/*============================================================================*/ /* VFLib: https://github.com/vinniefalco/VFLib Copyright (C) 2008 by Vinnie Falco This library contains portions of other open source products covered by separate licenses. Please see the corresponding source files for specific terms. VFLib is provided under the terms of The MIT License (MIT): Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*============================================================================*/ #ifndef BEAST_INTERVAL_BEASTHEADER #define BEAST_INTERVAL_BEASTHEADER /** A half-open interval. This represents the half-open interval [begin, end) over the scalar type of template parameter `Ty`. It may also be considered as the specification of a subset of a 1-dimensional Euclidean space. @tparam Ty A scalar numerical type. */ template class Interval { public: typedef Ty value_type; /** The empty interval. */ static const Interval none; /** Create an uninitialized interval. */ Interval () { } /** Create an interval with the specified values. */ Interval (Ty begin, Ty end) : m_begin (begin) , m_end (end) { } /** Create an interval from another interval. */ Interval (Interval const& other) : m_begin (other.m_begin) , m_end (other.m_end) { } /** Assign from another interval. @param other The interval to assign from. @return A reference to this interval. */ Interval& operator= (const Interval& other) { m_begin = other.m_begin; m_end = other.m_end; return *this; } /** Compare an interval for equality. Empty intervals are always equal to other empty intervals. @param rhs The other interval to compare. @return `true` if this interval is equal to the specified interval. */ bool operator== (Interval const& rhs) const { return (empty () && rhs.empty ()) || (m_begin == rhs.m_begin && m_end == rhs.m_end); } /** Compare an interval for inequality. @param rhs The other interval to compare. @return `true` if this interval is not equal to the specified interval. */ bool operator!= (Interval const& rhs) const { return !this->operator== (rhs); } /** Get the starting value of the interval. @return The starting point of the interval. */ Ty begin () const { return m_begin; } /** Get the ending value of the interval. @return The ending point of the interval. */ Ty end () const { return m_end; } /** Get the Lebesque measure. @return The Lebesque measure. */ Ty length () const { return empty () ? Ty () : (end () - begin ()); } //Ty count () const { return length (); } // sugar //Ty distance () const { return length (); } // sugar /** Determine if the interval is empty. @return `true` if the interval is empty. */ bool empty () const { return m_begin >= m_end; } /** Determine if the interval is non-empty. @return `true` if the interval is not empty. */ bool notEmpty () const { return m_begin < m_end; } /** Set the starting point of the interval. @param v The starting point. */ void setBegin (Ty v) { m_begin = v; } /** Set the ending point of the interval. @param v The ending point. */ void setEnd (Ty v) { m_end = v; } /** Set the ending point relative to the starting point. @param v The length of the resulting interval. */ void setLength (Ty v) { m_end = m_begin + v; } /** Determine if a value is contained in the interval. @param v The value to check. @return `true` if this interval contains `v`. */ bool contains (Ty v) const { return notEmpty () && v >= m_begin && v < m_end; } /** Determine if this interval intersects another interval. @param other The other interval. @return `true` if the intervals intersect. */ template bool intersects (Interval const& other) const { return notEmpty () && other.notEmpty () && end () > other.begin () && begin () < other.end (); } /** Determine if this interval adjoins another interval. An interval is adjoint to another interval if and only if the union of the intervals is a single non-empty half-open subset. @param other The other interval. @return `true` if the intervals are adjoint. */ template bool adjoins (Interval const& other) const { return (empty () != other.empty ()) || (notEmpty () && end () >= other.begin () && begin () <= other.end ()); } /** Determine if this interval is disjoint from another interval. @param other The other interval. @return `true` if the intervals are disjoint. */ bool disjoint (Interval const& other) const { return !intersects (other); } /** Determine if this interval is a superset of another interval. An interval A is a superset of interval B if B is empty or if A fully contains B. @param other The other interval. @return `true` if this is a superset of `other`. */ template bool superset_of (Interval const& other) const { return other.empty () || (notEmpty () && begin () <= other.begin () && end () >= other.end ()); } /** Determine if this interval is a proper superset of another interval. An interval A is a proper superset of interval B if A is a superset of B and A is not equal to B. @param other The other interval. @return `true` if this interval is a proper superset of `other`. */ template bool proper_superset_of (Interval const& other) const { return this->superset_of (other) && this->operator != (other); } /** Determine if this interval is a subset of another interval. @param other The other interval. @return `true` if this interval is a subset of `other`. */ template bool subset_of (Interval const& other) const { return other.superset_of (*this); } /** Determine if this interval is a proper subset of another interval. @param other The other interval. @return `true` if this interval is a proper subset of `other`. */ template bool proper_subset_of (Interval const& other) const { return other.proper_superset_of (*this); } /** Return the intersection of this interval with another interval. @param other The other interval. @return The intersection of the intervals. */ template Interval intersection (Interval const& other) const { return Interval (std::max (begin (), other.begin ()), std::min (end (), other.end ())); } /** Determine the smallest interval that contains both intervals. @param other The other interval. @return The simple union of the intervals. */ template Interval simple_union (Interval const& other) const { return Interval ( std::min (other.normalized ().begin (), normalized ().begin ()), std::max (other.normalized ().end (), normalized ().end ())); } /** Calculate the single-interval union. The result is empty if the union cannot be represented as a single half-open interval. @param other The other interval. @return The simple union of the intervals. */ template Interval single_union (Interval const& other) const { if (empty ()) return other; else if (other.empty ()) return *this; else if (end () < other.begin () || begin () > other.end ()) return none; else return Interval (std::min (begin (), other.begin ()), std::max (end (), other.end ())); } /** Determine if the interval is correctly ordered. @return `true` if the interval is correctly ordered. */ bool normal () const { return end () >= begin (); } /** Return a normalized interval. @return The normalized interval. */ Interval normalized () const { if (normal ()) return *this; else return Interval (end (), begin ()); } /** Clamp a value to the interval. @param v The value to clamp. @return The clamped result. */ template Ty clamp (Tv v) const { // These conditionals are carefully ordered so // that if m_begin == m_end, value is assigned m_begin. if (v > end ()) v = end () - (std::numeric_limits ::is_integer ? 1 : std::numeric_limits ::epsilon ()); if (v < begin ()) v = begin (); return v; } private: Ty m_begin; Ty m_end; }; template const Interval Interval::none = Interval (Ty (), Ty ()); #endif