Files
xahaud/modules/beast_core/containers/OwnedArray.h
Vinnie Falco 2ad98a025e Squashed 'src/beast/' changes from 43e6d34..0e7bac9
0e7bac9 Fix include path
e5bb90f Fix constness of Proxy
ac0142a Use template cast
ef6e381 Add missing Url.h include
206e65c Fix constness of operator[]
695cc38 Use template instantiation for friend declaration
7b1e03a Add BaseFromMember
49bc04f Make List<>::Node not uncopyable
d5954ff Add Journal to UnitTest
58da106 Temporarily disable ServiceQueue dtor precondition asserts
fe58c1a Add missing #include
2c02580 Add PropertyStream for server state introspection
24c2315 Add ScopedWrapperContext
a3845f5 Add RelativeTime::value_type typedef
7442932 Fix missing PropertyStream members
ed5a98f More PropertyStream output for PeerFinder
fcfa10d Add PropertyStream
3cf0729 Tidy up AbstractHandler usage in HTTPClient
55171f4 Remove obsolete source files
1311ca3 Increase arity of SharedFunction
67d807d Add IPEndpoint::key_equal
ebf395e Add ErrorCode and boost library
2c3ead3 Add ServiceQueue::wrap
6c7f5d0 Move many Thread related classes
93e9d86 Measure CPU utilization in ServiceQueue
ca47d72 Move ServiceQueue, ThreadLocalValue, SpinLock
c864e4d Move WaitableEvent
ff305e6 Add CPUMeter and ScopedTimeInterval
01fd05c Add RecursiveMutex, UnlockGuard, TryLockGuard
5831a53 Remove Journal from most Stoppable overrides
b60a7f3 Add Request and Response HTTP parsers
44445ff Refactor net buffers classes
ac37c38 Beast class refactor
8b7056b Fix eof on HTTP client get
228b664 Remove obsolete beast container classes
1dfd655 Use RelativeTime from startup in DeadlineTimer
ae22d5d Add more methods to RelativeTime
c67929e Remove unhandled exception catcher
2472a90 Add 64 bit output for MurmurHash
f3d97c7 Add RelativeTime::fromStartup
b0b8660 IPEndpoint better parsing
ae551cd Add alternate form string parsing to IPEndpoint
d0a0dbf Don't break on Throw
0e46762 Add hasher functors for IPEndpoint
a1ec423 Add Thread::stopThreadAsync
4f7dca3 Add compiler, stdlib, and platform skeleton to beast/config
4394594 Tidy up some use of Error for throw
e5e0f52 Journal console output improvements
f07515e Add Stoppable prepare and start interfaces
d37dd46 Move RelativeTime to chrono, add ostream support
3f6e7aa Add console feature to Journal
ad0064a Journal option to write to Output window (MSVC)
0b7574b Add compilation test script
cc05ce1 Add ServiceQueue
e132aab Use boost for functional when the config is set
026b926 Fix is_continuation for boost version
c807a4e Fix invoked_type type reference
2ff781b Remove LockFreeStack::size
3acb474 Add SharedData::ConstAccess
7e4c834 Add LockFreeStack::empty
9c61a6d Added AbstractHandler, WrapHandler. HTTPClient Fixes.
94e40dc Fix unittest, by removing recursive call.
38bf408 Fix nonstandard C++ extension in getNullSink
1ef044d Build fixes
d5d3746 Fix missing <cmath> include for Gentoo
5f231d3 Update copyright notice and licenses
7b89bf6 Add FixedArray, IntrusiveArray, Crypto
5c5de57 Reorganize beast modules and files
9e18bb3 Merge commit '43deaaa5cf0d0178a4a6c3cb69c02a2a9a43ec7d' as 'src/beast/beast/http/impl/http-parser'
57703ac Fix BeforeBoost.h include
fbc247b Add Stoppable to beast
56496d8 IPEndpoint comparisons
9d9c822 Migrate some headers and general tidying
1a3cddc Add SharedArg and AsyncObject
373ca9c Add HTTPRequest and improvements to HTTPMessage parsing
9534516 Add some thread classes and fix SharedData with a simple mutex adapter
755ab36 Make CallQueue unit test runManual
c0ca037 Remove Beast version printing on startup
7efb6a3 Reorganize some MPL and Utility classes and files
69c26a1 Fix missing BeastConfig.h include in Net.cpp
40aa552 Disable Beast version printing in Ripple BeastConfig.h
7b1352d Add InterruptibleThread unit test
68cf759 ThreadWithCallQueue unit test adjustment
6501dea IPEndpoint parsing and tidying
72fc42b Move and add some template metaprogramming classes
2a164f0 Change filname capitalization (end)
6a14f25 Change filename capitalization
92fd417 Move integer types to beast/CStdInt.h
ebbd9ff Move TargetPlatform.h to beast/Config.h
874b524 Add IPEndpoint
14b34fc Tidy up some zlib macro undefines
34fffca Rename beast sources for consistency
4e59ab2 Add CallQueue unit test
327d7a6 Fixes for consolidated beast unity includes
d5ece4e Remove unused and broken classes
39f13be Remove unused ConcurrentObject
37624a7 Add ThreadWithCallQueue unit test
e82ec68 Remove obsolete beast_Function
90551a6 Temporarily leave sqlite3 in whatever threading mode it was already in.
43ebbb1 Fix SharedSingleton to use memoryBarrier
f343941 Tidy up SharedSingleton doc comments
001997e Fix leak on exit from Singleton dependency cycle
83b9d22 Rename to DeadlineTimer::cancel()
77874ee Use new instead of ::new for placement
2a04dcc Journal improvements
50965ca SharedFunction improvements
277e32b Add LockFreeStack iterators
d94e4c2 Fix undefined behavior in UnsignedIntegerCalc (again)
2dc25ce Fix DeadlineTimer, callback while holding lock
207ffde Fix undefined behavior in UnsignedIntegerCalc
1ad8ff9 Fix UnsignedInteger::isZero
1dd2836 Add support for multiprecision integer arithmetic and binary data encoding
a45fc47 Update .gitignore
962a95d Tidy up UnsignedInteger
ca695fa Add Time::isNull()
e96ce99 Better random number facilities in UnitTest
550b8e5 Fine tune UnsignedInteger declaration
8e7e3b7 Allow negative relative expirations in DeadlineTimer
f3dc7ce Add generic Journal class for logging
bfdda32 Make ChildProcess UnitTest manual since it malfunctions
02acf7d General refactoring of beast framework classes
84ef06e Fix ExitHook to derive from AtExitHook
f0acc9c Reduce the max threads in the Workers unit test
55447b0 New SharedSingleton, resolves destruction of objects with static storage duration.
41eb8a1 Remove deprecated SharedPtr::getObject
9eda4bc Make SharedObject members const, the counter mutable
6eda777 Remove deprecated createOnDemandOnce SingletonLifetime option
8c522aa Fix off by one in pending i/o count on HTTPClient
057344e Add HTTPMessage::toString and family
ee728e3 Add UniformResourceLocator::empty
ae324fb Move ./modules to ./src

git-subtree-dir: src/beast
git-subtree-split: 0e7bac945f
2013-10-19 15:54:21 -07:00

890 lines
32 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of Beast: https://github.com/vinniefalco/Beast
Copyright 2013, Vinnie Falco <vinnie.falco@gmail.com>
Portions of this file are from JUCE.
Copyright (c) 2013 - Raw Material Software Ltd.
Please visit http://www.juce.com
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef BEAST_OWNEDARRAY_H_INCLUDED
#define BEAST_OWNEDARRAY_H_INCLUDED
//==============================================================================
/** An array designed for holding objects.
This holds a list of pointers to objects, and will automatically
delete the objects when they are removed from the array, or when the
array is itself deleted.
Declare it in the form: OwnedArray<MyObjectClass>
..and then add new objects, e.g. myOwnedArray.add (new MyObjectClass());
After adding objects, they are 'owned' by the array and will be deleted when
removed or replaced.
To make all the array's methods thread-safe, pass in "CriticalSection" as the templated
TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection.
@see Array, SharedObjectArray, StringArray, CriticalSection
*/
template <class ObjectClass,
class TypeOfCriticalSectionToUse = DummyCriticalSection>
class OwnedArray
: LeakChecked <OwnedArray <ObjectClass, TypeOfCriticalSectionToUse> >
, public Uncopyable
{
public:
//==============================================================================
/** Creates an empty array. */
OwnedArray() noexcept
: numUsed (0)
{
}
/** Deletes the array and also deletes any objects inside it.
To get rid of the array without deleting its objects, use its
clear (false) method before deleting it.
*/
~OwnedArray()
{
deleteAllObjects();
}
#if BEAST_COMPILER_SUPPORTS_MOVE_SEMANTICS
OwnedArray (OwnedArray&& other) noexcept
: data (static_cast <ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse>&&> (other.data)),
numUsed (other.numUsed)
{
other.numUsed = 0;
}
OwnedArray& operator= (OwnedArray&& other) noexcept
{
const ScopedLockType lock (getLock());
deleteAllObjects();
data = static_cast <ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse>&&> (other.data);
numUsed = other.numUsed;
other.numUsed = 0;
return *this;
}
#endif
//==============================================================================
/** Clears the array, optionally deleting the objects inside it first. */
void clear (bool deleteObjects = true)
{
const ScopedLockType lock (getLock());
if (deleteObjects)
deleteAllObjects();
data.setAllocatedSize (0);
numUsed = 0;
}
/** Clears the array, optionally deleting the objects inside it first.
The array's allocated storage is preserved.
@see clear
*/
void clearQuick(bool deleteObjects = true)
{
const ScopedLockType lock (getLock());
if (deleteObjects)
deleteAllObjects();
numUsed = 0;
}
//==============================================================================
/** Returns the number of items currently in the array.
@see operator[]
*/
inline int size() const noexcept
{
return numUsed;
}
/** Returns a pointer to the object at this index in the array.
If the index is out-of-range, this will return a null pointer, (and
it could be null anyway, because it's ok for the array to hold null
pointers as well as objects).
@see getUnchecked
*/
inline ObjectClass* operator[] (const int index) const noexcept
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (index, numUsed))
{
bassert (data.elements != nullptr);
return data.elements [index];
}
return nullptr;
}
/** Returns a pointer to the object at this index in the array, without checking whether the index is in-range.
This is a faster and less safe version of operator[] which doesn't check the index passed in, so
it can be used when you're sure the index is always going to be legal.
*/
inline ObjectClass* getUnchecked (const int index) const noexcept
{
const ScopedLockType lock (getLock());
bassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr);
return data.elements [index];
}
/** Returns a pointer to the first object in the array.
This will return a null pointer if the array's empty.
@see getLast
*/
inline ObjectClass* getFirst() const noexcept
{
const ScopedLockType lock (getLock());
return numUsed > 0 ? data.elements [0]
: static_cast <ObjectClass*> (nullptr);
}
/** Returns a pointer to the last object in the array.
This will return a null pointer if the array's empty.
@see getFirst
*/
inline ObjectClass* getLast() const noexcept
{
const ScopedLockType lock (getLock());
return numUsed > 0 ? data.elements [numUsed - 1]
: static_cast <ObjectClass*> (nullptr);
}
/** Returns a pointer to the actual array data.
This pointer will only be valid until the next time a non-const method
is called on the array.
*/
inline ObjectClass** getRawDataPointer() noexcept
{
return data.elements;
}
//==============================================================================
/** Returns a pointer to the first element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline ObjectClass** begin() const noexcept
{
return data.elements;
}
/** Returns a pointer to the element which follows the last element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline ObjectClass** end() const noexcept
{
return data.elements + numUsed;
}
//==============================================================================
/** Finds the index of an object which might be in the array.
@param objectToLookFor the object to look for
@returns the index at which the object was found, or -1 if it's not found
*/
int indexOf (const ObjectClass* const objectToLookFor) const noexcept
{
const ScopedLockType lock (getLock());
ObjectClass* const* e = data.elements.getData();
ObjectClass* const* const end_ = e + numUsed;
for (; e != end_; ++e)
if (objectToLookFor == *e)
return static_cast <int> (e - data.elements.getData());
return -1;
}
/** Returns true if the array contains a specified object.
@param objectToLookFor the object to look for
@returns true if the object is in the array
*/
bool contains (const ObjectClass* const objectToLookFor) const noexcept
{
const ScopedLockType lock (getLock());
ObjectClass* const* e = data.elements.getData();
ObjectClass* const* const end_ = e + numUsed;
for (; e != end_; ++e)
if (objectToLookFor == *e)
return true;
return false;
}
//==============================================================================
/** Appends a new object to the end of the array.
Note that the this object will be deleted by the OwnedArray when it
is removed, so be careful not to delete it somewhere else.
Also be careful not to add the same object to the array more than once,
as this will obviously cause deletion of dangling pointers.
@param newObject the new object to add to the array
@see set, insert, addIfNotAlreadyThere, addSorted
*/
ObjectClass* add (ObjectClass* const newObject) noexcept
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (numUsed + 1);
bassert (data.elements != nullptr);
data.elements [numUsed++] = const_cast <ObjectClass*> (newObject);
return const_cast <ObjectClass*> (newObject);
}
/** Inserts a new object into the array at the given index.
Note that the this object will be deleted by the OwnedArray when it
is removed, so be careful not to delete it somewhere else.
If the index is less than 0 or greater than the size of the array, the
element will be added to the end of the array.
Otherwise, it will be inserted into the array, moving all the later elements
along to make room.
Be careful not to add the same object to the array more than once,
as this will obviously cause deletion of dangling pointers.
@param indexToInsertAt the index at which the new element should be inserted
@param newObject the new object to add to the array
@see add, addSorted, addIfNotAlreadyThere, set
*/
void insert (int indexToInsertAt,
ObjectClass* const newObject) noexcept
{
if (indexToInsertAt >= 0)
{
const ScopedLockType lock (getLock());
if (indexToInsertAt > numUsed)
indexToInsertAt = numUsed;
data.ensureAllocatedSize (numUsed + 1);
bassert (data.elements != nullptr);
ObjectClass** const e = data.elements + indexToInsertAt;
const int numToMove = numUsed - indexToInsertAt;
if (numToMove > 0)
memmove (e + 1, e, sizeof (ObjectClass*) * (size_t) numToMove);
*e = const_cast <ObjectClass*> (newObject);
++numUsed;
}
else
{
add (newObject);
}
}
/** Inserts an array of values into this array at a given position.
If the index is less than 0 or greater than the size of the array, the
new elements will be added to the end of the array.
Otherwise, they will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the first new element should be inserted
@param newObjects the new values to add to the array
@param numberOfElements how many items are in the array
@see insert, add, addSorted, set
*/
void insertArray (int indexToInsertAt,
ObjectClass* const* newObjects,
int numberOfElements)
{
if (numberOfElements > 0)
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (numUsed + numberOfElements);
ObjectClass** insertPos = data.elements;
if (isPositiveAndBelow (indexToInsertAt, numUsed))
{
insertPos += indexToInsertAt;
const size_t numberToMove = (size_t) (numUsed - indexToInsertAt);
memmove (insertPos + numberOfElements, insertPos, numberToMove * sizeof (ObjectClass*));
}
else
{
insertPos += numUsed;
}
numUsed += numberOfElements;
while (--numberOfElements >= 0)
*insertPos++ = *newObjects++;
}
}
/** Appends a new object at the end of the array as long as the array doesn't
already contain it.
If the array already contains a matching object, nothing will be done.
@param newObject the new object to add to the array
*/
void addIfNotAlreadyThere (ObjectClass* const newObject) noexcept
{
const ScopedLockType lock (getLock());
if (! contains (newObject))
add (newObject);
}
/** Replaces an object in the array with a different one.
If the index is less than zero, this method does nothing.
If the index is beyond the end of the array, the new object is added to the end of the array.
Be careful not to add the same object to the array more than once,
as this will obviously cause deletion of dangling pointers.
@param indexToChange the index whose value you want to change
@param newObject the new value to set for this index.
@param deleteOldElement whether to delete the object that's being replaced with the new one
@see add, insert, remove
*/
void set (const int indexToChange,
const ObjectClass* const newObject,
const bool deleteOldElement = true)
{
if (indexToChange >= 0)
{
ObjectClass* toDelete = nullptr;
{
const ScopedLockType lock (getLock());
if (indexToChange < numUsed)
{
if (deleteOldElement)
{
toDelete = data.elements [indexToChange];
if (toDelete == newObject)
toDelete = nullptr;
}
data.elements [indexToChange] = const_cast <ObjectClass*> (newObject);
}
else
{
data.ensureAllocatedSize (numUsed + 1);
data.elements [numUsed++] = const_cast <ObjectClass*> (newObject);
}
}
// don't want to use a ScopedPointer here because if the
// object has a private destructor, both OwnedArray and
// ScopedPointer would need to be friend classes..
ContainerDeletePolicy <ObjectClass>::destroy (toDelete);
}
else
{
bassertfalse; // you're trying to set an object at a negative index, which doesn't have
// any effect - but since the object is not being added, it may be leaking..
}
}
/** Adds elements from another array to the end of this array.
@param arrayToAddFrom the array from which to copy the elements
@param startIndex the first element of the other array to start copying from
@param numElementsToAdd how many elements to add from the other array. If this
value is negative or greater than the number of available elements,
all available elements will be copied.
@see add
*/
template <class OtherArrayType>
void addArray (const OtherArrayType& arrayToAddFrom,
int startIndex = 0,
int numElementsToAdd = -1)
{
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
const ScopedLockType lock2 (getLock());
if (startIndex < 0)
{
bassertfalse;
startIndex = 0;
}
if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size())
numElementsToAdd = arrayToAddFrom.size() - startIndex;
data.ensureAllocatedSize (numUsed + numElementsToAdd);
bassert (numElementsToAdd <= 0 || data.elements != nullptr);
while (--numElementsToAdd >= 0)
{
data.elements [numUsed] = arrayToAddFrom.getUnchecked (startIndex++);
++numUsed;
}
}
/** Adds copies of the elements in another array to the end of this array.
The other array must be either an OwnedArray of a compatible type of object, or an Array
containing pointers to the same kind of object. The objects involved must provide
a copy constructor, and this will be used to create new copies of each element, and
add them to this array.
@param arrayToAddFrom the array from which to copy the elements
@param startIndex the first element of the other array to start copying from
@param numElementsToAdd how many elements to add from the other array. If this
value is negative or greater than the number of available elements,
all available elements will be copied.
@see add
*/
template <class OtherArrayType>
void addCopiesOf (const OtherArrayType& arrayToAddFrom,
int startIndex = 0,
int numElementsToAdd = -1)
{
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
const ScopedLockType lock2 (getLock());
if (startIndex < 0)
{
bassertfalse;
startIndex = 0;
}
if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size())
numElementsToAdd = arrayToAddFrom.size() - startIndex;
data.ensureAllocatedSize (numUsed + numElementsToAdd);
bassert (numElementsToAdd <= 0 || data.elements != nullptr);
while (--numElementsToAdd >= 0)
{
data.elements [numUsed] = new ObjectClass (*arrayToAddFrom.getUnchecked (startIndex++));
++numUsed;
}
}
/** Inserts a new object into the array assuming that the array is sorted.
This will use a comparator to find the position at which the new object
should go. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param comparator the comparator to use to compare the elements - see the sort method
for details about this object's structure
@param newObject the new object to insert to the array
@returns the index at which the new object was added
@see add, sort, indexOfSorted
*/
template <class ElementComparator>
int addSorted (ElementComparator& comparator, ObjectClass* const newObject) noexcept
{
(void) comparator; // if you pass in an object with a static compareElements() method, this
// avoids getting warning messages about the parameter being unused
const ScopedLockType lock (getLock());
const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newObject, 0, numUsed);
insert (index, newObject);
return index;
}
/** Finds the index of an object in the array, assuming that the array is sorted.
This will use a comparator to do a binary-chop to find the index of the given
element, if it exists. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param comparator the comparator to use to compare the elements - see the sort()
method for details about the form this object should take
@param objectToLookFor the object to search for
@returns the index of the element, or -1 if it's not found
@see addSorted, sort
*/
template <typename ElementComparator>
int indexOfSorted (ElementComparator& comparator, const ObjectClass* const objectToLookFor) const noexcept
{
(void) comparator;
const ScopedLockType lock (getLock());
int s = 0, e = numUsed;
while (s < e)
{
if (comparator.compareElements (objectToLookFor, data.elements [s]) == 0)
return s;
const int halfway = (s + e) / 2;
if (halfway == s)
break;
if (comparator.compareElements (objectToLookFor, data.elements [halfway]) >= 0)
s = halfway;
else
e = halfway;
}
return -1;
}
//==============================================================================
/** Removes an object from the array.
This will remove the object at a given index (optionally also
deleting it) and move back all the subsequent objects to close the gap.
If the index passed in is out-of-range, nothing will happen.
@param indexToRemove the index of the element to remove
@param deleteObject whether to delete the object that is removed
@see removeObject, removeRange
*/
void remove (const int indexToRemove,
const bool deleteObject = true)
{
ObjectClass* toDelete = nullptr;
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (indexToRemove, numUsed))
{
ObjectClass** const e = data.elements + indexToRemove;
if (deleteObject)
toDelete = *e;
--numUsed;
const int numToShift = numUsed - indexToRemove;
if (numToShift > 0)
memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numToShift);
}
}
// don't want to use a ScopedPointer here because if the
// object has a private destructor, both OwnedArray and
// ScopedPointer would need to be friend classes..
ContainerDeletePolicy <ObjectClass>::destroy (toDelete);
if ((numUsed << 1) < data.numAllocated)
minimiseStorageOverheads();
}
/** Removes and returns an object from the array without deleting it.
This will remove the object at a given index and return it, moving back all
the subsequent objects to close the gap. If the index passed in is out-of-range,
nothing will happen.
@param indexToRemove the index of the element to remove
@see remove, removeObject, removeRange
*/
ObjectClass* removeAndReturn (const int indexToRemove)
{
ObjectClass* removedItem = nullptr;
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (indexToRemove, numUsed))
{
ObjectClass** const e = data.elements + indexToRemove;
removedItem = *e;
--numUsed;
const int numToShift = numUsed - indexToRemove;
if (numToShift > 0)
memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numToShift);
if ((numUsed << 1) < data.numAllocated)
minimiseStorageOverheads();
}
return removedItem;
}
/** Removes a specified object from the array.
If the item isn't found, no action is taken.
@param objectToRemove the object to try to remove
@param deleteObject whether to delete the object (if it's found)
@see remove, removeRange
*/
void removeObject (const ObjectClass* const objectToRemove,
const bool deleteObject = true)
{
const ScopedLockType lock (getLock());
ObjectClass** const e = data.elements.getData();
for (int i = 0; i < numUsed; ++i)
{
if (objectToRemove == e[i])
{
remove (i, deleteObject);
break;
}
}
}
/** Removes a range of objects from the array.
This will remove a set of objects, starting from the given index,
and move any subsequent elements down to close the gap.
If the range extends beyond the bounds of the array, it will
be safely clipped to the size of the array.
@param startIndex the index of the first object to remove
@param numberToRemove how many objects should be removed
@param deleteObjects whether to delete the objects that get removed
@see remove, removeObject
*/
void removeRange (int startIndex,
const int numberToRemove,
const bool deleteObjects = true)
{
const ScopedLockType lock (getLock());
const int endIndex = blimit (0, numUsed, startIndex + numberToRemove);
startIndex = blimit (0, numUsed, startIndex);
if (endIndex > startIndex)
{
if (deleteObjects)
{
for (int i = startIndex; i < endIndex; ++i)
{
ContainerDeletePolicy <ObjectClass>::destroy (data.elements [i]);
data.elements [i] = nullptr; // (in case one of the destructors accesses this array and hits a dangling pointer)
}
}
const int rangeSize = endIndex - startIndex;
ObjectClass** e = data.elements + startIndex;
int numToShift = numUsed - endIndex;
numUsed -= rangeSize;
while (--numToShift >= 0)
{
*e = e [rangeSize];
++e;
}
if ((numUsed << 1) < data.numAllocated)
minimiseStorageOverheads();
}
}
/** Removes the last n objects from the array.
@param howManyToRemove how many objects to remove from the end of the array
@param deleteObjects whether to also delete the objects that are removed
@see remove, removeObject, removeRange
*/
void removeLast (int howManyToRemove = 1,
const bool deleteObjects = true)
{
const ScopedLockType lock (getLock());
if (howManyToRemove >= numUsed)
clear (deleteObjects);
else
removeRange (numUsed - howManyToRemove, howManyToRemove, deleteObjects);
}
/** Swaps a pair of objects in the array.
If either of the indexes passed in is out-of-range, nothing will happen,
otherwise the two objects at these positions will be exchanged.
*/
void swap (const int index1,
const int index2) noexcept
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (index1, numUsed)
&& isPositiveAndBelow (index2, numUsed))
{
std::swap (data.elements [index1],
data.elements [index2]);
}
}
/** Moves one of the objects to a different position.
This will move the object to a specified index, shuffling along
any intervening elements as required.
So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling
move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }.
@param currentIndex the index of the object to be moved. If this isn't a
valid index, then nothing will be done
@param newIndex the index at which you'd like this object to end up. If this
is less than zero, it will be moved to the end of the array
*/
void move (const int currentIndex,
int newIndex) noexcept
{
if (currentIndex != newIndex)
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (currentIndex, numUsed))
{
if (! isPositiveAndBelow (newIndex, numUsed))
newIndex = numUsed - 1;
ObjectClass* const value = data.elements [currentIndex];
if (newIndex > currentIndex)
{
memmove (data.elements + currentIndex,
data.elements + currentIndex + 1,
sizeof (ObjectClass*) * (size_t) (newIndex - currentIndex));
}
else
{
memmove (data.elements + newIndex + 1,
data.elements + newIndex,
sizeof (ObjectClass*) * (size_t) (currentIndex - newIndex));
}
data.elements [newIndex] = value;
}
}
}
/** This swaps the contents of this array with those of another array.
If you need to exchange two arrays, this is vastly quicker than using copy-by-value
because it just swaps their internal pointers.
*/
template <class OtherArrayType>
void swapWith (OtherArrayType& otherArray) noexcept
{
const ScopedLockType lock1 (getLock());
const typename OtherArrayType::ScopedLockType lock2 (otherArray.getLock());
data.swapWith (otherArray.data);
std::swap (numUsed, otherArray.numUsed);
}
//==============================================================================
/** Reduces the amount of storage being used by the array.
Arrays typically allocate slightly more storage than they need, and after
removing elements, they may have quite a lot of unused space allocated.
This method will reduce the amount of allocated storage to a minimum.
*/
void minimiseStorageOverheads() noexcept
{
const ScopedLockType lock (getLock());
data.shrinkToNoMoreThan (numUsed);
}
/** Increases the array's internal storage to hold a minimum number of elements.
Calling this before adding a large known number of elements means that
the array won't have to keep dynamically resizing itself as the elements
are added, and it'll therefore be more efficient.
*/
void ensureStorageAllocated (const int minNumElements) noexcept
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (minNumElements);
}
//==============================================================================
/** Sorts the elements in the array.
This will use a comparator object to sort the elements into order. The object
passed must have a method of the form:
@code
int compareElements (ElementType first, ElementType second);
@endcode
..and this method must return:
- a value of < 0 if the first comes before the second
- a value of 0 if the two objects are equivalent
- a value of > 0 if the second comes before the first
To improve performance, the compareElements() method can be declared as static or const.
@param comparator the comparator to use for comparing elements.
@param retainOrderOfEquivalentItems if this is true, then items
which the comparator says are equivalent will be
kept in the order in which they currently appear
in the array. This is slower to perform, but may
be important in some cases. If it's false, a faster
algorithm is used, but equivalent elements may be
rearranged.
@see sortArray, indexOfSorted
*/
template <class ElementComparator>
void sort (ElementComparator& comparator,
const bool retainOrderOfEquivalentItems = false) const noexcept
{
(void) comparator; // if you pass in an object with a static compareElements() method, this
// avoids getting warning messages about the parameter being unused
const ScopedLockType lock (getLock());
sortArray (comparator, data.elements.getData(), 0, size() - 1, retainOrderOfEquivalentItems);
}
//==============================================================================
/** Returns the CriticalSection that locks this array.
To lock, you can call getLock().enter() and getLock().exit(), or preferably use
an object of ScopedLockType as an RAII lock for it.
*/
inline const TypeOfCriticalSectionToUse& getLock() const noexcept { return data; }
/** Returns the type of scoped lock to use for locking this array */
typedef typename TypeOfCriticalSectionToUse::ScopedLockType ScopedLockType;
private:
//==============================================================================
ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse> data;
int numUsed;
void deleteAllObjects()
{
while (numUsed > 0)
ContainerDeletePolicy <ObjectClass>::destroy (data.elements [--numUsed]);
}
};
#endif