Files
xahaud/src/ripple/protocol/PublicKey.h
2015-08-18 11:16:18 -07:00

238 lines
5.7 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_PROTOCOL_PUBLICKEY_H_INCLUDED
#define RIPPLE_PROTOCOL_PUBLICKEY_H_INCLUDED
#include <ripple/basics/Slice.h>
#include <ripple/crypto/KeyType.h> // move to protocol/
#include <ripple/protocol/STExchange.h>
#include <ripple/protocol/tokens.h>
#include <ripple/protocol/UintTypes.h>
#include <beast/utility/noexcept.h>
#include <boost/optional.hpp>
#include <algorithm>
#include <cstdint>
#include <cstring>
#include <utility>
namespace ripple {
/** A public key.
Public keys are used in the public-key cryptography
system used to verify signatures attached to messages.
The format of the public key is Ripple specific,
information needed to determine the cryptosystem
parameters used is stored inside the key.
As of this writing two systems are supported:
secp256k1
ed25519
secp256k1 public keys consist of a 33 byte
compressed public key, with the lead byte equal
to 0x02 or 0x03.
The ed25519 public keys consist of a 1 byte
prefix constant 0xED, followed by 32 bytes of
public key data.
*/
class PublicKey
{
protected:
std::size_t size_ = 0;
std::uint8_t buf_[33]; // should be large enough
public:
PublicKey() = default;
PublicKey (PublicKey const& other);
PublicKey& operator= (PublicKey const& other);
/** Create a public key.
Preconditions:
publicKeyType(Slice(data, size)) != boost::none
*/
explicit
PublicKey (Slice const& slice);
KeyType
type() const;
std::uint8_t const*
data() const noexcept
{
return buf_;
}
std::size_t
size() const noexcept
{
return size_;
}
Slice
slice() const noexcept
{
return { buf_, size_ };
}
operator Slice() const noexcept
{
return slice();
}
bool
verify (Slice const& message, Slice const& sig,
bool mustBeFullyCanonical) const;
};
inline
bool
operator== (PublicKey const& lhs,
PublicKey const& rhs)
{
return lhs.size() == rhs.size() &&
std::memcmp(lhs.data(),
rhs.data(), rhs.size()) == 0;
}
inline
bool
operator< (PublicKey const& lhs,
PublicKey const& rhs)
{
return std::lexicographical_compare(
lhs.data(), lhs.data() + lhs.size(),
rhs.data(), rhs.data() + rhs.size());
}
template <class Hasher>
void
hash_append (Hasher& h,
PublicKey const& pk)
{
h(pk.data(), pk.size());
}
template<>
struct STExchange<STBlob, PublicKey>
{
using value_type = PublicKey;
static
void
get (boost::optional<value_type>& t,
STBlob const& u)
{
t.emplace (Slice(u.data(), u.size()));
}
static
std::unique_ptr<STBlob>
set (SField const& f, PublicKey const& t)
{
return std::make_unique<STBlob>(
f, t.data(), t.size());
}
};
//------------------------------------------------------------------------------
inline
std::string
toBase58 (TokenType type, PublicKey const& pk)
{
return base58EncodeToken(
type, pk.data(), pk.size());
}
template<>
boost::optional<PublicKey>
parseBase58 (TokenType type, std::string const& s);
enum class ECDSACanonicality
{
canonical,
fullyCanonical
};
/** Determines the canonicality of a signature.
A canonical signature is in its most reduced form.
For example the R and S components do not contain
additional leading zeroes. However, even in
canonical form, (R,S) and (R,G-S) are both
valid signatures for message M.
Therefore, to prevent malleability attacks we
define a fully canonical signature as one where:
R < G - S
where G is the curve order.
This routine returns boost::none if the format
of the signature is invalid (for example, the
points are encoded incorrectly).
@return boost::none if the signature fails
validity checks.
@note Only the format of the signature is checked,
no verification cryptography is performed.
*/
boost::optional<ECDSACanonicality>
ecdsaCanonicality (Slice const& sig);
/** Returns the type of public key.
@return boost::none If the public key does
not represent a known type.
*/
boost::optional<KeyType>
publicKeyType (Slice const& slice);
/** Verify a signature.
The algorithm is specific to Ripple:
secp256k1 signatures are computed
on the SHA512-Half of the message.
*/
bool
verify (PublicKey const& pk,
Slice const& message, Slice const& signature);
/** Calculate the 160-bit node ID from a node public key. */
NodeID
calcNodeID (PublicKey const&);
// VFALCO This belongs in AccountID.h but
// is here because of header issues
AccountID
calcAccountID (PublicKey const& pk);
} // ripple
#endif