Files
xahaud/modules/ripple_data/crypto/ripple_CKeyECIES.cpp
2013-06-15 18:20:59 -07:00

317 lines
10 KiB
C++

//------------------------------------------------------------------------------
/*
Copyright (c) 2011-2013, OpenCoin, Inc.
*/
//==============================================================================
// ECIES uses elliptic curve keys to send an encrypted message.
// A shared secret is generated from one public key and one private key.
// The same key results regardless of which key is public and which private.
// Anonymous messages can be sent by generating an ephemeral public/private
// key pair, using that private key with the recipient's public key to
// encrypt and publishing the ephemeral public key. Non-anonymous messages
// can be sent by using your own private key with the recipient's public key.
// A random IV is used to encrypt the message and an HMAC is used to ensure
// message integrity. If you need timestamps or need to tell the recipient
// which key to use (his, yours, or ephemeral) you must add that data.
// (Obviously, key information can't go in the encrypted portion anyway.)
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
// 1) IV (unencrypted)
// 2) Encrypted: HMAC of original plaintext
// 3) Encrypted: Original plaintext
// 4) Encrypted: Rest of block/padding
// ECIES operations throw on any error such as a corrupt message or incorrect
// key. They *must* be called in try/catch blocks.
// Algorithmic choices:
#define ECIES_KEY_HASH SHA512 // Hash used to expand shared secret
#define ECIES_KEY_LENGTH (512/8) // Size of expanded shared secret
#define ECIES_MIN_SEC (128/8) // The minimum equivalent security
#define ECIES_ENC_ALGO EVP_aes_256_cbc() // Encryption algorithm
#define ECIES_ENC_KEY_TYPE uint256 // Type used to hold shared secret
#define ECIES_ENC_KEY_SIZE (256/8) // Encryption key size
#define ECIES_ENC_BLK_SIZE (128/8) // Encryption block size
#define ECIES_ENC_IV_TYPE uint128 // Type used to hold IV
#define ECIES_HMAC_ALGO EVP_sha256() // HMAC algorithm
#define ECIES_HMAC_KEY_TYPE uint256 // Type used to hold HMAC key
#define ECIES_HMAC_KEY_SIZE (256/8) // Size of HMAC key
#define ECIES_HMAC_TYPE uint256 // Type used to hold HMAC value
#define ECIES_HMAC_SIZE (256/8) // Size of HMAC value
void CKey::getECIESSecret (CKey& otherKey, ECIES_ENC_KEY_TYPE& enc_key, ECIES_HMAC_KEY_TYPE& hmac_key)
{
// Retrieve a secret generated from an EC key pair. At least one private key must be known.
if (!pkey || !otherKey.pkey)
throw std::runtime_error ("missing key");
EC_KEY* pubkey, *privkey;
if (EC_KEY_get0_private_key (pkey))
{
privkey = pkey;
pubkey = otherKey.pkey;
}
else if (EC_KEY_get0_private_key (otherKey.pkey))
{
privkey = otherKey.pkey;
pubkey = pkey;
}
else throw std::runtime_error ("no private key");
unsigned char rawbuf[512];
int buflen = ECDH_compute_key (rawbuf, 512, EC_KEY_get0_public_key (pubkey), privkey, NULL);
if (buflen < ECIES_MIN_SEC)
throw std::runtime_error ("ecdh key failed");
unsigned char hbuf[ECIES_KEY_LENGTH];
ECIES_KEY_HASH (rawbuf, buflen, hbuf);
memset (rawbuf, 0, ECIES_HMAC_KEY_SIZE);
assert ((ECIES_ENC_KEY_SIZE + ECIES_HMAC_KEY_SIZE) >= ECIES_KEY_LENGTH);
memcpy (enc_key.begin (), hbuf, ECIES_ENC_KEY_SIZE);
memcpy (hmac_key.begin (), hbuf + ECIES_ENC_KEY_SIZE, ECIES_HMAC_KEY_SIZE);
memset (hbuf, 0, ECIES_KEY_LENGTH);
}
static ECIES_HMAC_TYPE makeHMAC (const ECIES_HMAC_KEY_TYPE& secret, Blob const& data)
{
HMAC_CTX ctx;
HMAC_CTX_init (&ctx);
if (HMAC_Init_ex (&ctx, secret.begin (), ECIES_HMAC_KEY_SIZE, ECIES_HMAC_ALGO, NULL) != 1)
{
HMAC_CTX_cleanup (&ctx);
throw std::runtime_error ("init hmac");
}
if (HMAC_Update (&ctx, & (data.front ()), data.size ()) != 1)
{
HMAC_CTX_cleanup (&ctx);
throw std::runtime_error ("update hmac");
}
ECIES_HMAC_TYPE ret;
unsigned int ml = ECIES_HMAC_SIZE;
if (HMAC_Final (&ctx, ret.begin (), &ml) != 1)
{
HMAC_CTX_cleanup (&ctx);
throw std::runtime_error ("finalize hmac");
}
assert (ml == ECIES_HMAC_SIZE);
HMAC_CTX_cleanup (&ctx);
return ret;
}
Blob CKey::encryptECIES (CKey& otherKey, Blob const& plaintext)
{
ECIES_ENC_IV_TYPE iv;
RandomNumbers::getInstance ().fillBytes (iv.begin (), ECIES_ENC_BLK_SIZE);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret (otherKey, secret, hmacKey);
ECIES_HMAC_TYPE hmac = makeHMAC (hmacKey, plaintext);
hmacKey.zero ();
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init (&ctx);
if (EVP_EncryptInit_ex (&ctx, ECIES_ENC_ALGO, NULL, secret.begin (), iv.begin ()) != 1)
{
EVP_CIPHER_CTX_cleanup (&ctx);
secret.zero ();
throw std::runtime_error ("init cipher ctx");
}
secret.zero ();
Blob out (plaintext.size () + ECIES_HMAC_SIZE + ECIES_ENC_KEY_SIZE + ECIES_ENC_BLK_SIZE, 0);
int len = 0, bytesWritten;
// output IV
memcpy (& (out.front ()), iv.begin (), ECIES_ENC_BLK_SIZE);
len = ECIES_ENC_BLK_SIZE;
// Encrypt/output HMAC
bytesWritten = out.capacity () - len;
assert (bytesWritten > 0);
if (EVP_EncryptUpdate (&ctx, & (out.front ()) + len, &bytesWritten, hmac.begin (), ECIES_HMAC_SIZE) < 0)
{
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("");
}
len += bytesWritten;
// encrypt/output plaintext
bytesWritten = out.capacity () - len;
assert (bytesWritten > 0);
if (EVP_EncryptUpdate (&ctx, & (out.front ()) + len, &bytesWritten, & (plaintext.front ()), plaintext.size ()) < 0)
{
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("");
}
len += bytesWritten;
// finalize
bytesWritten = out.capacity () - len;
if (EVP_EncryptFinal_ex (&ctx, & (out.front ()) + len, &bytesWritten) < 0)
{
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("encryption error");
}
len += bytesWritten;
// Output contains: IV, encrypted HMAC, encrypted data, encrypted padding
assert (len <= (plaintext.size () + ECIES_HMAC_SIZE + (2 * ECIES_ENC_BLK_SIZE)));
assert (len >= (plaintext.size () + ECIES_HMAC_SIZE + ECIES_ENC_BLK_SIZE)); // IV, HMAC, data
out.resize (len);
EVP_CIPHER_CTX_cleanup (&ctx);
return out;
}
Blob CKey::decryptECIES (CKey& otherKey, Blob const& ciphertext)
{
// minimum ciphertext = IV + HMAC + 1 block
if (ciphertext.size () < ((2 * ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) )
throw std::runtime_error ("ciphertext too short");
// extract IV
ECIES_ENC_IV_TYPE iv;
memcpy (iv.begin (), & (ciphertext.front ()), ECIES_ENC_BLK_SIZE);
// begin decrypting
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init (&ctx);
ECIES_ENC_KEY_TYPE secret;
ECIES_HMAC_KEY_TYPE hmacKey;
getECIESSecret (otherKey, secret, hmacKey);
if (EVP_DecryptInit_ex (&ctx, ECIES_ENC_ALGO, NULL, secret.begin (), iv.begin ()) != 1)
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("unable to init cipher");
}
// decrypt mac
ECIES_HMAC_TYPE hmac;
int outlen = ECIES_HMAC_SIZE;
if ( (EVP_DecryptUpdate (&ctx, hmac.begin (), &outlen,
& (ciphertext.front ()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE + 1) != 1) || (outlen != ECIES_HMAC_SIZE) )
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("unable to extract hmac");
}
// decrypt plaintext (after IV and encrypted mac)
Blob plaintext (ciphertext.size () - ECIES_HMAC_SIZE - ECIES_ENC_BLK_SIZE);
outlen = plaintext.size ();
if (EVP_DecryptUpdate (&ctx, & (plaintext.front ()), &outlen,
& (ciphertext.front ()) + ECIES_ENC_BLK_SIZE + ECIES_HMAC_SIZE + 1,
ciphertext.size () - ECIES_ENC_BLK_SIZE - ECIES_HMAC_SIZE - 1) != 1)
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("unable to extract plaintext");
}
// decrypt padding
int flen = 0;
if (EVP_DecryptFinal (&ctx, & (plaintext.front ()) + outlen, &flen) != 1)
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("plaintext had bad padding");
}
plaintext.resize (flen + outlen);
// verify integrity
if (hmac != makeHMAC (hmacKey, plaintext))
{
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
throw std::runtime_error ("plaintext had bad hmac");
}
secret.zero ();
hmacKey.zero ();
EVP_CIPHER_CTX_cleanup (&ctx);
return plaintext;
}
bool checkECIES (void)
{
CKey senderPriv, recipientPriv, senderPub, recipientPub;
for (int i = 0; i < 30000; ++i)
{
if ((i % 100) == 0)
{
// generate new keys every 100 times
// std::cerr << "new keys" << std::endl;
senderPriv.MakeNewKey ();
recipientPriv.MakeNewKey ();
if (!senderPub.SetPubKey (senderPriv.GetPubKey ()))
throw std::runtime_error ("key error");
if (!recipientPub.SetPubKey (recipientPriv.GetPubKey ()))
throw std::runtime_error ("key error");
}
// generate message
Blob message (4096);
int msglen = i % 3000;
RandomNumbers::getInstance ().fillBytes (&message.front (), msglen);
message.resize (msglen);
// encrypt message with sender's private key and recipient's public key
Blob ciphertext = senderPriv.encryptECIES (recipientPub, message);
// decrypt message with recipient's private key and sender's public key
Blob decrypt = recipientPriv.decryptECIES (senderPub, ciphertext);
if (decrypt != message)
{
assert (false);
return false;
}
// std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl;
}
return true;
}
// vim:ts=4