Files
xahaud/src/ripple/protocol/impl/PublicKey.cpp
Nik Bougalis 3974ddd8f7 Remove RippleAddress:
The RippleAddress class was used to represent a number of fundamentally
different types: account public keys, account secret keys, node public
keys, node secret keys, seeds and generators.

The class is replaced by the following types:
* PublicKey for account and node public keys
* SecretKey for account and node private keys
* Generator for generating secp256k1 accounts
* Seed for account, node and generator seeds
2016-01-12 18:45:36 -08:00

282 lines
8.0 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of rippled: https://github.com/ripple/rippled
Copyright (c) 2012, 2013 Ripple Labs Inc.
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#include <BeastConfig.h>
#include <ripple/protocol/PublicKey.h>
#include <ripple/protocol/digest.h>
#include <ripple/protocol/impl/secp256k1.h>
#include <ripple/basics/contract.h>
#include <beast/ByteOrder.h>
#include <boost/multiprecision/cpp_int.hpp>
#include <ed25519-donna/ed25519.h>
#include <type_traits>
namespace ripple {
using uint264 = boost::multiprecision::number<
boost::multiprecision::cpp_int_backend<
264, 264, boost::multiprecision::signed_magnitude,
boost::multiprecision::unchecked, void>>;
template<>
boost::optional<PublicKey>
parseBase58 (TokenType type, std::string const& s)
{
auto const result =
decodeBase58Token(s, type);
if (result.empty())
return boost::none;
if (result.size() != 33)
return boost::none;
return PublicKey(makeSlice(result));
}
//------------------------------------------------------------------------------
// Parse a length-prefixed number
// Format: 0x02 <length-byte> <number>
static
boost::optional<Slice>
sigPart (Slice& buf)
{
if (buf.size() < 3 || buf[0] != 0x02)
return boost::none;
auto const len = buf[1];
buf += 2;
if (len > buf.size() || len < 1 || len > 33)
return boost::none;
// Can't be negative
if ((buf[0] & 0x80) != 0)
return boost::none;
if (buf[0] == 0)
{
// Can't be zero
if (len == 1)
return boost::none;
// Can't be padded
if ((buf[1] & 0x80) == 0)
return boost::none;
}
boost::optional<Slice> number =
Slice(buf.data(), len);
buf += len;
return number;
}
static
std::string
sliceToHex (Slice const& slice)
{
std::string s;
if (slice[0] & 0x80)
{
s.reserve(2 * (slice.size() + 2));
s = "0x00";
}
else
{
s.reserve(2 * (slice.size() + 1));
s = "0x";
}
for(int i = 0; i < slice.size(); ++i)
{
s += "0123456789ABCDEF"[((slice[i]&0xf0)>>4)];
s += "0123456789ABCDEF"[((slice[i]&0x0f)>>0)];
}
return s;
}
/** Determine whether a signature is canonical.
Canonical signatures are important to protect against signature morphing
attacks.
@param vSig the signature data
@param sigLen the length of the signature
@param strict_param whether to enforce strictly canonical semantics
@note For more details please see:
https://ripple.com/wiki/Transaction_Malleability
https://bitcointalk.org/index.php?topic=8392.msg127623#msg127623
https://github.com/sipa/bitcoin/commit/58bc86e37fda1aec270bccb3df6c20fbd2a6591c
*/
boost::optional<ECDSACanonicality>
ecdsaCanonicality (Slice const& sig)
{
static uint264 const G(
"0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141");
// The format of a signature should be:
// <30> <len> [ <02> <lenR> <R> ] [ <02> <lenS> <S> ]
if ((sig.size() < 8) || (sig.size() > 72))
return boost::none;
if ((sig[0] != 0x30) || (sig[1] != (sig.size() - 2)))
return boost::none;
Slice p = sig + 2;
auto r = sigPart(p);
auto s = sigPart(p);
if (! r || ! s || ! p.empty())
return boost::none;
uint264 R(sliceToHex(*r));
uint264 S(sliceToHex(*s));
if (R >= G)
return boost::none;
if (S >= G)
return boost::none;
// (R,S) and (R,G-S) are canonical,
// but is fully canonical when S <= G-S
auto const Sp = G - S;
if (S > Sp)
return ECDSACanonicality::canonical;
return ECDSACanonicality::fullyCanonical;
}
static
bool
ed25519Canonical (Slice const& sig)
{
if (sig.size() != 64)
return false;
// Big-endian Order, the Ed25519 subgroup order
std::uint8_t const Order[] =
{
0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x14, 0xDE, 0xF9, 0xDE, 0xA2, 0xF7, 0x9C, 0xD6,
0x58, 0x12, 0x63, 0x1A, 0x5C, 0xF5, 0xD3, 0xED,
};
// Take the second half of signature
// and byte-reverse it to big-endian.
auto const le = sig.data() + 32;
std::uint8_t S[32];
std::reverse_copy(le, le + 32, S);
// Must be less than Order
return std::lexicographical_compare(
S, S + 32, Order, Order + 32);
}
//------------------------------------------------------------------------------
PublicKey::PublicKey (Slice const& slice)
{
if(! publicKeyType(slice))
LogicError("PublicKey::PublicKey invalid type");
size_ = slice.size();
std::memcpy(buf_, slice.data(), slice.size());
}
PublicKey::PublicKey (PublicKey const& other)
: size_ (other.size_)
{
std::memcpy(buf_, other.buf_, size_);
};
PublicKey&
PublicKey::operator=(
PublicKey const& other)
{
size_ = other.size_;
std::memcpy(buf_, other.buf_, size_);
return *this;
}
//------------------------------------------------------------------------------
boost::optional<KeyType>
publicKeyType (Slice const& slice)
{
if (slice.size() == 33 &&
slice[0] == 0xED)
return KeyType::ed25519;
if (slice.size() == 33 &&
(slice[0] == 0x02 ||
slice[0] == 0x03))
return KeyType::secp256k1;
return boost::none;
}
bool
verifyDigest (PublicKey const& publicKey,
uint256 const& digest,
Slice const& sig,
bool mustBeFullyCanonical)
{
if (publicKeyType(publicKey) != KeyType::secp256k1)
LogicError("sign: secp256k1 required for digest signing");
auto const canonicality = ecdsaCanonicality(sig);
if (! canonicality)
return false;
if (mustBeFullyCanonical &&
(*canonicality != ECDSACanonicality::fullyCanonical))
return false;
return secp256k1_ecdsa_verify(
secp256k1Context(), secpp(digest.data()),
secpp(sig.data()), sig.size(),
secpp(publicKey.data()), publicKey.size()) == 1;
}
bool
verify (PublicKey const& publicKey,
Slice const& m,
Slice const& sig,
bool mustBeFullyCanonical)
{
if (auto const type = publicKeyType(publicKey))
{
if (*type == KeyType::secp256k1)
{
return verifyDigest (publicKey,
sha512Half(m), sig, mustBeFullyCanonical);
}
else if (*type == KeyType::ed25519)
{
if (! ed25519Canonical(sig))
return false;
// We internally prefix Ed25519 keys with a 0xED
// byte to distinguish them from secp256k1 keys
// so when verifying the signature, we need to
// first strip that prefix.
return ed25519_sign_open(
m.data(), m.size(), publicKey.data() + 1,
sig.data()) == 0;
}
}
return false;
}
NodeID
calcNodeID (PublicKey const& pk)
{
ripesha_hasher h;
h(pk.data(), pk.size());
auto const digest = static_cast<
ripesha_hasher::result_type>(h);
static_assert(NodeID::bytes ==
sizeof(ripesha_hasher::result_type), "");
NodeID result;
std::memcpy(result.data(),
digest.data(), digest.size());
return result;
}
} // ripple