// // Copyright (c) 2013-2016 Vinnie Falco (vinnie dot falco at gmail dot com) // // Distributed under the Boost Software License, Version 1.0. (See accompanying // file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) // #ifndef BEAST_FLAT_BUFFER_HPP #define BEAST_FLAT_BUFFER_HPP #include #include #include #include #include namespace beast { /** A linear dynamic buffer. Objects of this type meet the requirements of @b DynamicBuffer and offer additional invariants: @li Buffer sequences returned by @ref data and @ref prepare will always be of length one. @li A configurable maximum buffer size may be set upon construction. Attempts to exceed the buffer size will throw `std::length_error`. Upon construction, a maximum size for the buffer may be specified. If this limit is exceeded, the `std::length_error` exception will be thrown. @note This class is designed for use with algorithms that take dynamic buffers as parameters, and are optimized for the case where the input sequence or output sequence is stored in a single contiguous buffer. */ template class basic_flat_buffer #if ! BEAST_DOXYGEN : private detail::empty_base_optimization< typename std::allocator_traits:: template rebind_alloc> #endif { public: #if BEAST_DOXYGEN /// The type of allocator used. using allocator_type = Allocator; #else using allocator_type = typename std::allocator_traits:: template rebind_alloc; #endif private: enum { min_size = 512 }; template friend class basic_flat_buffer; using alloc_traits = std::allocator_traits; static inline std::size_t dist(char const* first, char const* last) { return static_cast(last - first); } char* begin_; char* in_; char* out_; char* last_; char* end_; std::size_t max_; public: /// The type used to represent the input sequence as a list of buffers. using const_buffers_type = boost::asio::const_buffers_1; /// The type used to represent the output sequence as a list of buffers. using mutable_buffers_type = boost::asio::mutable_buffers_1; /// Destructor ~basic_flat_buffer(); /** Constructor Upon construction, capacity will be zero. */ basic_flat_buffer(); /** Constructor Upon construction, capacity will be zero. @param limit The setting for @ref max_size. */ explicit basic_flat_buffer(std::size_t limit); /** Constructor Upon construction, capacity will be zero. @param alloc The allocator to construct with. */ explicit basic_flat_buffer(Allocator const& alloc); /** Constructor Upon construction, capacity will be zero. @param limit The setting for @ref max_size. @param alloc The allocator to use. */ basic_flat_buffer( std::size_t limit, Allocator const& alloc); /** Move constructor After the move, `*this` will have an empty output sequence. @param other The object to move from. After the move, The object's state will be as if constructed using its current allocator and limit. */ basic_flat_buffer(basic_flat_buffer&& other); /** Move constructor After the move, `*this` will have an empty output sequence. @param other The object to move from. After the move, The object's state will be as if constructed using its current allocator and limit. @param alloc The allocator to use. */ basic_flat_buffer( basic_flat_buffer&& other, Allocator const& alloc); /** Copy constructor @param other The object to copy from. */ basic_flat_buffer(basic_flat_buffer const& other); /** Copy constructor @param other The object to copy from. @param alloc The allocator to use. */ basic_flat_buffer(basic_flat_buffer const& other, Allocator const& alloc); /** Copy constructor @param other The object to copy from. */ template basic_flat_buffer( basic_flat_buffer const& other); /** Copy constructor @param other The object to copy from. @param alloc The allocator to use. */ template basic_flat_buffer( basic_flat_buffer const& other, Allocator const& alloc); /** Move assignment After the move, `*this` will have an empty output sequence. @param other The object to move from. After the move, The object's state will be as if constructed using its current allocator and limit. */ basic_flat_buffer& operator=(basic_flat_buffer&& other); /** Copy assignment After the copy, `*this` will have an empty output sequence. @param other The object to copy from. */ basic_flat_buffer& operator=(basic_flat_buffer const& other); /** Copy assignment After the copy, `*this` will have an empty output sequence. @param other The object to copy from. */ template basic_flat_buffer& operator=(basic_flat_buffer const& other); /// Returns a copy of the associated allocator. allocator_type get_allocator() const { return this->member(); } /// Returns the size of the input sequence. std::size_t size() const { return dist(in_, out_); } /// Return the maximum sum of the input and output sequence sizes. std::size_t max_size() const { return max_; } /// Return the maximum sum of input and output sizes that can be held without an allocation. std::size_t capacity() const { return dist(begin_, end_); } /// Get a list of buffers that represent the input sequence. const_buffers_type data() const { return {in_, dist(in_, out_)}; } /** Get a list of buffers that represent the output sequence, with the given size. @throws std::length_error if `size() + n` exceeds `max_size()`. @note All previous buffers sequences obtained from calls to @ref data or @ref prepare are invalidated. */ mutable_buffers_type prepare(std::size_t n); /** Move bytes from the output sequence to the input sequence. @param n The number of bytes to move. If this is larger than the number of bytes in the output sequences, then the entire output sequences is moved. @note All previous buffers sequences obtained from calls to @ref data or @ref prepare are invalidated. */ void commit(std::size_t n) { out_ += (std::min)(n, dist(out_, last_)); } /** Remove bytes from the input sequence. If `n` is greater than the number of bytes in the input sequence, all bytes in the input sequence are removed. @note All previous buffers sequences obtained from calls to @ref data or @ref prepare are invalidated. */ void consume(std::size_t n); /** Reallocate the buffer to fit the input sequence. @note All previous buffers sequences obtained from calls to @ref data or @ref prepare are invalidated. */ void shrink_to_fit(); /// Exchange two flat buffers template friend void swap( basic_flat_buffer& lhs, basic_flat_buffer& rhs); private: void reset(); template void copy_from(DynamicBuffer const& other); void move_assign(basic_flat_buffer&, std::true_type); void move_assign(basic_flat_buffer&, std::false_type); void copy_assign(basic_flat_buffer const&, std::true_type); void copy_assign(basic_flat_buffer const&, std::false_type); void swap(basic_flat_buffer&); void swap(basic_flat_buffer&, std::true_type); void swap(basic_flat_buffer&, std::false_type); }; using flat_buffer = basic_flat_buffer>; } // beast #include #endif