Files
xahaud/src/test/csf/TrustGraph.h
Brad Chase 2c13d9eb57 Redesign CSF framework (RIPD-1361):
- Separate `Scheduler` from `BasicNetwork`.
- Add an event/collector framework for monitoring invariants and calculating statistics.
- Allow distinct network and trust connections between Peers.
- Add a simple routing strategy to support broadcasting arbitrary messages.
- Add a common directed graph (`Digraph`) class for representing network and trust topologies.
- Add a `PeerGroup` class for simpler specification of the trust and network topologies.
- Add a `LedgerOracle` class to ensure distinct ledger histories and simplify branch checking.
- Add a `Submitter` to send transactions in at fixed or random intervals to fixed or random peers.

Co-authored-by: Joseph McGee
2017-12-01 14:15:04 -05:00

177 lines
4.7 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012-2017 Ripple Labs Inc
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef RIPPLE_TEST_CSF_UNL_H_INCLUDED
#define RIPPLE_TEST_CSF_UNL_H_INCLUDED
#include <test/csf/random.h>
#include <boost/container/flat_set.hpp>
#include <boost/optional.hpp>
#include <chrono>
#include <numeric>
#include <random>
#include <vector>
namespace ripple {
namespace test {
namespace csf {
/** Trust graph
Trust is a directed relationship from a node i to node j.
If node i trusts node j, then node i has node j in its UNL.
This class wraps a digraph representing the trust relationships for all peers
in the simulation.
*/
template <class Peer>
class TrustGraph
{
using Graph = Digraph<Peer>;
Graph graph_;
public:
/** Create an empty trust graph
*/
TrustGraph() = default;
Graph const&
graph()
{
return graph_;
}
/** Create trust
Establish trust between Peer `from` and Peer `to`; as if `from` put `to`
in its UNL.
@param from The peer granting trust
@param to The peer receiving trust
*/
void
trust(Peer const& from, Peer const& to)
{
graph_.connect(from, to);
}
/** Remove trust
Revoke trust from Peer `from` to Peer `to`; as if `from` removed `to`
from its UNL.
@param from The peer revoking trust
@param to The peer being revoked
*/
void
untrust(Peer const& from, Peer const& to)
{
graph_.disconnect(from, to);
}
//< Whether from trusts to
bool
trusts(Peer const& from, Peer const& to) const
{
return graph_.connected(from, to);
}
/** Range over trusted peers
@param a The node granting trust
@return boost transformed range over nodes `a` trusts, i.e. the nodes
in its UNL
*/
auto
trustedPeers(Peer const & a) const
{
return graph_.outVertices(a);
}
/** An example of nodes that fail the whitepaper no-forking condition
*/
struct ForkInfo
{
std::set<Peer> unlA;
std::set<Peer> unlB;
int overlap;
double required;
};
//< Return nodes that fail the white-paper no-forking condition
std::vector<ForkInfo>
forkablePairs(double quorum) const
{
// Check the forking condition by looking at intersection
// of UNL between all pairs of nodes.
// TODO: Use the improved bound instead of the whitepaper bound.
using UNL = std::set<Peer>;
std::set<UNL> unique;
for (Peer const & peer : graph_.outVertices())
{
unique.emplace(
std::begin(trustedPeers(peer)), std::end(trustedPeers(peer)));
}
std::vector<UNL> uniqueUNLs(unique.begin(), unique.end());
std::vector<ForkInfo> res;
// Loop over all pairs of uniqueUNLs
for (int i = 0; i < uniqueUNLs.size(); ++i)
{
for (int j = (i + 1); j < uniqueUNLs.size(); ++j)
{
auto const& unlA = uniqueUNLs[i];
auto const& unlB = uniqueUNLs[j];
double rhs =
2.0 * (1. - quorum) * std::max(unlA.size(), unlB.size());
int intersectionSize = std::count_if(
unlA.begin(), unlA.end(), [&](Peer p) {
return unlB.find(p) != unlB.end();
});
if (intersectionSize < rhs)
{
res.emplace_back(ForkInfo{unlA, unlB, intersectionSize, rhs});
}
}
}
return res;
}
/** Check whether this trust graph satisfies the whitepaper no-forking
condition
*/
bool
canFork(double quorum) const
{
return !forkablePairs(quorum).empty();
}
};
} // csf
} // test
} // ripple
#endif