mirror of
https://github.com/Xahau/xahaud.git
synced 2025-12-06 17:27:52 +00:00
b02bfa754 Tag open source release 1.1.7.
824e6718b Add a loop alignment directive to work around a performance regression.
55924d110 Add GNUInstallDirs to CMake configuration.
632cd0f12 Use 64-bit optimized code path for ARM64.
77c12adc1 Add unistd.h checks back to the CMake build.
c8049c582 Replace getpagesize() with sysconf(_SC_PAGESIZE).
18e2f220d Add guidelines for opensource contributions.
f0d3237c3 Use _BitScanForward and _BitScanReverse on MSVC.
71b8f8688 Add SNAPPY_ prefix to PREDICT_{TRUE,FALSE} macros.
be6dc3db8 Redo CMake configuration.
e4de6ce08 Small improvements to open source CI configuration.
c756f7f5d Support both static and shared library CMake builds.
038a3329b Inline DISALLOW_COPY_AND_ASSIGN.
a8b239c3d snappy: Remove autoconf build configuration.
27671c6ae Clean up CMake header and type checks.
548501c98 zippy: Re-release snappy 1.1.5 as 1.1.6.
513df5fb5 Tag open source release 1.1.5.
5bc9c82ae Set minimum CMake version to 3.1.
e9720a001 Update Travis CI config, add AppVeyor for Windows CI coverage.
f24f9d2d9 Explicitly copy internal::wordmask to the stack array to work around a compiler optimization with LLVM that converts const stack arrays to global arrays. This is a temporary change and should be reverted when https://reviews.llvm.org/D30759 is fixed.
82deffcde Remove benchmarking support for fastlz.
18488d621 Use 64 bit little endian on ppc64le.
7b9532b87 Improve the SSE2 macro check on Windows.
7dadceea5 Check for the existence of sys/uio.h in autoconf build.
83179dd8b Remove quicklz and lzf support in benchmarks.
c8131680d Provide a CMakeLists.txt.
ed3b7b242 Clean up unused function warnings in snappy.
8b60aac4f Remove "using namespace std;" from zippy-stubs-internal.h.
7d7a8ec80 Add Travis CI configuration to snappy and fix the make build.
1cd3ab02e Rename README to README.md. It already in markdown, we might as well let github know so that it renders nicely.
597fa795d Delete UnalignedCopy64 from snappy-stubs since the version in snappy.cc is more robust and possibly faster (assuming the compiler knows how to best copy 8 bytes between locations in memory the fastest way possible - a rather safe bet).
039b3a7ac Add std:: prefix to STL non-type names.
3c706d223 Make UnalignedCopy64 not exhibit undefined behavior when src and dst overlap.
d3c6d20d0 Add compression size reporting hooks.
626e1b9fa Use #ifdef __SSE2__ for the emmintrin.h include, otherwise snappy.cc does not compile with -march=prescott.
2d99bd14d 1.1.4 release.
8bfb028b6 Improve zippy decompression speed.
818b58338 adds std:: to stl types (#061)
27c5d8652 Re-work fast path for handling copies in zippy decompression.
4a7409408 Speed up Zippy decompression in PIE mode by removing the penalty for global array access.
38a5ec5fc Re-work fast path that emits copies in zippy compression.
094c67de8 Speed up the EmitLiteral fast path, +1.62% for ZFlat benchmarks.
fce661fa8 Speed up zippy decompression by removing some zero-extensions.
e788e527d Avoid calling memset when resizing the buffer.
32d6d7d8a Merge pull request #6 from deviance/provide-pkg-config-data
971613510 Add #ifdef to guard against macro redefinition if this is included in another Google project that also defines this.
0000f997d Merge pull request #13 from huachaohuang/patch-1
d53de1879 Make heuristic match skipping more aggressive.
2b9152d9c Default to glibtoolize instead of libtoolize if it exists, and also make it customizable through the environment variable $LIBTOOLIZE.
0800b1e4c Work around an issue where some compilers interpret <:: as a trigraph. Also correct the namespace name.
e7d2818d1 Unbreak the open-source build for ARM due to missing ATTRIBUTE_PACKED declaration.
7525a1600 Fix an issue where the ByteSource path (used for parsing std::string) would incorrectly accept some invalid varints that the other path would not, causing potential CHECK-failures if the unit test were run with --write_uncompressed and a corrupted input file.
ef5598aa0 Make UNALIGNED_LOAD16/32 on ARMv7 go through an explicitly unaligned struct, to avoid the compiler coalescing multiple loads into a single load instruction (which only work for aligned accesses).
b8cd908a8 Allow to compile in nested packages.
96a2e340f Update URLs in the Snappy README to reflect the move to GitHub.
0852af760 Move the logic from ComputeTable into the unit test, which means it's run automatically together with the other tests, and also removes the stray function ComputeTable() (which was never referenced by anything else in the open-source version, causing compiler warnings for some) out of the core library.
d80342922 Fix signed-vs.-unsigned comparison warnings.
d2cb73b6a Provide pkg-config data
efb39e81b Release Snappy 1.1.3; getting the new Uncompress variant in a release is nice, and it's also good to finally get an official release out after the migration to GitHub.
eb66d8176 Initialized members of SnappyArrayWriter and SnappyDecompressionValidator. These members were almost surely initialized before use by other member functions, but Coverity was warning about this. Eliminating these warnings minimizes clutter in that report and the likelihood of overlooking a real bug.
b2312c4c2 Add support for Uncompress(source, sink). Various changes to allow Uncompress(source, sink) to get the same performance as the different variants of Uncompress to Cord/DataBuffer/String/FlatBuffer.
b2ad96006 Changes to eliminate compiler warnings on MSVC
e7a897e18 Fixed unit tests to compile under MSVC.
86eb8b152 Change a few branch annotations that profiling found to be wrong. Overall performance is neutral or slightly positive.
11ccdfb86 Sync with various Google-internal changes.
22acaf438 Change some internal path names.
git-subtree-dir: src/snappy/snappy
git-subtree-split: b02bfa754ebf27921d8da3bd2517eab445b84ff9
1516 lines
51 KiB
C++
1516 lines
51 KiB
C++
// Copyright 2005 Google Inc. All Rights Reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
#include "snappy.h"
|
|
#include "snappy-internal.h"
|
|
#include "snappy-sinksource.h"
|
|
|
|
#ifndef SNAPPY_HAVE_SSE2
|
|
#if defined(__SSE2__) || defined(_M_X64) || \
|
|
(defined(_M_IX86_FP) && _M_IX86_FP >= 2)
|
|
#define SNAPPY_HAVE_SSE2 1
|
|
#else
|
|
#define SNAPPY_HAVE_SSE2 0
|
|
#endif
|
|
#endif
|
|
|
|
#if SNAPPY_HAVE_SSE2
|
|
#include <emmintrin.h>
|
|
#endif
|
|
#include <stdio.h>
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
|
|
namespace snappy {
|
|
|
|
using internal::COPY_1_BYTE_OFFSET;
|
|
using internal::COPY_2_BYTE_OFFSET;
|
|
using internal::LITERAL;
|
|
using internal::char_table;
|
|
using internal::kMaximumTagLength;
|
|
|
|
// Any hash function will produce a valid compressed bitstream, but a good
|
|
// hash function reduces the number of collisions and thus yields better
|
|
// compression for compressible input, and more speed for incompressible
|
|
// input. Of course, it doesn't hurt if the hash function is reasonably fast
|
|
// either, as it gets called a lot.
|
|
static inline uint32 HashBytes(uint32 bytes, int shift) {
|
|
uint32 kMul = 0x1e35a7bd;
|
|
return (bytes * kMul) >> shift;
|
|
}
|
|
static inline uint32 Hash(const char* p, int shift) {
|
|
return HashBytes(UNALIGNED_LOAD32(p), shift);
|
|
}
|
|
|
|
size_t MaxCompressedLength(size_t source_len) {
|
|
// Compressed data can be defined as:
|
|
// compressed := item* literal*
|
|
// item := literal* copy
|
|
//
|
|
// The trailing literal sequence has a space blowup of at most 62/60
|
|
// since a literal of length 60 needs one tag byte + one extra byte
|
|
// for length information.
|
|
//
|
|
// Item blowup is trickier to measure. Suppose the "copy" op copies
|
|
// 4 bytes of data. Because of a special check in the encoding code,
|
|
// we produce a 4-byte copy only if the offset is < 65536. Therefore
|
|
// the copy op takes 3 bytes to encode, and this type of item leads
|
|
// to at most the 62/60 blowup for representing literals.
|
|
//
|
|
// Suppose the "copy" op copies 5 bytes of data. If the offset is big
|
|
// enough, it will take 5 bytes to encode the copy op. Therefore the
|
|
// worst case here is a one-byte literal followed by a five-byte copy.
|
|
// I.e., 6 bytes of input turn into 7 bytes of "compressed" data.
|
|
//
|
|
// This last factor dominates the blowup, so the final estimate is:
|
|
return 32 + source_len + source_len/6;
|
|
}
|
|
|
|
namespace {
|
|
|
|
void UnalignedCopy64(const void* src, void* dst) {
|
|
char tmp[8];
|
|
memcpy(tmp, src, 8);
|
|
memcpy(dst, tmp, 8);
|
|
}
|
|
|
|
void UnalignedCopy128(const void* src, void* dst) {
|
|
// TODO(alkis): Remove this when we upgrade to a recent compiler that emits
|
|
// SSE2 moves for memcpy(dst, src, 16).
|
|
#if SNAPPY_HAVE_SSE2
|
|
__m128i x = _mm_loadu_si128(static_cast<const __m128i*>(src));
|
|
_mm_storeu_si128(static_cast<__m128i*>(dst), x);
|
|
#else
|
|
char tmp[16];
|
|
memcpy(tmp, src, 16);
|
|
memcpy(dst, tmp, 16);
|
|
#endif
|
|
}
|
|
|
|
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used
|
|
// for handling COPY operations where the input and output regions may overlap.
|
|
// For example, suppose:
|
|
// src == "ab"
|
|
// op == src + 2
|
|
// op_limit == op + 20
|
|
// After IncrementalCopySlow(src, op, op_limit), the result will have eleven
|
|
// copies of "ab"
|
|
// ababababababababababab
|
|
// Note that this does not match the semantics of either memcpy() or memmove().
|
|
inline char* IncrementalCopySlow(const char* src, char* op,
|
|
char* const op_limit) {
|
|
while (op < op_limit) {
|
|
*op++ = *src++;
|
|
}
|
|
return op_limit;
|
|
}
|
|
|
|
// Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) but faster than
|
|
// IncrementalCopySlow. buf_limit is the address past the end of the writable
|
|
// region of the buffer.
|
|
inline char* IncrementalCopy(const char* src, char* op, char* const op_limit,
|
|
char* const buf_limit) {
|
|
// Terminology:
|
|
//
|
|
// slop = buf_limit - op
|
|
// pat = op - src
|
|
// len = limit - op
|
|
assert(src < op);
|
|
assert(op_limit <= buf_limit);
|
|
// NOTE: The compressor always emits 4 <= len <= 64. It is ok to assume that
|
|
// to optimize this function but we have to also handle these cases in case
|
|
// the input does not satisfy these conditions.
|
|
|
|
size_t pattern_size = op - src;
|
|
// The cases are split into different branches to allow the branch predictor,
|
|
// FDO, and static prediction hints to work better. For each input we list the
|
|
// ratio of invocations that match each condition.
|
|
//
|
|
// input slop < 16 pat < 8 len > 16
|
|
// ------------------------------------------
|
|
// html|html4|cp 0% 1.01% 27.73%
|
|
// urls 0% 0.88% 14.79%
|
|
// jpg 0% 64.29% 7.14%
|
|
// pdf 0% 2.56% 58.06%
|
|
// txt[1-4] 0% 0.23% 0.97%
|
|
// pb 0% 0.96% 13.88%
|
|
// bin 0.01% 22.27% 41.17%
|
|
//
|
|
// It is very rare that we don't have enough slop for doing block copies. It
|
|
// is also rare that we need to expand a pattern. Small patterns are common
|
|
// for incompressible formats and for those we are plenty fast already.
|
|
// Lengths are normally not greater than 16 but they vary depending on the
|
|
// input. In general if we always predict len <= 16 it would be an ok
|
|
// prediction.
|
|
//
|
|
// In order to be fast we want a pattern >= 8 bytes and an unrolled loop
|
|
// copying 2x 8 bytes at a time.
|
|
|
|
// Handle the uncommon case where pattern is less than 8 bytes.
|
|
if (SNAPPY_PREDICT_FALSE(pattern_size < 8)) {
|
|
// Expand pattern to at least 8 bytes. The worse case scenario in terms of
|
|
// buffer usage is when the pattern is size 3. ^ is the original position
|
|
// of op. x are irrelevant bytes copied by the last UnalignedCopy64.
|
|
//
|
|
// abc
|
|
// abcabcxxxxx
|
|
// abcabcabcabcxxxxx
|
|
// ^
|
|
// The last x is 14 bytes after ^.
|
|
if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 14)) {
|
|
while (pattern_size < 8) {
|
|
UnalignedCopy64(src, op);
|
|
op += pattern_size;
|
|
pattern_size *= 2;
|
|
}
|
|
if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
|
|
} else {
|
|
return IncrementalCopySlow(src, op, op_limit);
|
|
}
|
|
}
|
|
assert(pattern_size >= 8);
|
|
|
|
// Copy 2x 8 bytes at a time. Because op - src can be < 16, a single
|
|
// UnalignedCopy128 might overwrite data in op. UnalignedCopy64 is safe
|
|
// because expanding the pattern to at least 8 bytes guarantees that
|
|
// op - src >= 8.
|
|
while (op <= buf_limit - 16) {
|
|
UnalignedCopy64(src, op);
|
|
UnalignedCopy64(src + 8, op + 8);
|
|
src += 16;
|
|
op += 16;
|
|
if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit;
|
|
}
|
|
// We only take this branch if we didn't have enough slop and we can do a
|
|
// single 8 byte copy.
|
|
if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) {
|
|
UnalignedCopy64(src, op);
|
|
src += 8;
|
|
op += 8;
|
|
}
|
|
return IncrementalCopySlow(src, op, op_limit);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
static inline char* EmitLiteral(char* op,
|
|
const char* literal,
|
|
int len,
|
|
bool allow_fast_path) {
|
|
// The vast majority of copies are below 16 bytes, for which a
|
|
// call to memcpy is overkill. This fast path can sometimes
|
|
// copy up to 15 bytes too much, but that is okay in the
|
|
// main loop, since we have a bit to go on for both sides:
|
|
//
|
|
// - The input will always have kInputMarginBytes = 15 extra
|
|
// available bytes, as long as we're in the main loop, and
|
|
// if not, allow_fast_path = false.
|
|
// - The output will always have 32 spare bytes (see
|
|
// MaxCompressedLength).
|
|
assert(len > 0); // Zero-length literals are disallowed
|
|
int n = len - 1;
|
|
if (allow_fast_path && len <= 16) {
|
|
// Fits in tag byte
|
|
*op++ = LITERAL | (n << 2);
|
|
|
|
UnalignedCopy128(literal, op);
|
|
return op + len;
|
|
}
|
|
|
|
if (n < 60) {
|
|
// Fits in tag byte
|
|
*op++ = LITERAL | (n << 2);
|
|
} else {
|
|
// Encode in upcoming bytes
|
|
char* base = op;
|
|
int count = 0;
|
|
op++;
|
|
while (n > 0) {
|
|
*op++ = n & 0xff;
|
|
n >>= 8;
|
|
count++;
|
|
}
|
|
assert(count >= 1);
|
|
assert(count <= 4);
|
|
*base = LITERAL | ((59+count) << 2);
|
|
}
|
|
memcpy(op, literal, len);
|
|
return op + len;
|
|
}
|
|
|
|
static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len,
|
|
bool len_less_than_12) {
|
|
assert(len <= 64);
|
|
assert(len >= 4);
|
|
assert(offset < 65536);
|
|
assert(len_less_than_12 == (len < 12));
|
|
|
|
if (len_less_than_12 && SNAPPY_PREDICT_TRUE(offset < 2048)) {
|
|
// offset fits in 11 bits. The 3 highest go in the top of the first byte,
|
|
// and the rest go in the second byte.
|
|
*op++ = COPY_1_BYTE_OFFSET + ((len - 4) << 2) + ((offset >> 3) & 0xe0);
|
|
*op++ = offset & 0xff;
|
|
} else {
|
|
// Write 4 bytes, though we only care about 3 of them. The output buffer
|
|
// is required to have some slack, so the extra byte won't overrun it.
|
|
uint32 u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8);
|
|
LittleEndian::Store32(op, u);
|
|
op += 3;
|
|
}
|
|
return op;
|
|
}
|
|
|
|
static inline char* EmitCopy(char* op, size_t offset, size_t len,
|
|
bool len_less_than_12) {
|
|
assert(len_less_than_12 == (len < 12));
|
|
if (len_less_than_12) {
|
|
return EmitCopyAtMost64(op, offset, len, true);
|
|
} else {
|
|
// A special case for len <= 64 might help, but so far measurements suggest
|
|
// it's in the noise.
|
|
|
|
// Emit 64 byte copies but make sure to keep at least four bytes reserved.
|
|
while (SNAPPY_PREDICT_FALSE(len >= 68)) {
|
|
op = EmitCopyAtMost64(op, offset, 64, false);
|
|
len -= 64;
|
|
}
|
|
|
|
// One or two copies will now finish the job.
|
|
if (len > 64) {
|
|
op = EmitCopyAtMost64(op, offset, 60, false);
|
|
len -= 60;
|
|
}
|
|
|
|
// Emit remainder.
|
|
op = EmitCopyAtMost64(op, offset, len, len < 12);
|
|
return op;
|
|
}
|
|
}
|
|
|
|
bool GetUncompressedLength(const char* start, size_t n, size_t* result) {
|
|
uint32 v = 0;
|
|
const char* limit = start + n;
|
|
if (Varint::Parse32WithLimit(start, limit, &v) != NULL) {
|
|
*result = v;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
namespace internal {
|
|
uint16* WorkingMemory::GetHashTable(size_t input_size, int* table_size) {
|
|
// Use smaller hash table when input.size() is smaller, since we
|
|
// fill the table, incurring O(hash table size) overhead for
|
|
// compression, and if the input is short, we won't need that
|
|
// many hash table entries anyway.
|
|
assert(kMaxHashTableSize >= 256);
|
|
size_t htsize = 256;
|
|
while (htsize < kMaxHashTableSize && htsize < input_size) {
|
|
htsize <<= 1;
|
|
}
|
|
|
|
uint16* table;
|
|
if (htsize <= ARRAYSIZE(small_table_)) {
|
|
table = small_table_;
|
|
} else {
|
|
if (large_table_ == NULL) {
|
|
large_table_ = new uint16[kMaxHashTableSize];
|
|
}
|
|
table = large_table_;
|
|
}
|
|
|
|
*table_size = htsize;
|
|
memset(table, 0, htsize * sizeof(*table));
|
|
return table;
|
|
}
|
|
} // end namespace internal
|
|
|
|
// For 0 <= offset <= 4, GetUint32AtOffset(GetEightBytesAt(p), offset) will
|
|
// equal UNALIGNED_LOAD32(p + offset). Motivation: On x86-64 hardware we have
|
|
// empirically found that overlapping loads such as
|
|
// UNALIGNED_LOAD32(p) ... UNALIGNED_LOAD32(p+1) ... UNALIGNED_LOAD32(p+2)
|
|
// are slower than UNALIGNED_LOAD64(p) followed by shifts and casts to uint32.
|
|
//
|
|
// We have different versions for 64- and 32-bit; ideally we would avoid the
|
|
// two functions and just inline the UNALIGNED_LOAD64 call into
|
|
// GetUint32AtOffset, but GCC (at least not as of 4.6) is seemingly not clever
|
|
// enough to avoid loading the value multiple times then. For 64-bit, the load
|
|
// is done when GetEightBytesAt() is called, whereas for 32-bit, the load is
|
|
// done at GetUint32AtOffset() time.
|
|
|
|
#ifdef ARCH_K8
|
|
|
|
typedef uint64 EightBytesReference;
|
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) {
|
|
return UNALIGNED_LOAD64(ptr);
|
|
}
|
|
|
|
static inline uint32 GetUint32AtOffset(uint64 v, int offset) {
|
|
assert(offset >= 0);
|
|
assert(offset <= 4);
|
|
return v >> (LittleEndian::IsLittleEndian() ? 8 * offset : 32 - 8 * offset);
|
|
}
|
|
|
|
#else
|
|
|
|
typedef const char* EightBytesReference;
|
|
|
|
static inline EightBytesReference GetEightBytesAt(const char* ptr) {
|
|
return ptr;
|
|
}
|
|
|
|
static inline uint32 GetUint32AtOffset(const char* v, int offset) {
|
|
assert(offset >= 0);
|
|
assert(offset <= 4);
|
|
return UNALIGNED_LOAD32(v + offset);
|
|
}
|
|
|
|
#endif
|
|
|
|
// Flat array compression that does not emit the "uncompressed length"
|
|
// prefix. Compresses "input" string to the "*op" buffer.
|
|
//
|
|
// REQUIRES: "input" is at most "kBlockSize" bytes long.
|
|
// REQUIRES: "op" points to an array of memory that is at least
|
|
// "MaxCompressedLength(input.size())" in size.
|
|
// REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero.
|
|
// REQUIRES: "table_size" is a power of two
|
|
//
|
|
// Returns an "end" pointer into "op" buffer.
|
|
// "end - op" is the compressed size of "input".
|
|
namespace internal {
|
|
char* CompressFragment(const char* input,
|
|
size_t input_size,
|
|
char* op,
|
|
uint16* table,
|
|
const int table_size) {
|
|
// "ip" is the input pointer, and "op" is the output pointer.
|
|
const char* ip = input;
|
|
assert(input_size <= kBlockSize);
|
|
assert((table_size & (table_size - 1)) == 0); // table must be power of two
|
|
const int shift = 32 - Bits::Log2Floor(table_size);
|
|
assert(static_cast<int>(kuint32max >> shift) == table_size - 1);
|
|
const char* ip_end = input + input_size;
|
|
const char* base_ip = ip;
|
|
// Bytes in [next_emit, ip) will be emitted as literal bytes. Or
|
|
// [next_emit, ip_end) after the main loop.
|
|
const char* next_emit = ip;
|
|
|
|
const size_t kInputMarginBytes = 15;
|
|
if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) {
|
|
const char* ip_limit = input + input_size - kInputMarginBytes;
|
|
|
|
for (uint32 next_hash = Hash(++ip, shift); ; ) {
|
|
assert(next_emit < ip);
|
|
// The body of this loop calls EmitLiteral once and then EmitCopy one or
|
|
// more times. (The exception is that when we're close to exhausting
|
|
// the input we goto emit_remainder.)
|
|
//
|
|
// In the first iteration of this loop we're just starting, so
|
|
// there's nothing to copy, so calling EmitLiteral once is
|
|
// necessary. And we only start a new iteration when the
|
|
// current iteration has determined that a call to EmitLiteral will
|
|
// precede the next call to EmitCopy (if any).
|
|
//
|
|
// Step 1: Scan forward in the input looking for a 4-byte-long match.
|
|
// If we get close to exhausting the input then goto emit_remainder.
|
|
//
|
|
// Heuristic match skipping: If 32 bytes are scanned with no matches
|
|
// found, start looking only at every other byte. If 32 more bytes are
|
|
// scanned (or skipped), look at every third byte, etc.. When a match is
|
|
// found, immediately go back to looking at every byte. This is a small
|
|
// loss (~5% performance, ~0.1% density) for compressible data due to more
|
|
// bookkeeping, but for non-compressible data (such as JPEG) it's a huge
|
|
// win since the compressor quickly "realizes" the data is incompressible
|
|
// and doesn't bother looking for matches everywhere.
|
|
//
|
|
// The "skip" variable keeps track of how many bytes there are since the
|
|
// last match; dividing it by 32 (ie. right-shifting by five) gives the
|
|
// number of bytes to move ahead for each iteration.
|
|
uint32 skip = 32;
|
|
|
|
const char* next_ip = ip;
|
|
const char* candidate;
|
|
do {
|
|
ip = next_ip;
|
|
uint32 hash = next_hash;
|
|
assert(hash == Hash(ip, shift));
|
|
uint32 bytes_between_hash_lookups = skip >> 5;
|
|
skip += bytes_between_hash_lookups;
|
|
next_ip = ip + bytes_between_hash_lookups;
|
|
if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
next_hash = Hash(next_ip, shift);
|
|
candidate = base_ip + table[hash];
|
|
assert(candidate >= base_ip);
|
|
assert(candidate < ip);
|
|
|
|
table[hash] = ip - base_ip;
|
|
} while (SNAPPY_PREDICT_TRUE(UNALIGNED_LOAD32(ip) !=
|
|
UNALIGNED_LOAD32(candidate)));
|
|
|
|
// Step 2: A 4-byte match has been found. We'll later see if more
|
|
// than 4 bytes match. But, prior to the match, input
|
|
// bytes [next_emit, ip) are unmatched. Emit them as "literal bytes."
|
|
assert(next_emit + 16 <= ip_end);
|
|
op = EmitLiteral(op, next_emit, ip - next_emit, true);
|
|
|
|
// Step 3: Call EmitCopy, and then see if another EmitCopy could
|
|
// be our next move. Repeat until we find no match for the
|
|
// input immediately after what was consumed by the last EmitCopy call.
|
|
//
|
|
// If we exit this loop normally then we need to call EmitLiteral next,
|
|
// though we don't yet know how big the literal will be. We handle that
|
|
// by proceeding to the next iteration of the main loop. We also can exit
|
|
// this loop via goto if we get close to exhausting the input.
|
|
EightBytesReference input_bytes;
|
|
uint32 candidate_bytes = 0;
|
|
|
|
do {
|
|
// We have a 4-byte match at ip, and no need to emit any
|
|
// "literal bytes" prior to ip.
|
|
const char* base = ip;
|
|
std::pair<size_t, bool> p =
|
|
FindMatchLength(candidate + 4, ip + 4, ip_end);
|
|
size_t matched = 4 + p.first;
|
|
ip += matched;
|
|
size_t offset = base - candidate;
|
|
assert(0 == memcmp(base, candidate, matched));
|
|
op = EmitCopy(op, offset, matched, p.second);
|
|
next_emit = ip;
|
|
if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) {
|
|
goto emit_remainder;
|
|
}
|
|
// We are now looking for a 4-byte match again. We read
|
|
// table[Hash(ip, shift)] for that. To improve compression,
|
|
// we also update table[Hash(ip - 1, shift)] and table[Hash(ip, shift)].
|
|
input_bytes = GetEightBytesAt(ip - 1);
|
|
uint32 prev_hash = HashBytes(GetUint32AtOffset(input_bytes, 0), shift);
|
|
table[prev_hash] = ip - base_ip - 1;
|
|
uint32 cur_hash = HashBytes(GetUint32AtOffset(input_bytes, 1), shift);
|
|
candidate = base_ip + table[cur_hash];
|
|
candidate_bytes = UNALIGNED_LOAD32(candidate);
|
|
table[cur_hash] = ip - base_ip;
|
|
} while (GetUint32AtOffset(input_bytes, 1) == candidate_bytes);
|
|
|
|
next_hash = HashBytes(GetUint32AtOffset(input_bytes, 2), shift);
|
|
++ip;
|
|
}
|
|
}
|
|
|
|
emit_remainder:
|
|
// Emit the remaining bytes as a literal
|
|
if (next_emit < ip_end) {
|
|
op = EmitLiteral(op, next_emit, ip_end - next_emit, false);
|
|
}
|
|
|
|
return op;
|
|
}
|
|
} // end namespace internal
|
|
|
|
// Called back at avery compression call to trace parameters and sizes.
|
|
static inline void Report(const char *algorithm, size_t compressed_size,
|
|
size_t uncompressed_size) {}
|
|
|
|
// Signature of output types needed by decompression code.
|
|
// The decompression code is templatized on a type that obeys this
|
|
// signature so that we do not pay virtual function call overhead in
|
|
// the middle of a tight decompression loop.
|
|
//
|
|
// class DecompressionWriter {
|
|
// public:
|
|
// // Called before decompression
|
|
// void SetExpectedLength(size_t length);
|
|
//
|
|
// // Called after decompression
|
|
// bool CheckLength() const;
|
|
//
|
|
// // Called repeatedly during decompression
|
|
// bool Append(const char* ip, size_t length);
|
|
// bool AppendFromSelf(uint32 offset, size_t length);
|
|
//
|
|
// // The rules for how TryFastAppend differs from Append are somewhat
|
|
// // convoluted:
|
|
// //
|
|
// // - TryFastAppend is allowed to decline (return false) at any
|
|
// // time, for any reason -- just "return false" would be
|
|
// // a perfectly legal implementation of TryFastAppend.
|
|
// // The intention is for TryFastAppend to allow a fast path
|
|
// // in the common case of a small append.
|
|
// // - TryFastAppend is allowed to read up to <available> bytes
|
|
// // from the input buffer, whereas Append is allowed to read
|
|
// // <length>. However, if it returns true, it must leave
|
|
// // at least five (kMaximumTagLength) bytes in the input buffer
|
|
// // afterwards, so that there is always enough space to read the
|
|
// // next tag without checking for a refill.
|
|
// // - TryFastAppend must always return decline (return false)
|
|
// // if <length> is 61 or more, as in this case the literal length is not
|
|
// // decoded fully. In practice, this should not be a big problem,
|
|
// // as it is unlikely that one would implement a fast path accepting
|
|
// // this much data.
|
|
// //
|
|
// bool TryFastAppend(const char* ip, size_t available, size_t length);
|
|
// };
|
|
|
|
namespace internal {
|
|
|
|
// Mapping from i in range [0,4] to a mask to extract the bottom 8*i bits
|
|
static const uint32 wordmask[] = {
|
|
0u, 0xffu, 0xffffu, 0xffffffu, 0xffffffffu
|
|
};
|
|
|
|
} // end namespace internal
|
|
|
|
// Helper class for decompression
|
|
class SnappyDecompressor {
|
|
private:
|
|
Source* reader_; // Underlying source of bytes to decompress
|
|
const char* ip_; // Points to next buffered byte
|
|
const char* ip_limit_; // Points just past buffered bytes
|
|
uint32 peeked_; // Bytes peeked from reader (need to skip)
|
|
bool eof_; // Hit end of input without an error?
|
|
char scratch_[kMaximumTagLength]; // See RefillTag().
|
|
|
|
// Ensure that all of the tag metadata for the next tag is available
|
|
// in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even
|
|
// if (ip_limit_ - ip_ < 5).
|
|
//
|
|
// Returns true on success, false on error or end of input.
|
|
bool RefillTag();
|
|
|
|
public:
|
|
explicit SnappyDecompressor(Source* reader)
|
|
: reader_(reader),
|
|
ip_(NULL),
|
|
ip_limit_(NULL),
|
|
peeked_(0),
|
|
eof_(false) {
|
|
}
|
|
|
|
~SnappyDecompressor() {
|
|
// Advance past any bytes we peeked at from the reader
|
|
reader_->Skip(peeked_);
|
|
}
|
|
|
|
// Returns true iff we have hit the end of the input without an error.
|
|
bool eof() const {
|
|
return eof_;
|
|
}
|
|
|
|
// Read the uncompressed length stored at the start of the compressed data.
|
|
// On succcess, stores the length in *result and returns true.
|
|
// On failure, returns false.
|
|
bool ReadUncompressedLength(uint32* result) {
|
|
assert(ip_ == NULL); // Must not have read anything yet
|
|
// Length is encoded in 1..5 bytes
|
|
*result = 0;
|
|
uint32 shift = 0;
|
|
while (true) {
|
|
if (shift >= 32) return false;
|
|
size_t n;
|
|
const char* ip = reader_->Peek(&n);
|
|
if (n == 0) return false;
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
|
|
reader_->Skip(1);
|
|
uint32 val = c & 0x7f;
|
|
if (((val << shift) >> shift) != val) return false;
|
|
*result |= val << shift;
|
|
if (c < 128) {
|
|
break;
|
|
}
|
|
shift += 7;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Process the next item found in the input.
|
|
// Returns true if successful, false on error or end of input.
|
|
template <class Writer>
|
|
void DecompressAllTags(Writer* writer) {
|
|
const char* ip = ip_;
|
|
// For position-independent executables, accessing global arrays can be
|
|
// slow. Move wordmask array onto the stack to mitigate this.
|
|
uint32 wordmask[sizeof(internal::wordmask)/sizeof(uint32)];
|
|
// Do not use memcpy to copy internal::wordmask to
|
|
// wordmask. LLVM converts stack arrays to global arrays if it detects
|
|
// const stack arrays and this hurts the performance of position
|
|
// independent code. This change is temporary and can be reverted when
|
|
// https://reviews.llvm.org/D30759 is approved.
|
|
wordmask[0] = internal::wordmask[0];
|
|
wordmask[1] = internal::wordmask[1];
|
|
wordmask[2] = internal::wordmask[2];
|
|
wordmask[3] = internal::wordmask[3];
|
|
wordmask[4] = internal::wordmask[4];
|
|
|
|
// We could have put this refill fragment only at the beginning of the loop.
|
|
// However, duplicating it at the end of each branch gives the compiler more
|
|
// scope to optimize the <ip_limit_ - ip> expression based on the local
|
|
// context, which overall increases speed.
|
|
#define MAYBE_REFILL() \
|
|
if (ip_limit_ - ip < kMaximumTagLength) { \
|
|
ip_ = ip; \
|
|
if (!RefillTag()) return; \
|
|
ip = ip_; \
|
|
}
|
|
|
|
MAYBE_REFILL();
|
|
// Add loop alignment directive. Without this directive, we observed
|
|
// significant performance degradation on several intel architectures
|
|
// in snappy benchmark built with LLVM. The degradation was caused by
|
|
// increased branch miss prediction.
|
|
#if defined(__clang__) && defined(__x86_64__)
|
|
asm volatile (".p2align 5");
|
|
#endif
|
|
for ( ;; ) {
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip++));
|
|
|
|
// Ratio of iterations that have LITERAL vs non-LITERAL for different
|
|
// inputs.
|
|
//
|
|
// input LITERAL NON_LITERAL
|
|
// -----------------------------------
|
|
// html|html4|cp 23% 77%
|
|
// urls 36% 64%
|
|
// jpg 47% 53%
|
|
// pdf 19% 81%
|
|
// txt[1-4] 25% 75%
|
|
// pb 24% 76%
|
|
// bin 24% 76%
|
|
if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) {
|
|
size_t literal_length = (c >> 2) + 1u;
|
|
if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length)) {
|
|
assert(literal_length < 61);
|
|
ip += literal_length;
|
|
// NOTE(user): There is no MAYBE_REFILL() here, as TryFastAppend()
|
|
// will not return true unless there's already at least five spare
|
|
// bytes in addition to the literal.
|
|
continue;
|
|
}
|
|
if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) {
|
|
// Long literal.
|
|
const size_t literal_length_length = literal_length - 60;
|
|
literal_length =
|
|
(LittleEndian::Load32(ip) & wordmask[literal_length_length]) + 1;
|
|
ip += literal_length_length;
|
|
}
|
|
|
|
size_t avail = ip_limit_ - ip;
|
|
while (avail < literal_length) {
|
|
if (!writer->Append(ip, avail)) return;
|
|
literal_length -= avail;
|
|
reader_->Skip(peeked_);
|
|
size_t n;
|
|
ip = reader_->Peek(&n);
|
|
avail = n;
|
|
peeked_ = avail;
|
|
if (avail == 0) return; // Premature end of input
|
|
ip_limit_ = ip + avail;
|
|
}
|
|
if (!writer->Append(ip, literal_length)) {
|
|
return;
|
|
}
|
|
ip += literal_length;
|
|
MAYBE_REFILL();
|
|
} else {
|
|
const size_t entry = char_table[c];
|
|
const size_t trailer = LittleEndian::Load32(ip) & wordmask[entry >> 11];
|
|
const size_t length = entry & 0xff;
|
|
ip += entry >> 11;
|
|
|
|
// copy_offset/256 is encoded in bits 8..10. By just fetching
|
|
// those bits, we get copy_offset (since the bit-field starts at
|
|
// bit 8).
|
|
const size_t copy_offset = entry & 0x700;
|
|
if (!writer->AppendFromSelf(copy_offset + trailer, length)) {
|
|
return;
|
|
}
|
|
MAYBE_REFILL();
|
|
}
|
|
}
|
|
|
|
#undef MAYBE_REFILL
|
|
}
|
|
};
|
|
|
|
bool SnappyDecompressor::RefillTag() {
|
|
const char* ip = ip_;
|
|
if (ip == ip_limit_) {
|
|
// Fetch a new fragment from the reader
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
size_t n;
|
|
ip = reader_->Peek(&n);
|
|
peeked_ = n;
|
|
eof_ = (n == 0);
|
|
if (eof_) return false;
|
|
ip_limit_ = ip + n;
|
|
}
|
|
|
|
// Read the tag character
|
|
assert(ip < ip_limit_);
|
|
const unsigned char c = *(reinterpret_cast<const unsigned char*>(ip));
|
|
const uint32 entry = char_table[c];
|
|
const uint32 needed = (entry >> 11) + 1; // +1 byte for 'c'
|
|
assert(needed <= sizeof(scratch_));
|
|
|
|
// Read more bytes from reader if needed
|
|
uint32 nbuf = ip_limit_ - ip;
|
|
if (nbuf < needed) {
|
|
// Stitch together bytes from ip and reader to form the word
|
|
// contents. We store the needed bytes in "scratch_". They
|
|
// will be consumed immediately by the caller since we do not
|
|
// read more than we need.
|
|
memmove(scratch_, ip, nbuf);
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
peeked_ = 0;
|
|
while (nbuf < needed) {
|
|
size_t length;
|
|
const char* src = reader_->Peek(&length);
|
|
if (length == 0) return false;
|
|
uint32 to_add = std::min<uint32>(needed - nbuf, length);
|
|
memcpy(scratch_ + nbuf, src, to_add);
|
|
nbuf += to_add;
|
|
reader_->Skip(to_add);
|
|
}
|
|
assert(nbuf == needed);
|
|
ip_ = scratch_;
|
|
ip_limit_ = scratch_ + needed;
|
|
} else if (nbuf < kMaximumTagLength) {
|
|
// Have enough bytes, but move into scratch_ so that we do not
|
|
// read past end of input
|
|
memmove(scratch_, ip, nbuf);
|
|
reader_->Skip(peeked_); // All peeked bytes are used up
|
|
peeked_ = 0;
|
|
ip_ = scratch_;
|
|
ip_limit_ = scratch_ + nbuf;
|
|
} else {
|
|
// Pass pointer to buffer returned by reader_.
|
|
ip_ = ip;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
template <typename Writer>
|
|
static bool InternalUncompress(Source* r, Writer* writer) {
|
|
// Read the uncompressed length from the front of the compressed input
|
|
SnappyDecompressor decompressor(r);
|
|
uint32 uncompressed_len = 0;
|
|
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false;
|
|
|
|
return InternalUncompressAllTags(&decompressor, writer, r->Available(),
|
|
uncompressed_len);
|
|
}
|
|
|
|
template <typename Writer>
|
|
static bool InternalUncompressAllTags(SnappyDecompressor* decompressor,
|
|
Writer* writer,
|
|
uint32 compressed_len,
|
|
uint32 uncompressed_len) {
|
|
Report("snappy_uncompress", compressed_len, uncompressed_len);
|
|
|
|
writer->SetExpectedLength(uncompressed_len);
|
|
|
|
// Process the entire input
|
|
decompressor->DecompressAllTags(writer);
|
|
writer->Flush();
|
|
return (decompressor->eof() && writer->CheckLength());
|
|
}
|
|
|
|
bool GetUncompressedLength(Source* source, uint32* result) {
|
|
SnappyDecompressor decompressor(source);
|
|
return decompressor.ReadUncompressedLength(result);
|
|
}
|
|
|
|
size_t Compress(Source* reader, Sink* writer) {
|
|
size_t written = 0;
|
|
size_t N = reader->Available();
|
|
const size_t uncompressed_size = N;
|
|
char ulength[Varint::kMax32];
|
|
char* p = Varint::Encode32(ulength, N);
|
|
writer->Append(ulength, p-ulength);
|
|
written += (p - ulength);
|
|
|
|
internal::WorkingMemory wmem;
|
|
char* scratch = NULL;
|
|
char* scratch_output = NULL;
|
|
|
|
while (N > 0) {
|
|
// Get next block to compress (without copying if possible)
|
|
size_t fragment_size;
|
|
const char* fragment = reader->Peek(&fragment_size);
|
|
assert(fragment_size != 0); // premature end of input
|
|
const size_t num_to_read = std::min(N, kBlockSize);
|
|
size_t bytes_read = fragment_size;
|
|
|
|
size_t pending_advance = 0;
|
|
if (bytes_read >= num_to_read) {
|
|
// Buffer returned by reader is large enough
|
|
pending_advance = num_to_read;
|
|
fragment_size = num_to_read;
|
|
} else {
|
|
// Read into scratch buffer
|
|
if (scratch == NULL) {
|
|
// If this is the last iteration, we want to allocate N bytes
|
|
// of space, otherwise the max possible kBlockSize space.
|
|
// num_to_read contains exactly the correct value
|
|
scratch = new char[num_to_read];
|
|
}
|
|
memcpy(scratch, fragment, bytes_read);
|
|
reader->Skip(bytes_read);
|
|
|
|
while (bytes_read < num_to_read) {
|
|
fragment = reader->Peek(&fragment_size);
|
|
size_t n = std::min<size_t>(fragment_size, num_to_read - bytes_read);
|
|
memcpy(scratch + bytes_read, fragment, n);
|
|
bytes_read += n;
|
|
reader->Skip(n);
|
|
}
|
|
assert(bytes_read == num_to_read);
|
|
fragment = scratch;
|
|
fragment_size = num_to_read;
|
|
}
|
|
assert(fragment_size == num_to_read);
|
|
|
|
// Get encoding table for compression
|
|
int table_size;
|
|
uint16* table = wmem.GetHashTable(num_to_read, &table_size);
|
|
|
|
// Compress input_fragment and append to dest
|
|
const int max_output = MaxCompressedLength(num_to_read);
|
|
|
|
// Need a scratch buffer for the output, in case the byte sink doesn't
|
|
// have room for us directly.
|
|
if (scratch_output == NULL) {
|
|
scratch_output = new char[max_output];
|
|
} else {
|
|
// Since we encode kBlockSize regions followed by a region
|
|
// which is <= kBlockSize in length, a previously allocated
|
|
// scratch_output[] region is big enough for this iteration.
|
|
}
|
|
char* dest = writer->GetAppendBuffer(max_output, scratch_output);
|
|
char* end = internal::CompressFragment(fragment, fragment_size,
|
|
dest, table, table_size);
|
|
writer->Append(dest, end - dest);
|
|
written += (end - dest);
|
|
|
|
N -= num_to_read;
|
|
reader->Skip(pending_advance);
|
|
}
|
|
|
|
Report("snappy_compress", written, uncompressed_size);
|
|
|
|
delete[] scratch;
|
|
delete[] scratch_output;
|
|
|
|
return written;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// IOVec interfaces
|
|
// -----------------------------------------------------------------------
|
|
|
|
// A type that writes to an iovec.
|
|
// Note that this is not a "ByteSink", but a type that matches the
|
|
// Writer template argument to SnappyDecompressor::DecompressAllTags().
|
|
class SnappyIOVecWriter {
|
|
private:
|
|
const struct iovec* output_iov_;
|
|
const size_t output_iov_count_;
|
|
|
|
// We are currently writing into output_iov_[curr_iov_index_].
|
|
size_t curr_iov_index_;
|
|
|
|
// Bytes written to output_iov_[curr_iov_index_] so far.
|
|
size_t curr_iov_written_;
|
|
|
|
// Total bytes decompressed into output_iov_ so far.
|
|
size_t total_written_;
|
|
|
|
// Maximum number of bytes that will be decompressed into output_iov_.
|
|
size_t output_limit_;
|
|
|
|
inline char* GetIOVecPointer(size_t index, size_t offset) {
|
|
return reinterpret_cast<char*>(output_iov_[index].iov_base) +
|
|
offset;
|
|
}
|
|
|
|
public:
|
|
// Does not take ownership of iov. iov must be valid during the
|
|
// entire lifetime of the SnappyIOVecWriter.
|
|
inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count)
|
|
: output_iov_(iov),
|
|
output_iov_count_(iov_count),
|
|
curr_iov_index_(0),
|
|
curr_iov_written_(0),
|
|
total_written_(0),
|
|
output_limit_(-1) {
|
|
}
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
output_limit_ = len;
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
return total_written_ == output_limit_;
|
|
}
|
|
|
|
inline bool Append(const char* ip, size_t len) {
|
|
if (total_written_ + len > output_limit_) {
|
|
return false;
|
|
}
|
|
|
|
while (len > 0) {
|
|
assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len);
|
|
if (curr_iov_written_ >= output_iov_[curr_iov_index_].iov_len) {
|
|
// This iovec is full. Go to the next one.
|
|
if (curr_iov_index_ + 1 >= output_iov_count_) {
|
|
return false;
|
|
}
|
|
curr_iov_written_ = 0;
|
|
++curr_iov_index_;
|
|
}
|
|
|
|
const size_t to_write = std::min(
|
|
len, output_iov_[curr_iov_index_].iov_len - curr_iov_written_);
|
|
memcpy(GetIOVecPointer(curr_iov_index_, curr_iov_written_),
|
|
ip,
|
|
to_write);
|
|
curr_iov_written_ += to_write;
|
|
total_written_ += to_write;
|
|
ip += to_write;
|
|
len -= to_write;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
|
|
const size_t space_left = output_limit_ - total_written_;
|
|
if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 &&
|
|
output_iov_[curr_iov_index_].iov_len - curr_iov_written_ >= 16) {
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
|
char* ptr = GetIOVecPointer(curr_iov_index_, curr_iov_written_);
|
|
UnalignedCopy128(ip, ptr);
|
|
curr_iov_written_ += len;
|
|
total_written_ += len;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
if (offset > total_written_ || offset == 0) {
|
|
return false;
|
|
}
|
|
const size_t space_left = output_limit_ - total_written_;
|
|
if (len > space_left) {
|
|
return false;
|
|
}
|
|
|
|
// Locate the iovec from which we need to start the copy.
|
|
size_t from_iov_index = curr_iov_index_;
|
|
size_t from_iov_offset = curr_iov_written_;
|
|
while (offset > 0) {
|
|
if (from_iov_offset >= offset) {
|
|
from_iov_offset -= offset;
|
|
break;
|
|
}
|
|
|
|
offset -= from_iov_offset;
|
|
assert(from_iov_index > 0);
|
|
--from_iov_index;
|
|
from_iov_offset = output_iov_[from_iov_index].iov_len;
|
|
}
|
|
|
|
// Copy <len> bytes starting from the iovec pointed to by from_iov_index to
|
|
// the current iovec.
|
|
while (len > 0) {
|
|
assert(from_iov_index <= curr_iov_index_);
|
|
if (from_iov_index != curr_iov_index_) {
|
|
const size_t to_copy = std::min(
|
|
output_iov_[from_iov_index].iov_len - from_iov_offset,
|
|
len);
|
|
Append(GetIOVecPointer(from_iov_index, from_iov_offset), to_copy);
|
|
len -= to_copy;
|
|
if (len > 0) {
|
|
++from_iov_index;
|
|
from_iov_offset = 0;
|
|
}
|
|
} else {
|
|
assert(curr_iov_written_ <= output_iov_[curr_iov_index_].iov_len);
|
|
size_t to_copy = std::min(output_iov_[curr_iov_index_].iov_len -
|
|
curr_iov_written_,
|
|
len);
|
|
if (to_copy == 0) {
|
|
// This iovec is full. Go to the next one.
|
|
if (curr_iov_index_ + 1 >= output_iov_count_) {
|
|
return false;
|
|
}
|
|
++curr_iov_index_;
|
|
curr_iov_written_ = 0;
|
|
continue;
|
|
}
|
|
if (to_copy > len) {
|
|
to_copy = len;
|
|
}
|
|
IncrementalCopySlow(
|
|
GetIOVecPointer(from_iov_index, from_iov_offset),
|
|
GetIOVecPointer(curr_iov_index_, curr_iov_written_),
|
|
GetIOVecPointer(curr_iov_index_, curr_iov_written_) + to_copy);
|
|
curr_iov_written_ += to_copy;
|
|
from_iov_offset += to_copy;
|
|
total_written_ += to_copy;
|
|
len -= to_copy;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
inline void Flush() {}
|
|
};
|
|
|
|
bool RawUncompressToIOVec(const char* compressed, size_t compressed_length,
|
|
const struct iovec* iov, size_t iov_cnt) {
|
|
ByteArraySource reader(compressed, compressed_length);
|
|
return RawUncompressToIOVec(&reader, iov, iov_cnt);
|
|
}
|
|
|
|
bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov,
|
|
size_t iov_cnt) {
|
|
SnappyIOVecWriter output(iov, iov_cnt);
|
|
return InternalUncompress(compressed, &output);
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Flat array interfaces
|
|
// -----------------------------------------------------------------------
|
|
|
|
// A type that writes to a flat array.
|
|
// Note that this is not a "ByteSink", but a type that matches the
|
|
// Writer template argument to SnappyDecompressor::DecompressAllTags().
|
|
class SnappyArrayWriter {
|
|
private:
|
|
char* base_;
|
|
char* op_;
|
|
char* op_limit_;
|
|
|
|
public:
|
|
inline explicit SnappyArrayWriter(char* dst)
|
|
: base_(dst),
|
|
op_(dst),
|
|
op_limit_(dst) {
|
|
}
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
op_limit_ = op_ + len;
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
return op_ == op_limit_;
|
|
}
|
|
|
|
inline bool Append(const char* ip, size_t len) {
|
|
char* op = op_;
|
|
const size_t space_left = op_limit_ - op;
|
|
if (space_left < len) {
|
|
return false;
|
|
}
|
|
memcpy(op, ip, len);
|
|
op_ = op + len;
|
|
return true;
|
|
}
|
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t len) {
|
|
char* op = op_;
|
|
const size_t space_left = op_limit_ - op;
|
|
if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) {
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
|
UnalignedCopy128(ip, op);
|
|
op_ = op + len;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
char* const op_end = op_ + len;
|
|
|
|
// Check if we try to append from before the start of the buffer.
|
|
// Normally this would just be a check for "produced < offset",
|
|
// but "produced <= offset - 1u" is equivalent for every case
|
|
// except the one where offset==0, where the right side will wrap around
|
|
// to a very big number. This is convenient, as offset==0 is another
|
|
// invalid case that we also want to catch, so that we do not go
|
|
// into an infinite loop.
|
|
if (Produced() <= offset - 1u || op_end > op_limit_) return false;
|
|
op_ = IncrementalCopy(op_ - offset, op_, op_end, op_limit_);
|
|
|
|
return true;
|
|
}
|
|
inline size_t Produced() const {
|
|
assert(op_ >= base_);
|
|
return op_ - base_;
|
|
}
|
|
inline void Flush() {}
|
|
};
|
|
|
|
bool RawUncompress(const char* compressed, size_t n, char* uncompressed) {
|
|
ByteArraySource reader(compressed, n);
|
|
return RawUncompress(&reader, uncompressed);
|
|
}
|
|
|
|
bool RawUncompress(Source* compressed, char* uncompressed) {
|
|
SnappyArrayWriter output(uncompressed);
|
|
return InternalUncompress(compressed, &output);
|
|
}
|
|
|
|
bool Uncompress(const char* compressed, size_t n, string* uncompressed) {
|
|
size_t ulength;
|
|
if (!GetUncompressedLength(compressed, n, &ulength)) {
|
|
return false;
|
|
}
|
|
// On 32-bit builds: max_size() < kuint32max. Check for that instead
|
|
// of crashing (e.g., consider externally specified compressed data).
|
|
if (ulength > uncompressed->max_size()) {
|
|
return false;
|
|
}
|
|
STLStringResizeUninitialized(uncompressed, ulength);
|
|
return RawUncompress(compressed, n, string_as_array(uncompressed));
|
|
}
|
|
|
|
// A Writer that drops everything on the floor and just does validation
|
|
class SnappyDecompressionValidator {
|
|
private:
|
|
size_t expected_;
|
|
size_t produced_;
|
|
|
|
public:
|
|
inline SnappyDecompressionValidator() : expected_(0), produced_(0) { }
|
|
inline void SetExpectedLength(size_t len) {
|
|
expected_ = len;
|
|
}
|
|
inline bool CheckLength() const {
|
|
return expected_ == produced_;
|
|
}
|
|
inline bool Append(const char* ip, size_t len) {
|
|
produced_ += len;
|
|
return produced_ <= expected_;
|
|
}
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
|
|
return false;
|
|
}
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
if (produced_ <= offset - 1u) return false;
|
|
produced_ += len;
|
|
return produced_ <= expected_;
|
|
}
|
|
inline void Flush() {}
|
|
};
|
|
|
|
bool IsValidCompressedBuffer(const char* compressed, size_t n) {
|
|
ByteArraySource reader(compressed, n);
|
|
SnappyDecompressionValidator writer;
|
|
return InternalUncompress(&reader, &writer);
|
|
}
|
|
|
|
bool IsValidCompressed(Source* compressed) {
|
|
SnappyDecompressionValidator writer;
|
|
return InternalUncompress(compressed, &writer);
|
|
}
|
|
|
|
void RawCompress(const char* input,
|
|
size_t input_length,
|
|
char* compressed,
|
|
size_t* compressed_length) {
|
|
ByteArraySource reader(input, input_length);
|
|
UncheckedByteArraySink writer(compressed);
|
|
Compress(&reader, &writer);
|
|
|
|
// Compute how many bytes were added
|
|
*compressed_length = (writer.CurrentDestination() - compressed);
|
|
}
|
|
|
|
size_t Compress(const char* input, size_t input_length, string* compressed) {
|
|
// Pre-grow the buffer to the max length of the compressed output
|
|
STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length));
|
|
|
|
size_t compressed_length;
|
|
RawCompress(input, input_length, string_as_array(compressed),
|
|
&compressed_length);
|
|
compressed->resize(compressed_length);
|
|
return compressed_length;
|
|
}
|
|
|
|
// -----------------------------------------------------------------------
|
|
// Sink interface
|
|
// -----------------------------------------------------------------------
|
|
|
|
// A type that decompresses into a Sink. The template parameter
|
|
// Allocator must export one method "char* Allocate(int size);", which
|
|
// allocates a buffer of "size" and appends that to the destination.
|
|
template <typename Allocator>
|
|
class SnappyScatteredWriter {
|
|
Allocator allocator_;
|
|
|
|
// We need random access into the data generated so far. Therefore
|
|
// we keep track of all of the generated data as an array of blocks.
|
|
// All of the blocks except the last have length kBlockSize.
|
|
std::vector<char*> blocks_;
|
|
size_t expected_;
|
|
|
|
// Total size of all fully generated blocks so far
|
|
size_t full_size_;
|
|
|
|
// Pointer into current output block
|
|
char* op_base_; // Base of output block
|
|
char* op_ptr_; // Pointer to next unfilled byte in block
|
|
char* op_limit_; // Pointer just past block
|
|
|
|
inline size_t Size() const {
|
|
return full_size_ + (op_ptr_ - op_base_);
|
|
}
|
|
|
|
bool SlowAppend(const char* ip, size_t len);
|
|
bool SlowAppendFromSelf(size_t offset, size_t len);
|
|
|
|
public:
|
|
inline explicit SnappyScatteredWriter(const Allocator& allocator)
|
|
: allocator_(allocator),
|
|
full_size_(0),
|
|
op_base_(NULL),
|
|
op_ptr_(NULL),
|
|
op_limit_(NULL) {
|
|
}
|
|
|
|
inline void SetExpectedLength(size_t len) {
|
|
assert(blocks_.empty());
|
|
expected_ = len;
|
|
}
|
|
|
|
inline bool CheckLength() const {
|
|
return Size() == expected_;
|
|
}
|
|
|
|
// Return the number of bytes actually uncompressed so far
|
|
inline size_t Produced() const {
|
|
return Size();
|
|
}
|
|
|
|
inline bool Append(const char* ip, size_t len) {
|
|
size_t avail = op_limit_ - op_ptr_;
|
|
if (len <= avail) {
|
|
// Fast path
|
|
memcpy(op_ptr_, ip, len);
|
|
op_ptr_ += len;
|
|
return true;
|
|
} else {
|
|
return SlowAppend(ip, len);
|
|
}
|
|
}
|
|
|
|
inline bool TryFastAppend(const char* ip, size_t available, size_t length) {
|
|
char* op = op_ptr_;
|
|
const int space_left = op_limit_ - op;
|
|
if (length <= 16 && available >= 16 + kMaximumTagLength &&
|
|
space_left >= 16) {
|
|
// Fast path, used for the majority (about 95%) of invocations.
|
|
UnalignedCopy128(ip, op);
|
|
op_ptr_ = op + length;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
inline bool AppendFromSelf(size_t offset, size_t len) {
|
|
char* const op_end = op_ptr_ + len;
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
if (SNAPPY_PREDICT_TRUE(offset - 1u < op_ptr_ - op_base_ &&
|
|
op_end <= op_limit_)) {
|
|
// Fast path: src and dst in current block.
|
|
op_ptr_ = IncrementalCopy(op_ptr_ - offset, op_ptr_, op_end, op_limit_);
|
|
return true;
|
|
}
|
|
return SlowAppendFromSelf(offset, len);
|
|
}
|
|
|
|
// Called at the end of the decompress. We ask the allocator
|
|
// write all blocks to the sink.
|
|
inline void Flush() { allocator_.Flush(Produced()); }
|
|
};
|
|
|
|
template<typename Allocator>
|
|
bool SnappyScatteredWriter<Allocator>::SlowAppend(const char* ip, size_t len) {
|
|
size_t avail = op_limit_ - op_ptr_;
|
|
while (len > avail) {
|
|
// Completely fill this block
|
|
memcpy(op_ptr_, ip, avail);
|
|
op_ptr_ += avail;
|
|
assert(op_limit_ - op_ptr_ == 0);
|
|
full_size_ += (op_ptr_ - op_base_);
|
|
len -= avail;
|
|
ip += avail;
|
|
|
|
// Bounds check
|
|
if (full_size_ + len > expected_) {
|
|
return false;
|
|
}
|
|
|
|
// Make new block
|
|
size_t bsize = std::min<size_t>(kBlockSize, expected_ - full_size_);
|
|
op_base_ = allocator_.Allocate(bsize);
|
|
op_ptr_ = op_base_;
|
|
op_limit_ = op_base_ + bsize;
|
|
blocks_.push_back(op_base_);
|
|
avail = bsize;
|
|
}
|
|
|
|
memcpy(op_ptr_, ip, len);
|
|
op_ptr_ += len;
|
|
return true;
|
|
}
|
|
|
|
template<typename Allocator>
|
|
bool SnappyScatteredWriter<Allocator>::SlowAppendFromSelf(size_t offset,
|
|
size_t len) {
|
|
// Overflow check
|
|
// See SnappyArrayWriter::AppendFromSelf for an explanation of
|
|
// the "offset - 1u" trick.
|
|
const size_t cur = Size();
|
|
if (offset - 1u >= cur) return false;
|
|
if (expected_ - cur < len) return false;
|
|
|
|
// Currently we shouldn't ever hit this path because Compress() chops the
|
|
// input into blocks and does not create cross-block copies. However, it is
|
|
// nice if we do not rely on that, since we can get better compression if we
|
|
// allow cross-block copies and thus might want to change the compressor in
|
|
// the future.
|
|
size_t src = cur - offset;
|
|
while (len-- > 0) {
|
|
char c = blocks_[src >> kBlockLog][src & (kBlockSize-1)];
|
|
Append(&c, 1);
|
|
src++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
class SnappySinkAllocator {
|
|
public:
|
|
explicit SnappySinkAllocator(Sink* dest): dest_(dest) {}
|
|
~SnappySinkAllocator() {}
|
|
|
|
char* Allocate(int size) {
|
|
Datablock block(new char[size], size);
|
|
blocks_.push_back(block);
|
|
return block.data;
|
|
}
|
|
|
|
// We flush only at the end, because the writer wants
|
|
// random access to the blocks and once we hand the
|
|
// block over to the sink, we can't access it anymore.
|
|
// Also we don't write more than has been actually written
|
|
// to the blocks.
|
|
void Flush(size_t size) {
|
|
size_t size_written = 0;
|
|
size_t block_size;
|
|
for (int i = 0; i < blocks_.size(); ++i) {
|
|
block_size = std::min<size_t>(blocks_[i].size, size - size_written);
|
|
dest_->AppendAndTakeOwnership(blocks_[i].data, block_size,
|
|
&SnappySinkAllocator::Deleter, NULL);
|
|
size_written += block_size;
|
|
}
|
|
blocks_.clear();
|
|
}
|
|
|
|
private:
|
|
struct Datablock {
|
|
char* data;
|
|
size_t size;
|
|
Datablock(char* p, size_t s) : data(p), size(s) {}
|
|
};
|
|
|
|
static void Deleter(void* arg, const char* bytes, size_t size) {
|
|
delete[] bytes;
|
|
}
|
|
|
|
Sink* dest_;
|
|
std::vector<Datablock> blocks_;
|
|
|
|
// Note: copying this object is allowed
|
|
};
|
|
|
|
size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) {
|
|
SnappySinkAllocator allocator(uncompressed);
|
|
SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
|
|
InternalUncompress(compressed, &writer);
|
|
return writer.Produced();
|
|
}
|
|
|
|
bool Uncompress(Source* compressed, Sink* uncompressed) {
|
|
// Read the uncompressed length from the front of the compressed input
|
|
SnappyDecompressor decompressor(compressed);
|
|
uint32 uncompressed_len = 0;
|
|
if (!decompressor.ReadUncompressedLength(&uncompressed_len)) {
|
|
return false;
|
|
}
|
|
|
|
char c;
|
|
size_t allocated_size;
|
|
char* buf = uncompressed->GetAppendBufferVariable(
|
|
1, uncompressed_len, &c, 1, &allocated_size);
|
|
|
|
const size_t compressed_len = compressed->Available();
|
|
// If we can get a flat buffer, then use it, otherwise do block by block
|
|
// uncompression
|
|
if (allocated_size >= uncompressed_len) {
|
|
SnappyArrayWriter writer(buf);
|
|
bool result = InternalUncompressAllTags(&decompressor, &writer,
|
|
compressed_len, uncompressed_len);
|
|
uncompressed->Append(buf, writer.Produced());
|
|
return result;
|
|
} else {
|
|
SnappySinkAllocator allocator(uncompressed);
|
|
SnappyScatteredWriter<SnappySinkAllocator> writer(allocator);
|
|
return InternalUncompressAllTags(&decompressor, &writer, compressed_len,
|
|
uncompressed_len);
|
|
}
|
|
}
|
|
|
|
} // end namespace snappy
|