Files
xahaud/modules/beast_core/containers/Array.h
Vinnie Falco 2ad98a025e Squashed 'src/beast/' changes from 43e6d34..0e7bac9
0e7bac9 Fix include path
e5bb90f Fix constness of Proxy
ac0142a Use template cast
ef6e381 Add missing Url.h include
206e65c Fix constness of operator[]
695cc38 Use template instantiation for friend declaration
7b1e03a Add BaseFromMember
49bc04f Make List<>::Node not uncopyable
d5954ff Add Journal to UnitTest
58da106 Temporarily disable ServiceQueue dtor precondition asserts
fe58c1a Add missing #include
2c02580 Add PropertyStream for server state introspection
24c2315 Add ScopedWrapperContext
a3845f5 Add RelativeTime::value_type typedef
7442932 Fix missing PropertyStream members
ed5a98f More PropertyStream output for PeerFinder
fcfa10d Add PropertyStream
3cf0729 Tidy up AbstractHandler usage in HTTPClient
55171f4 Remove obsolete source files
1311ca3 Increase arity of SharedFunction
67d807d Add IPEndpoint::key_equal
ebf395e Add ErrorCode and boost library
2c3ead3 Add ServiceQueue::wrap
6c7f5d0 Move many Thread related classes
93e9d86 Measure CPU utilization in ServiceQueue
ca47d72 Move ServiceQueue, ThreadLocalValue, SpinLock
c864e4d Move WaitableEvent
ff305e6 Add CPUMeter and ScopedTimeInterval
01fd05c Add RecursiveMutex, UnlockGuard, TryLockGuard
5831a53 Remove Journal from most Stoppable overrides
b60a7f3 Add Request and Response HTTP parsers
44445ff Refactor net buffers classes
ac37c38 Beast class refactor
8b7056b Fix eof on HTTP client get
228b664 Remove obsolete beast container classes
1dfd655 Use RelativeTime from startup in DeadlineTimer
ae22d5d Add more methods to RelativeTime
c67929e Remove unhandled exception catcher
2472a90 Add 64 bit output for MurmurHash
f3d97c7 Add RelativeTime::fromStartup
b0b8660 IPEndpoint better parsing
ae551cd Add alternate form string parsing to IPEndpoint
d0a0dbf Don't break on Throw
0e46762 Add hasher functors for IPEndpoint
a1ec423 Add Thread::stopThreadAsync
4f7dca3 Add compiler, stdlib, and platform skeleton to beast/config
4394594 Tidy up some use of Error for throw
e5e0f52 Journal console output improvements
f07515e Add Stoppable prepare and start interfaces
d37dd46 Move RelativeTime to chrono, add ostream support
3f6e7aa Add console feature to Journal
ad0064a Journal option to write to Output window (MSVC)
0b7574b Add compilation test script
cc05ce1 Add ServiceQueue
e132aab Use boost for functional when the config is set
026b926 Fix is_continuation for boost version
c807a4e Fix invoked_type type reference
2ff781b Remove LockFreeStack::size
3acb474 Add SharedData::ConstAccess
7e4c834 Add LockFreeStack::empty
9c61a6d Added AbstractHandler, WrapHandler. HTTPClient Fixes.
94e40dc Fix unittest, by removing recursive call.
38bf408 Fix nonstandard C++ extension in getNullSink
1ef044d Build fixes
d5d3746 Fix missing <cmath> include for Gentoo
5f231d3 Update copyright notice and licenses
7b89bf6 Add FixedArray, IntrusiveArray, Crypto
5c5de57 Reorganize beast modules and files
9e18bb3 Merge commit '43deaaa5cf0d0178a4a6c3cb69c02a2a9a43ec7d' as 'src/beast/beast/http/impl/http-parser'
57703ac Fix BeforeBoost.h include
fbc247b Add Stoppable to beast
56496d8 IPEndpoint comparisons
9d9c822 Migrate some headers and general tidying
1a3cddc Add SharedArg and AsyncObject
373ca9c Add HTTPRequest and improvements to HTTPMessage parsing
9534516 Add some thread classes and fix SharedData with a simple mutex adapter
755ab36 Make CallQueue unit test runManual
c0ca037 Remove Beast version printing on startup
7efb6a3 Reorganize some MPL and Utility classes and files
69c26a1 Fix missing BeastConfig.h include in Net.cpp
40aa552 Disable Beast version printing in Ripple BeastConfig.h
7b1352d Add InterruptibleThread unit test
68cf759 ThreadWithCallQueue unit test adjustment
6501dea IPEndpoint parsing and tidying
72fc42b Move and add some template metaprogramming classes
2a164f0 Change filname capitalization (end)
6a14f25 Change filename capitalization
92fd417 Move integer types to beast/CStdInt.h
ebbd9ff Move TargetPlatform.h to beast/Config.h
874b524 Add IPEndpoint
14b34fc Tidy up some zlib macro undefines
34fffca Rename beast sources for consistency
4e59ab2 Add CallQueue unit test
327d7a6 Fixes for consolidated beast unity includes
d5ece4e Remove unused and broken classes
39f13be Remove unused ConcurrentObject
37624a7 Add ThreadWithCallQueue unit test
e82ec68 Remove obsolete beast_Function
90551a6 Temporarily leave sqlite3 in whatever threading mode it was already in.
43ebbb1 Fix SharedSingleton to use memoryBarrier
f343941 Tidy up SharedSingleton doc comments
001997e Fix leak on exit from Singleton dependency cycle
83b9d22 Rename to DeadlineTimer::cancel()
77874ee Use new instead of ::new for placement
2a04dcc Journal improvements
50965ca SharedFunction improvements
277e32b Add LockFreeStack iterators
d94e4c2 Fix undefined behavior in UnsignedIntegerCalc (again)
2dc25ce Fix DeadlineTimer, callback while holding lock
207ffde Fix undefined behavior in UnsignedIntegerCalc
1ad8ff9 Fix UnsignedInteger::isZero
1dd2836 Add support for multiprecision integer arithmetic and binary data encoding
a45fc47 Update .gitignore
962a95d Tidy up UnsignedInteger
ca695fa Add Time::isNull()
e96ce99 Better random number facilities in UnitTest
550b8e5 Fine tune UnsignedInteger declaration
8e7e3b7 Allow negative relative expirations in DeadlineTimer
f3dc7ce Add generic Journal class for logging
bfdda32 Make ChildProcess UnitTest manual since it malfunctions
02acf7d General refactoring of beast framework classes
84ef06e Fix ExitHook to derive from AtExitHook
f0acc9c Reduce the max threads in the Workers unit test
55447b0 New SharedSingleton, resolves destruction of objects with static storage duration.
41eb8a1 Remove deprecated SharedPtr::getObject
9eda4bc Make SharedObject members const, the counter mutable
6eda777 Remove deprecated createOnDemandOnce SingletonLifetime option
8c522aa Fix off by one in pending i/o count on HTTPClient
057344e Add HTTPMessage::toString and family
ee728e3 Add UniformResourceLocator::empty
ae324fb Move ./modules to ./src

git-subtree-dir: src/beast
git-subtree-split: 0e7bac945f
2013-10-19 15:54:21 -07:00

1056 lines
38 KiB
C++

//------------------------------------------------------------------------------
/*
This file is part of Beast: https://github.com/vinniefalco/Beast
Copyright 2013, Vinnie Falco <vinnie.falco@gmail.com>
Portions of this file are from JUCE.
Copyright (c) 2013 - Raw Material Software Ltd.
Please visit http://www.juce.com
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
//==============================================================================
#ifndef BEAST_ARRAY_H_INCLUDED
#define BEAST_ARRAY_H_INCLUDED
//==============================================================================
/**
Holds a resizable array of primitive or copy-by-value objects.
Examples of arrays are: Array<int>, Array<Rectangle> or Array<MyClass*>
The Array class can be used to hold simple, non-polymorphic objects as well as primitive types - to
do so, the class must fulfil these requirements:
- it must have a copy constructor and assignment operator
- it must be able to be relocated in memory by a memcpy without this causing any problems - so
objects whose functionality relies on external pointers or references to themselves can be used.
You can of course have an array of pointers to any kind of object, e.g. Array <MyClass*>, but if
you do this, the array doesn't take any ownership of the objects - see the OwnedArray class or the
SharedObjectArray class for more powerful ways of holding lists of objects.
For holding lists of strings, you can use Array\<String\>, but it's usually better to use the
specialised class StringArray, which provides more useful functions.
To make all the array's methods thread-safe, pass in "CriticalSection" as the templated
TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection.
@see OwnedArray, SharedObjectArray, StringArray, CriticalSection
*/
template <typename ElementType,
typename TypeOfCriticalSectionToUse = DummyCriticalSection,
int minimumAllocatedSize = 0>
class Array
{
private:
typedef PARAMETER_TYPE (ElementType) ParameterType;
public:
//==============================================================================
/** Creates an empty array. */
Array() noexcept
: numUsed (0)
{
}
/** Creates a copy of another array.
@param other the array to copy
*/
Array (const Array<ElementType, TypeOfCriticalSectionToUse>& other)
{
const ScopedLockType lock (other.getLock());
numUsed = other.numUsed;
data.setAllocatedSize (other.numUsed);
for (int i = 0; i < numUsed; ++i)
new (data.elements + i) ElementType (other.data.elements[i]);
}
#if BEAST_COMPILER_SUPPORTS_MOVE_SEMANTICS
Array (Array<ElementType, TypeOfCriticalSectionToUse>&& other) noexcept
: data (static_cast <ArrayAllocationBase<ElementType, TypeOfCriticalSectionToUse>&&> (other.data)),
numUsed (other.numUsed)
{
other.numUsed = 0;
}
#endif
/** Initalises from a null-terminated C array of values.
@param values the array to copy from
*/
template <typename TypeToCreateFrom>
explicit Array (const TypeToCreateFrom* values)
: numUsed (0)
{
while (*values != TypeToCreateFrom())
add (*values++);
}
/** Initalises from a C array of values.
@param values the array to copy from
@param numValues the number of values in the array
*/
template <typename TypeToCreateFrom>
Array (const TypeToCreateFrom* values, int numValues)
: numUsed (numValues)
{
data.setAllocatedSize (numValues);
for (int i = 0; i < numValues; ++i)
new (data.elements + i) ElementType (values[i]);
}
/** Destructor. */
~Array()
{
deleteAllElements();
}
/** Copies another array.
@param other the array to copy
*/
Array& operator= (const Array& other)
{
if (this != &other)
{
Array<ElementType, TypeOfCriticalSectionToUse> otherCopy (other);
swapWith (otherCopy);
}
return *this;
}
#if BEAST_COMPILER_SUPPORTS_MOVE_SEMANTICS
Array& operator= (Array&& other) noexcept
{
const ScopedLockType lock (getLock());
data = static_cast <ArrayAllocationBase<ElementType, TypeOfCriticalSectionToUse>&&> (other.data);
numUsed = other.numUsed;
other.numUsed = 0;
return *this;
}
#endif
//==============================================================================
/** Compares this array to another one.
Two arrays are considered equal if they both contain the same set of
elements, in the same order.
@param other the other array to compare with
*/
template <class OtherArrayType>
bool operator== (const OtherArrayType& other) const
{
const ScopedLockType lock (getLock());
const typename OtherArrayType::ScopedLockType lock2 (other.getLock());
if (numUsed != other.numUsed)
return false;
for (int i = numUsed; --i >= 0;)
if (! (data.elements [i] == other.data.elements [i]))
return false;
return true;
}
/** Compares this array to another one.
Two arrays are considered equal if they both contain the same set of
elements, in the same order.
@param other the other array to compare with
*/
template <class OtherArrayType>
bool operator!= (const OtherArrayType& other) const
{
return ! operator== (other);
}
//==============================================================================
/** Removes all elements from the array.
This will remove all the elements, and free any storage that the array is
using. To clear the array without freeing the storage, use the clearQuick()
method instead.
@see clearQuick
*/
void clear()
{
const ScopedLockType lock (getLock());
deleteAllElements();
data.setAllocatedSize (0);
numUsed = 0;
}
/** Removes all elements from the array without freeing the array's allocated storage.
@see clear
*/
void clearQuick()
{
const ScopedLockType lock (getLock());
deleteAllElements();
numUsed = 0;
}
//==============================================================================
/** Returns the current number of elements in the array.
*/
inline int size() const noexcept
{
return numUsed;
}
/** Returns one of the elements in the array.
If the index passed in is beyond the range of valid elements, this
will return a default value.
If you're certain that the index will always be a valid element, you
can call getUnchecked() instead, which is faster.
@param index the index of the element being requested (0 is the first element in the array)
@see getUnchecked, getFirst, getLast
*/
ElementType operator[] (const int index) const
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (index, numUsed))
{
bassert (data.elements != nullptr);
return data.elements [index];
}
return ElementType();
}
/** Returns one of the elements in the array, without checking the index passed in.
Unlike the operator[] method, this will try to return an element without
checking that the index is within the bounds of the array, so should only
be used when you're confident that it will always be a valid index.
@param index the index of the element being requested (0 is the first element in the array)
@see operator[], getFirst, getLast
*/
inline ElementType getUnchecked (const int index) const
{
const ScopedLockType lock (getLock());
bassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr);
return data.elements [index];
}
/** Returns a direct reference to one of the elements in the array, without checking the index passed in.
This is like getUnchecked, but returns a direct reference to the element, so that
you can alter it directly. Obviously this can be dangerous, so only use it when
absolutely necessary.
@param index the index of the element being requested (0 is the first element in the array)
@see operator[], getFirst, getLast
*/
inline ElementType& getReference (const int index) const noexcept
{
const ScopedLockType lock (getLock());
bassert (isPositiveAndBelow (index, numUsed) && data.elements != nullptr);
return data.elements [index];
}
/** Returns the first element in the array, or a default value if the array is empty.
@see operator[], getUnchecked, getLast
*/
inline ElementType getFirst() const
{
const ScopedLockType lock (getLock());
return (numUsed > 0) ? data.elements [0]
: ElementType();
}
/** Returns the last element in the array, or a default value if the array is empty.
@see operator[], getUnchecked, getFirst
*/
inline ElementType getLast() const
{
const ScopedLockType lock (getLock());
return (numUsed > 0) ? data.elements [numUsed - 1]
: ElementType();
}
/** Returns a pointer to the actual array data.
This pointer will only be valid until the next time a non-const method
is called on the array.
*/
inline ElementType* getRawDataPointer() noexcept
{
return data.elements;
}
//==============================================================================
/** Returns a pointer to the first element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline ElementType* begin() const noexcept
{
return data.elements;
}
/** Returns a pointer to the element which follows the last element in the array.
This method is provided for compatibility with standard C++ iteration mechanisms.
*/
inline ElementType* end() const noexcept
{
return data.elements + numUsed;
}
//==============================================================================
/** Finds the index of the first element which matches the value passed in.
This will search the array for the given object, and return the index
of its first occurrence. If the object isn't found, the method will return -1.
@param elementToLookFor the value or object to look for
@returns the index of the object, or -1 if it's not found
*/
int indexOf (ParameterType elementToLookFor) const
{
const ScopedLockType lock (getLock());
const ElementType* e = data.elements.getData();
const ElementType* const end_ = e + numUsed;
for (; e != end_; ++e)
if (elementToLookFor == *e)
return static_cast <int> (e - data.elements.getData());
return -1;
}
/** Returns true if the array contains at least one occurrence of an object.
@param elementToLookFor the value or object to look for
@returns true if the item is found
*/
bool contains (ParameterType elementToLookFor) const
{
const ScopedLockType lock (getLock());
const ElementType* e = data.elements.getData();
const ElementType* const end_ = e + numUsed;
for (; e != end_; ++e)
if (elementToLookFor == *e)
return true;
return false;
}
//==============================================================================
/** Appends a new element at the end of the array.
@param newElement the new object to add to the array
@return The index of the new item, or -1 if it already existed.
@see set, insert, addIfNotAlreadyThere, addSorted, addUsingDefaultSort, addArray
*/
int add (ParameterType newElement)
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (numUsed + 1);
new (data.elements + numUsed++) ElementType (newElement);
return numUsed;
}
/** Inserts a new element into the array at a given position.
If the index is less than 0 or greater than the size of the array, the
element will be added to the end of the array.
Otherwise, it will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the new element should be
inserted (pass in -1 to add it to the end)
@param newElement the new object to add to the array
@see add, addSorted, addUsingDefaultSort, set
*/
void insert (int indexToInsertAt, ParameterType newElement)
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (numUsed + 1);
bassert (data.elements != nullptr);
if (isPositiveAndBelow (indexToInsertAt, numUsed))
{
ElementType* const insertPos = data.elements + indexToInsertAt;
const int numberToMove = numUsed - indexToInsertAt;
if (numberToMove > 0)
memmove (insertPos + 1, insertPos, ((size_t) numberToMove) * sizeof (ElementType));
new (insertPos) ElementType (newElement);
++numUsed;
}
else
{
new (data.elements + numUsed++) ElementType (newElement);
}
}
/** Inserts multiple copies of an element into the array at a given position.
If the index is less than 0 or greater than the size of the array, the
element will be added to the end of the array.
Otherwise, it will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the new element should be inserted
@param newElement the new object to add to the array
@param numberOfTimesToInsertIt how many copies of the value to insert
@see insert, add, addSorted, set
*/
void insertMultiple (int indexToInsertAt, ParameterType newElement,
int numberOfTimesToInsertIt)
{
if (numberOfTimesToInsertIt > 0)
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (numUsed + numberOfTimesToInsertIt);
ElementType* insertPos;
if (isPositiveAndBelow (indexToInsertAt, numUsed))
{
insertPos = data.elements + indexToInsertAt;
const int numberToMove = numUsed - indexToInsertAt;
memmove (insertPos + numberOfTimesToInsertIt, insertPos, ((size_t) numberToMove) * sizeof (ElementType));
}
else
{
insertPos = data.elements + numUsed;
}
numUsed += numberOfTimesToInsertIt;
while (--numberOfTimesToInsertIt >= 0)
new (insertPos++) ElementType (newElement);
}
}
/** Inserts an array of values into this array at a given position.
If the index is less than 0 or greater than the size of the array, the
new elements will be added to the end of the array.
Otherwise, they will be inserted into the array, moving all the later elements
along to make room.
@param indexToInsertAt the index at which the first new element should be inserted
@param newElements the new values to add to the array
@param numberOfElements how many items are in the array
@see insert, add, addSorted, set
*/
void insertArray (int indexToInsertAt,
const ElementType* newElements,
int numberOfElements)
{
if (numberOfElements > 0)
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (numUsed + numberOfElements);
ElementType* insertPos = data.elements;
if (isPositiveAndBelow (indexToInsertAt, numUsed))
{
insertPos += indexToInsertAt;
const int numberToMove = numUsed - indexToInsertAt;
memmove (insertPos + numberOfElements, insertPos, numberToMove * sizeof (ElementType));
}
else
{
insertPos += numUsed;
}
numUsed += numberOfElements;
while (--numberOfElements >= 0)
new (insertPos++) ElementType (*newElements++);
}
}
/** Appends a new element at the end of the array as long as the array doesn't
already contain it.
If the array already contains an element that matches the one passed in, nothing
will be done.
@param newElement the new object to add to the array
@return The index of the new item, or -1 if it already existed.
*/
int addIfNotAlreadyThere (ParameterType newElement)
{
const ScopedLockType lock (getLock());
if (! contains (newElement))
return add (newElement);
return -1;
}
/** Replaces an element with a new value.
If the index is less than zero, this method does nothing.
If the index is beyond the end of the array, the item is added to the end of the array.
@param indexToChange the index whose value you want to change
@param newValue the new value to set for this index.
@see add, insert
*/
void set (const int indexToChange, ParameterType newValue)
{
bassert (indexToChange >= 0);
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (indexToChange, numUsed))
{
data.elements [indexToChange] = newValue;
}
else if (indexToChange >= 0)
{
data.ensureAllocatedSize (numUsed + 1);
new (data.elements + numUsed++) ElementType (newValue);
}
}
/** Replaces an element with a new value without doing any bounds-checking.
This just sets a value directly in the array's internal storage, so you'd
better make sure it's in range!
@param indexToChange the index whose value you want to change
@param newValue the new value to set for this index.
@see set, getUnchecked
*/
void setUnchecked (const int indexToChange, ParameterType newValue)
{
const ScopedLockType lock (getLock());
bassert (isPositiveAndBelow (indexToChange, numUsed));
data.elements [indexToChange] = newValue;
}
/** Adds elements from an array to the end of this array.
@param elementsToAdd the array of elements to add
@param numElementsToAdd how many elements are in this other array
@see add
*/
void addArray (const ElementType* elementsToAdd, int numElementsToAdd)
{
const ScopedLockType lock (getLock());
if (numElementsToAdd > 0)
{
data.ensureAllocatedSize (numUsed + numElementsToAdd);
while (--numElementsToAdd >= 0)
{
new (data.elements + numUsed) ElementType (*elementsToAdd++);
++numUsed;
}
}
}
/** This swaps the contents of this array with those of another array.
If you need to exchange two arrays, this is vastly quicker than using copy-by-value
because it just swaps their internal pointers.
*/
template <class OtherArrayType>
void swapWith (OtherArrayType& otherArray) noexcept
{
const ScopedLockType lock1 (getLock());
const typename OtherArrayType::ScopedLockType lock2 (otherArray.getLock());
data.swapWith (otherArray.data);
std::swap (numUsed, otherArray.numUsed);
}
/** Adds elements from another array to the end of this array.
@param arrayToAddFrom the array from which to copy the elements
@param startIndex the first element of the other array to start copying from
@param numElementsToAdd how many elements to add from the other array. If this
value is negative or greater than the number of available elements,
all available elements will be copied.
@see add
*/
template <class OtherArrayType>
void addArray (const OtherArrayType& arrayToAddFrom,
int startIndex = 0,
int numElementsToAdd = -1)
{
const typename OtherArrayType::ScopedLockType lock1 (arrayToAddFrom.getLock());
{
const ScopedLockType lock2 (getLock());
if (startIndex < 0)
{
bassertfalse;
startIndex = 0;
}
if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size())
numElementsToAdd = arrayToAddFrom.size() - startIndex;
while (--numElementsToAdd >= 0)
add (arrayToAddFrom.getUnchecked (startIndex++));
}
}
/** This will enlarge or shrink the array to the given number of elements, by adding
or removing items from its end.
If the array is smaller than the given target size, empty elements will be appended
until its size is as specified. If its size is larger than the target, items will be
removed from its end to shorten it.
*/
void resize (const int targetNumItems)
{
bassert (targetNumItems >= 0);
const int numToAdd = targetNumItems - numUsed;
if (numToAdd > 0)
insertMultiple (numUsed, ElementType(), numToAdd);
else if (numToAdd < 0)
removeRange (targetNumItems, -numToAdd);
}
/** Inserts a new element into the array, assuming that the array is sorted.
This will use a comparator to find the position at which the new element
should go. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param comparator the comparator to use to compare the elements - see the sort()
method for details about the form this object should take
@param newElement the new element to insert to the array
@returns the index at which the new item was added
@see addUsingDefaultSort, add, sort
*/
template <class ElementComparator>
int addSorted (ElementComparator& comparator, ParameterType newElement)
{
const ScopedLockType lock (getLock());
const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newElement, 0, numUsed);
insert (index, newElement);
return index;
}
/** Inserts a new element into the array, assuming that the array is sorted.
This will use the DefaultElementComparator class for sorting, so your ElementType
must be suitable for use with that class. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param newElement the new element to insert to the array
@see addSorted, sort
*/
void addUsingDefaultSort (ParameterType newElement)
{
DefaultElementComparator <ElementType> comparator;
addSorted (comparator, newElement);
}
/** Finds the index of an element in the array, assuming that the array is sorted.
This will use a comparator to do a binary-chop to find the index of the given
element, if it exists. If the array isn't sorted, the behaviour of this
method will be unpredictable.
@param comparator the comparator to use to compare the elements - see the sort()
method for details about the form this object should take
@param elementToLookFor the element to search for
@returns the index of the element, or -1 if it's not found
@see addSorted, sort
*/
template <typename ElementComparator, typename TargetValueType>
int indexOfSorted (ElementComparator& comparator, TargetValueType elementToLookFor) const
{
(void) comparator; // if you pass in an object with a static compareElements() method, this
// avoids getting warning messages about the parameter being unused
const ScopedLockType lock (getLock());
for (int s = 0, e = numUsed;;)
{
if (s >= e)
return -1;
if (comparator.compareElements (elementToLookFor, data.elements [s]) == 0)
return s;
const int halfway = (s + e) / 2;
if (halfway == s)
return -1;
if (comparator.compareElements (elementToLookFor, data.elements [halfway]) >= 0)
s = halfway;
else
e = halfway;
}
}
//==============================================================================
/** Removes an element from the array.
This will remove the element at a given index, and move back
all the subsequent elements to close the gap.
If the index passed in is out-of-range, nothing will happen.
@param indexToRemove the index of the element to remove
@returns the element that has been removed
@see removeValue, removeRange
*/
ElementType remove (const int indexToRemove)
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (indexToRemove, numUsed))
{
bassert (data.elements != nullptr);
ElementType removed (data.elements[indexToRemove]);
removeInternal (indexToRemove);
return removed;
}
return ElementType();
}
/** Removes an item from the array.
This will remove the first occurrence of the given element from the array.
If the item isn't found, no action is taken.
@param valueToRemove the object to try to remove
@see remove, removeRange
*/
void removeFirstMatchingValue (ParameterType valueToRemove)
{
const ScopedLockType lock (getLock());
ElementType* const e = data.elements;
for (int i = 0; i < numUsed; ++i)
{
if (valueToRemove == e[i])
{
removeInternal (i);
break;
}
}
}
/** Removes an item from the array.
This will remove the first occurrence of the given element from the array.
If the item isn't found, no action is taken.
@param valueToRemove the object to try to remove
@see remove, removeRange
*/
void removeAllInstancesOf (ParameterType valueToRemove)
{
const ScopedLockType lock (getLock());
for (int i = numUsed; --i >= 0;)
if (valueToRemove == data.elements[i])
removeInternal (i);
}
/** Removes a range of elements from the array.
This will remove a set of elements, starting from the given index,
and move subsequent elements down to close the gap.
If the range extends beyond the bounds of the array, it will
be safely clipped to the size of the array.
@param startIndex the index of the first element to remove
@param numberToRemove how many elements should be removed
@see remove, removeFirstMatchingValue, removeAllInstancesOf
*/
void removeRange (int startIndex, int numberToRemove)
{
const ScopedLockType lock (getLock());
const int endIndex = blimit (0, numUsed, startIndex + numberToRemove);
startIndex = blimit (0, numUsed, startIndex);
if (endIndex > startIndex)
{
ElementType* const e = data.elements + startIndex;
numberToRemove = endIndex - startIndex;
for (int i = 0; i < numberToRemove; ++i)
e[i].~ElementType();
const int numToShift = numUsed - endIndex;
if (numToShift > 0)
memmove (e, e + numberToRemove, ((size_t) numToShift) * sizeof (ElementType));
numUsed -= numberToRemove;
minimiseStorageAfterRemoval();
}
}
/** Removes the last n elements from the array.
@param howManyToRemove how many elements to remove from the end of the array
@see remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
void removeLast (int howManyToRemove = 1)
{
const ScopedLockType lock (getLock());
if (howManyToRemove > numUsed)
howManyToRemove = numUsed;
for (int i = 1; i <= howManyToRemove; ++i)
data.elements [numUsed - i].~ElementType();
numUsed -= howManyToRemove;
minimiseStorageAfterRemoval();
}
/** Removes any elements which are also in another array.
@param otherArray the other array in which to look for elements to remove
@see removeValuesNotIn, remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
template <class OtherArrayType>
void removeValuesIn (const OtherArrayType& otherArray)
{
const typename OtherArrayType::ScopedLockType lock1 (otherArray.getLock());
const ScopedLockType lock2 (getLock());
if (this == &otherArray)
{
clear();
}
else
{
if (otherArray.size() > 0)
{
for (int i = numUsed; --i >= 0;)
if (otherArray.contains (data.elements [i]))
removeInternal (i);
}
}
}
/** Removes any elements which are not found in another array.
Only elements which occur in this other array will be retained.
@param otherArray the array in which to look for elements NOT to remove
@see removeValuesIn, remove, removeFirstMatchingValue, removeAllInstancesOf, removeRange
*/
template <class OtherArrayType>
void removeValuesNotIn (const OtherArrayType& otherArray)
{
const typename OtherArrayType::ScopedLockType lock1 (otherArray.getLock());
const ScopedLockType lock2 (getLock());
if (this != &otherArray)
{
if (otherArray.size() <= 0)
{
clear();
}
else
{
for (int i = numUsed; --i >= 0;)
if (! otherArray.contains (data.elements [i]))
removeInternal (i);
}
}
}
/** Swaps over two elements in the array.
This swaps over the elements found at the two indexes passed in.
If either index is out-of-range, this method will do nothing.
@param index1 index of one of the elements to swap
@param index2 index of the other element to swap
*/
void swap (const int index1,
const int index2)
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (index1, numUsed)
&& isPositiveAndBelow (index2, numUsed))
{
std::swap (data.elements [index1],
data.elements [index2]);
}
}
/** Moves one of the values to a different position.
This will move the value to a specified index, shuffling along
any intervening elements as required.
So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling
move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }.
@param currentIndex the index of the value to be moved. If this isn't a
valid index, then nothing will be done
@param newIndex the index at which you'd like this value to end up. If this
is less than zero, the value will be moved to the end
of the array
*/
void move (const int currentIndex, int newIndex) noexcept
{
if (currentIndex != newIndex)
{
const ScopedLockType lock (getLock());
if (isPositiveAndBelow (currentIndex, numUsed))
{
if (! isPositiveAndBelow (newIndex, numUsed))
newIndex = numUsed - 1;
char tempCopy [sizeof (ElementType)];
memcpy (tempCopy, data.elements + currentIndex, sizeof (ElementType));
if (newIndex > currentIndex)
{
memmove (data.elements + currentIndex,
data.elements + currentIndex + 1,
sizeof (ElementType) * (size_t) (newIndex - currentIndex));
}
else
{
memmove (data.elements + newIndex + 1,
data.elements + newIndex,
sizeof (ElementType) * (size_t) (currentIndex - newIndex));
}
memcpy (data.elements + newIndex, tempCopy, sizeof (ElementType));
}
}
}
//==============================================================================
/** Reduces the amount of storage being used by the array.
Arrays typically allocate slightly more storage than they need, and after
removing elements, they may have quite a lot of unused space allocated.
This method will reduce the amount of allocated storage to a minimum.
*/
void minimiseStorageOverheads()
{
const ScopedLockType lock (getLock());
data.shrinkToNoMoreThan (numUsed);
}
/** Increases the array's internal storage to hold a minimum number of elements.
Calling this before adding a large known number of elements means that
the array won't have to keep dynamically resizing itself as the elements
are added, and it'll therefore be more efficient.
*/
void ensureStorageAllocated (const int minNumElements)
{
const ScopedLockType lock (getLock());
data.ensureAllocatedSize (minNumElements);
}
//==============================================================================
/** Sorts the elements in the array.
This will use a comparator object to sort the elements into order. The object
passed must have a method of the form:
@code
int compareElements (ElementType first, ElementType second);
@endcode
..and this method must return:
- a value of < 0 if the first comes before the second
- a value of 0 if the two objects are equivalent
- a value of > 0 if the second comes before the first
To improve performance, the compareElements() method can be declared as static or const.
@param comparator the comparator to use for comparing elements.
@param retainOrderOfEquivalentItems if this is true, then items
which the comparator says are equivalent will be
kept in the order in which they currently appear
in the array. This is slower to perform, but may
be important in some cases. If it's false, a faster
algorithm is used, but equivalent elements may be
rearranged.
@see addSorted, indexOfSorted, sortArray
*/
template <class ElementComparator>
void sort (ElementComparator& comparator,
const bool retainOrderOfEquivalentItems = false) const
{
const ScopedLockType lock (getLock());
(void) comparator; // if you pass in an object with a static compareElements() method, this
// avoids getting warning messages about the parameter being unused
sortArray (comparator, data.elements.getData(), 0, size() - 1, retainOrderOfEquivalentItems);
}
//==============================================================================
/** Returns the CriticalSection that locks this array.
To lock, you can call getLock().enter() and getLock().exit(), or preferably use
an object of ScopedLockType as an RAII lock for it.
*/
inline const TypeOfCriticalSectionToUse& getLock() const noexcept { return data; }
/** Returns the type of scoped lock to use for locking this array */
typedef typename TypeOfCriticalSectionToUse::ScopedLockType ScopedLockType;
private:
//==============================================================================
ArrayAllocationBase <ElementType, TypeOfCriticalSectionToUse> data;
int numUsed;
void removeInternal (const int indexToRemove)
{
--numUsed;
ElementType* const e = data.elements + indexToRemove;
e->~ElementType();
const int numberToShift = numUsed - indexToRemove;
if (numberToShift > 0)
memmove (e, e + 1, ((size_t) numberToShift) * sizeof (ElementType));
minimiseStorageAfterRemoval();
}
inline void deleteAllElements() noexcept
{
for (int i = 0; i < numUsed; ++i)
data.elements[i].~ElementType();
}
void minimiseStorageAfterRemoval()
{
if (data.numAllocated > bmax (minimumAllocatedSize, numUsed * 2))
data.shrinkToNoMoreThan (bmax (numUsed, bmax (minimumAllocatedSize, 64 / (int) sizeof (ElementType))));
}
};
#endif // BEAST_ARRAY_H_INCLUDED