sk,
uint256 const& digest)
{
if (publicKeyType(pk.slice()) != KeyType::secp256k1)
LogicError("sign: secp256k1 required for digest signing");
BOOST_ASSERT(sk.size() == 32);
secp256k1_ecdsa_signature sig_imp;
if(secp256k1_ecdsa_sign(
secp256k1Context(),
&sig_imp,
reinterpret_cast<unsigned char const*>(
digest.data()),
reinterpret_cast<unsigned char const*>(
sk.data()),
secp256k1_nonce_function_rfc6979,
nullptr) != 1)
LogicError("sign: secp256k1_ecdsa_sign failed");
unsigned char sig[72];
size_t len = sizeof(sig);
if(secp256k1_ecdsa_signature_serialize_der(
secp256k1Context(),
sig,
&len,
&sig_imp) != 1)
LogicError("sign: secp256k1_ecdsa_signature_serialize_der failed");
return Buffer{sig, len};
}
Buffer
sign (PublicKey const& pk,
SecretKey const& sk, Slice const& m)
{
auto const type =
publicKeyType(pk.slice());
if (! type)
LogicError("sign: invalid type");
switch(*type)
{
case KeyType::ed25519:
{
Buffer b(64);
ed25519_sign(m.data(), m.size(),
sk.data(), pk.data() + 1, b.data());
return b;
}
case KeyType::secp256k1:
{
sha512_half_hasher h;
h(m.data(), m.size());
auto const digest =
sha512_half_hasher::result_type(h);
secp256k1_ecdsa_signature sig_imp;
if(secp256k1_ecdsa_sign(
secp256k1Context(),
&sig_imp,
reinterpret_cast<unsigned char const*>(
digest.data()),
reinterpret_cast<unsigned char const*>(
sk.data()),
secp256k1_nonce_function_rfc6979,
nullptr) != 1)
LogicError("sign: secp256k1_ecdsa_sign failed");
unsigned char sig[72];
size_t len = sizeof(sig);
if(secp256k1_ecdsa_signature_serialize_der(
secp256k1Context(),
sig,
&len,
&sig_imp) != 1)
LogicError("sign: secp256k1_ecdsa_signature_serialize_der failed");
return Buffer{sig, len};
}
default:
LogicError("sign: invalid type");
}
}
SecretKey
randomSecretKey()
{
std::uint8_t buf[32];
beast::rngfill(
buf,
sizeof(buf),
crypto_prng());
SecretKey sk(Slice{ buf, sizeof(buf) });
beast::secure_erase(buf, sizeof(buf));
return sk;
}
// VFALCO TODO Rewrite all this without using OpenSSL
// or calling into GenerateDetermisticKey
SecretKey
generateSecretKey (KeyType type, Seed const& seed)
{
if (type == KeyType::ed25519)
{
auto key = sha512Half_s(Slice(
seed.data(), seed.size()));
SecretKey sk = Slice{ key.data(), key.size() };
beast::secure_erase(key.data(), key.size());
return sk;
}
if (type == KeyType::secp256k1)
{
// FIXME: Avoid copying the seed into a uint128 key only to have
// generateRootDeterministicPrivateKey copy out of it.
uint128 ps;
std::memcpy(ps.data(),
seed.data(), seed.size());
auto const upk =
generateRootDeterministicPrivateKey(ps);
SecretKey sk = Slice{ upk.data(), upk.size() };
beast::secure_erase(ps.data(), ps.size());
return sk;
}
LogicError ("generateSecretKey: unknown key type");
}
PublicKey
derivePublicKey (KeyType type, SecretKey const& sk)
{
switch(type)
{
case KeyType::secp256k1:
{
secp256k1_pubkey pubkey_imp;
if(secp256k1_ec_pubkey_create(
secp256k1Context(),
&pubkey_imp,
reinterpret_cast<unsigned char const*>(
sk.data())) != 1)
LogicError("derivePublicKey: secp256k1_ec_pubkey_create failed");
unsigned char pubkey[33];
std::size_t len = sizeof(pubkey);
if(secp256k1_ec_pubkey_serialize(
secp256k1Context(),
pubkey,
&len,
&pubkey_imp,
SECP256K1_EC_COMPRESSED) != 1)
LogicError("derivePublicKey: secp256k1_ec_pubkey_serialize failed");
return PublicKey{Slice{ pubkey, len }};
}
case KeyType::ed25519:
{
unsigned char buf[33];
buf[0] = 0xED;
ed25519_publickey(sk.data(), &buf[1]);
return PublicKey(Slice{ buf, sizeof(buf) });
}
default:
LogicError("derivePublicKey: bad key type");
};
}
std::pair<PublicKey, SecretKey>
generateKeyPair (KeyType type, Seed const& seed)
{
switch(type)
{
case KeyType::secp256k1:
{
Generator g(seed);
return g(seed, 0);
}
default:
case KeyType::ed25519:
{
auto const sk = generateSecretKey(type, seed);
return { derivePublicKey(type, sk), sk };
}
}
}
std::pair<PublicKey, SecretKey>
randomKeyPair (KeyType type)
{
auto const sk = randomSecretKey();
return { derivePublicKey(type, sk), sk };
}
template <>
boost::optional<SecretKey>
parseBase58 (TokenType type, std::string const& s)
{
auto const result = decodeBase58Token(s, type);
if (result.empty())
return boost::none;
if (result.size() != 32)
return boost::none;
return SecretKey(makeSlice(result));
}
} // ripple