Files
xahaud/src/ripple/protocol/impl/STTx.cpp
RichardAH 1ec31e79c9 Cron (on ledger cronjobs) (#590)
Co-authored-by: tequ <git@tequ.dev>
2025-10-17 18:45:16 +10:00

622 lines
18 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <ripple/app/hook/Enum.h>
#include <ripple/basics/Log.h>
#include <ripple/basics/StringUtilities.h>
#include <ripple/basics/contract.h>
#include <ripple/basics/safe_cast.h>
#include <ripple/json/to_string.h>
#include <ripple/ledger/ReadView.h>
#include <ripple/protocol/Feature.h>
#include <ripple/protocol/HashPrefix.h>
#include <ripple/protocol/Protocol.h>
#include <ripple/protocol/PublicKey.h>
#include <ripple/protocol/STAccount.h>
#include <ripple/protocol/STArray.h>
#include <ripple/protocol/STTx.h>
#include <ripple/protocol/Sign.h>
#include <ripple/protocol/TxFlags.h>
#include <ripple/protocol/UintTypes.h>
#include <ripple/protocol/jss.h>
#include <boost/format.hpp>
#include <array>
#include <memory>
#include <type_traits>
#include <utility>
namespace ripple {
static auto
getTxFormat(TxType type)
{
auto format = TxFormats::getInstance().findByType(type);
if (format == nullptr)
{
Throw<std::runtime_error>(
"Invalid transaction type " +
std::to_string(safe_cast<std::underlying_type_t<TxType>>(type)));
}
return format;
}
STTx::STTx(STObject&& object) : STObject(std::move(object))
{
tx_type_ = safe_cast<TxType>(getFieldU16(sfTransactionType));
applyTemplate(getTxFormat(tx_type_)->getSOTemplate()); // may throw
tid_ = getHash(HashPrefix::transactionID);
}
STTx::STTx(SerialIter& sit) : STObject(sfTransaction)
{
int length = sit.getBytesLeft();
if ((length < txMinSizeBytes) || (length > txMaxSizeBytes))
Throw<std::runtime_error>("Transaction length invalid");
if (set(sit))
Throw<std::runtime_error>("Transaction contains an object terminator");
tx_type_ = safe_cast<TxType>(getFieldU16(sfTransactionType));
applyTemplate(getTxFormat(tx_type_)->getSOTemplate()); // May throw
tid_ = getHash(HashPrefix::transactionID);
}
STTx::STTx(TxType type, std::function<void(STObject&)> assembler)
: STObject(sfTransaction)
{
auto format = getTxFormat(type);
set(format->getSOTemplate());
setFieldU16(sfTransactionType, format->getType());
assembler(*this);
tx_type_ = safe_cast<TxType>(getFieldU16(sfTransactionType));
if (tx_type_ != type)
LogicError("Transaction type was mutated during assembly");
tid_ = getHash(HashPrefix::transactionID);
}
STBase*
STTx::copy(std::size_t n, void* buf) const
{
return emplace(n, buf, *this);
}
STBase*
STTx::move(std::size_t n, void* buf)
{
return emplace(n, buf, std::move(*this));
}
// STObject functions.
SerializedTypeID
STTx::getSType() const
{
return STI_TRANSACTION;
}
std::string
STTx::getFullText() const
{
std::string ret = "\"";
ret += to_string(getTransactionID());
ret += "\" = {";
ret += STObject::getFullText();
ret += "}";
return ret;
}
boost::container::flat_set<AccountID>
STTx::getMentionedAccounts() const
{
boost::container::flat_set<AccountID> list;
for (auto const& it : *this)
{
if (auto sacc = dynamic_cast<STAccount const*>(&it))
{
assert(!sacc->isDefault());
if (!sacc->isDefault())
list.insert(sacc->value());
}
else if (auto samt = dynamic_cast<STAmount const*>(&it))
{
auto const& issuer = samt->getIssuer();
if (!isXRP(issuer))
list.insert(issuer);
}
}
return list;
}
static Blob
getSigningData(STTx const& that)
{
Serializer s;
s.add32(HashPrefix::txSign);
that.addWithoutSigningFields(s);
return s.getData();
}
uint256
STTx::getSigningHash() const
{
return STObject::getSigningHash(HashPrefix::txSign);
}
Blob
STTx::getSignature() const
{
try
{
return getFieldVL(sfTxnSignature);
}
catch (std::exception const&)
{
return Blob();
}
}
SeqProxy
STTx::getSeqProxy() const
{
std::uint32_t const seq{getFieldU32(sfSequence)};
if (seq != 0)
return SeqProxy::sequence(seq);
std::optional<std::uint32_t> const ticketSeq{operator[](~sfTicketSequence)};
if (!ticketSeq)
// No TicketSequence specified. Return the Sequence, whatever it is.
return SeqProxy::sequence(seq);
return SeqProxy{SeqProxy::ticket, *ticketSeq};
}
void
STTx::sign(PublicKey const& publicKey, SecretKey const& secretKey)
{
auto const data = getSigningData(*this);
auto const sig = ripple::sign(publicKey, secretKey, makeSlice(data));
setFieldVL(sfTxnSignature, sig);
tid_ = getHash(HashPrefix::transactionID);
}
Expected<void, std::string>
STTx::checkSign(
RequireFullyCanonicalSig requireCanonicalSig,
Rules const& rules) const
{
try
{
// Determine whether we're single- or multi-signing by looking
// at the SigningPubKey. If it's empty we must be
// multi-signing. Otherwise we're single-signing.
Blob const& signingPubKey = getFieldVL(sfSigningPubKey);
return signingPubKey.empty()
? checkMultiSign(requireCanonicalSig, rules)
: checkSingleSign(requireCanonicalSig);
}
catch (std::exception const&)
{
}
return Unexpected("Internal signature check failure.");
}
Json::Value STTx::getJson(JsonOptions) const
{
Json::Value ret = STObject::getJson(JsonOptions::none);
ret[jss::hash] = to_string(getTransactionID());
return ret;
}
Json::Value
STTx::getJson(JsonOptions options, bool binary) const
{
if (binary)
{
Json::Value ret;
Serializer s = STObject::getSerializer();
ret[jss::tx] = strHex(s.peekData());
ret[jss::hash] = to_string(getTransactionID());
return ret;
}
return getJson(options);
}
std::string const&
STTx::getMetaSQLInsertReplaceHeader()
{
static std::string const sql =
"INSERT OR REPLACE INTO Transactions "
"(TransID, TransType, FromAcct, FromSeq, LedgerSeq, Status, RawTxn, "
"TxnMeta)"
" VALUES ";
return sql;
}
std::string
STTx::getMetaSQL(std::uint32_t inLedger, std::string const& escapedMetaData)
const
{
Serializer s;
add(s);
return getMetaSQL(s, inLedger, txnSqlValidated, escapedMetaData);
}
// VFALCO This could be a free function elsewhere
std::string
STTx::getMetaSQL(
Serializer rawTxn,
std::uint32_t inLedger,
char status,
std::string const& escapedMetaData) const
{
static boost::format bfTrans(
"('%s', '%s', '%s', '%d', '%d', '%c', %s, %s)");
std::string rTxn = sqlBlobLiteral(rawTxn.peekData());
auto format = TxFormats::getInstance().findByType(tx_type_);
assert(format != nullptr);
return str(
boost::format(bfTrans) % to_string(getTransactionID()) %
format->getName() % toBase58(getAccountID(sfAccount)) %
getFieldU32(sfSequence) % inLedger % status % rTxn % escapedMetaData);
}
Expected<void, std::string>
STTx::checkSingleSign(RequireFullyCanonicalSig requireCanonicalSig) const
{
// We don't allow both a non-empty sfSigningPubKey and an sfSigners.
// That would allow the transaction to be signed two ways. So if both
// fields are present the signature is invalid.
if (isFieldPresent(sfSigners))
return Unexpected("Cannot both single- and multi-sign.");
// wildcard network gets a free pass on all signatures
bool const isWildcardNetwork =
isFieldPresent(sfNetworkID) && getFieldU32(sfNetworkID) == 65535;
bool validSig = false;
try
{
bool const fullyCanonical = (getFlags() & tfFullyCanonicalSig) ||
(requireCanonicalSig == RequireFullyCanonicalSig::yes);
auto const spk = getFieldVL(sfSigningPubKey);
if (publicKeyType(makeSlice(spk)))
{
Blob const signature = getFieldVL(sfTxnSignature);
Blob const data = getSigningData(*this);
validSig = isWildcardNetwork ||
verify(PublicKey(makeSlice(spk)),
makeSlice(data),
makeSlice(signature),
fullyCanonical);
}
}
catch (std::exception const&)
{
// Assume it was a signature failure.
validSig = false;
}
if (validSig == false)
return Unexpected("Invalid signature.");
// Signature was verified.
return {};
}
Expected<void, std::string>
STTx::checkMultiSign(
RequireFullyCanonicalSig requireCanonicalSig,
Rules const& rules) const
{
// Make sure the MultiSigners are present. Otherwise they are not
// attempting multi-signing and we just have a bad SigningPubKey.
if (!isFieldPresent(sfSigners))
return Unexpected("Empty SigningPubKey.");
// We don't allow both an sfSigners and an sfTxnSignature. Both fields
// being present would indicate that the transaction is signed both ways.
if (isFieldPresent(sfTxnSignature))
return Unexpected("Cannot both single- and multi-sign.");
STArray const& signers{getFieldArray(sfSigners)};
// There are well known bounds that the number of signers must be within.
if (signers.size() < minMultiSigners ||
signers.size() > maxMultiSigners(&rules))
return Unexpected("Invalid Signers array size.");
// We can ease the computational load inside the loop a bit by
// pre-constructing part of the data that we hash. Fill a Serializer
// with the stuff that stays constant from signature to signature.
Serializer const dataStart{startMultiSigningData(*this)};
// We also use the sfAccount field inside the loop. Get it once.
auto const txnAccountID = getAccountID(sfAccount);
// Determine whether signatures must be full canonical.
bool const fullyCanonical = (getFlags() & tfFullyCanonicalSig) ||
(requireCanonicalSig == RequireFullyCanonicalSig::yes);
// Signers must be in sorted order by AccountID.
AccountID lastAccountID(beast::zero);
bool const isWildcardNetwork =
isFieldPresent(sfNetworkID) && getFieldU32(sfNetworkID) == 65535;
for (auto const& signer : signers)
{
auto const accountID = signer.getAccountID(sfAccount);
// The account owner may not multisign for themselves.
if (accountID == txnAccountID)
return Unexpected("Invalid multisigner.");
// No duplicate signers allowed.
if (lastAccountID == accountID)
return Unexpected("Duplicate Signers not allowed.");
// Accounts must be in order by account ID. No duplicates allowed.
if (lastAccountID > accountID)
return Unexpected("Unsorted Signers array.");
// The next signature must be greater than this one.
lastAccountID = accountID;
// Verify the signature.
bool validSig = false;
try
{
Serializer s = dataStart;
finishMultiSigningData(accountID, s);
auto spk = signer.getFieldVL(sfSigningPubKey);
if (publicKeyType(makeSlice(spk)))
{
Blob const signature = signer.getFieldVL(sfTxnSignature);
// wildcard network gets a free pass
validSig = isWildcardNetwork ||
verify(PublicKey(makeSlice(spk)),
s.slice(),
makeSlice(signature),
fullyCanonical);
}
}
catch (std::exception const&)
{
// We assume any problem lies with the signature.
validSig = false;
}
if (!validSig)
return Unexpected(
std::string("Invalid signature on account ") +
toBase58(accountID) + ".");
}
// All signatures verified.
return {};
}
//------------------------------------------------------------------------------
static bool
isMemoOkay(STObject const& st, std::string& reason)
{
auto const maxKey = hook::maxHookParameterKeySize();
auto const maxVal = hook::maxHookParameterValueSize();
// piggyback otxn hookparameter checking here
if (st.isFieldPresent(sfHookParameters))
{
auto const& params = st.getFieldArray(sfHookParameters);
if (params.size() > 16)
{
reason = "hookParameter count must be less than 17.";
return false;
}
for (auto const& param : params)
{
auto paramObj = dynamic_cast<STObject const*>(&param);
if (!paramObj || (paramObj->getFName() != sfHookParameter))
{
reason =
"A HookParameters array may contain only HookParameter "
"objects.";
return false;
}
if (!paramObj->isFieldPresent(sfHookParameterName) ||
paramObj->getFieldVL(sfHookParameterName).size() > maxKey)
{
reason = "HookParameterName cannot exceed 32 bytes.";
return false;
}
if (!paramObj->isFieldPresent(sfHookParameterValue) ||
paramObj->getFieldVL(sfHookParameterValue).size() > maxVal)
{
reason = "HookParameterValue cannot exceed 128 bytes.";
return false;
}
}
}
if (!st.isFieldPresent(sfMemos))
return true;
auto const& memos = st.getFieldArray(sfMemos);
// The number 2048 is a preallocation hint, not a hard limit
// to avoid allocate/copy/free's
Serializer s(2048);
memos.add(s);
// FIXME move the memo limit into a config tunable
if (s.getDataLength() > 1024)
{
reason = "The memo exceeds the maximum allowed size.";
return false;
}
for (auto const& memo : memos)
{
auto memoObj = dynamic_cast<STObject const*>(&memo);
if (!memoObj || (memoObj->getFName() != sfMemo))
{
reason = "A memo array may contain only Memo objects.";
return false;
}
for (auto const& memoElement : *memoObj)
{
auto const& name = memoElement.getFName();
if (name != sfMemoType && name != sfMemoData &&
name != sfMemoFormat)
{
reason =
"A memo may contain only MemoType, MemoData or "
"MemoFormat fields.";
return false;
}
// The raw data is stored as hex-octets, which we want to decode.
auto optData = strUnHex(memoElement.getText());
if (!optData)
{
reason =
"The MemoType, MemoData and MemoFormat fields may "
"only contain hex-encoded data.";
return false;
}
if (name == sfMemoData)
continue;
// The only allowed characters for MemoType and MemoFormat are the
// characters allowed in URLs per RFC 3986: alphanumerics and the
// following symbols: -._~:/?#[]@!$&'()*+,;=%
static constexpr std::array<char, 256> const allowedSymbols = []() {
std::array<char, 256> a{};
std::string_view symbols(
"0123456789"
"-._~:/?#[]@!$&'()*+,;=%"
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz");
for (char c : symbols)
a[c] = 1;
return a;
}();
for (auto c : *optData)
{
if (!allowedSymbols[c])
{
reason =
"The MemoType and MemoFormat fields may only "
"contain characters that are allowed in URLs "
"under RFC 3986.";
return false;
}
}
}
}
return true;
}
// Ensure all account fields are 160-bits
static bool
isAccountFieldOkay(STObject const& st)
{
for (int i = 0; i < st.getCount(); ++i)
{
auto t = dynamic_cast<STAccount const*>(st.peekAtPIndex(i));
if (t && t->isDefault())
return false;
}
return true;
}
bool
passesLocalChecks(STObject const& st, std::string& reason)
{
if (!isMemoOkay(st, reason))
return false;
if (!isAccountFieldOkay(st))
{
reason = "An account field is invalid.";
return false;
}
if (isPseudoTx(st))
{
reason = "Cannot submit pseudo transactions.";
return false;
}
return true;
}
std::shared_ptr<STTx const>
sterilize(STTx const& stx)
{
Serializer s;
stx.add(s);
SerialIter sit(s.slice());
return std::make_shared<STTx const>(std::ref(sit));
}
bool
isPseudoTx(STObject const& tx)
{
auto t = tx[~sfTransactionType];
if (!t)
return false;
auto tt = safe_cast<TxType>(*t);
return tt == ttAMENDMENT || tt == ttFEE || tt == ttUNL_MODIFY ||
tt == ttEMIT_FAILURE || tt == ttUNL_REPORT || tt == ttCRON;
}
} // namespace ripple