//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012-2017 Ripple Labs Inc Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #ifndef RIPPLE_TEST_CSF_UNL_H_INCLUDED #define RIPPLE_TEST_CSF_UNL_H_INCLUDED #include #include #include #include #include #include namespace ripple { namespace test { namespace csf { /** Trust graph Trust is a directed relationship from a node i to node j. If node i trusts node j, then node i has node j in its UNL. This class wraps a digraph representing the trust relationships for all peers in the simulation. */ template class TrustGraph { using Graph = Digraph; Graph graph_; public: /** Create an empty trust graph */ TrustGraph() = default; Graph const& graph() { return graph_; } /** Create trust Establish trust between Peer `from` and Peer `to`; as if `from` put `to` in its UNL. @param from The peer granting trust @param to The peer receiving trust */ void trust(Peer const& from, Peer const& to) { graph_.connect(from, to); } /** Remove trust Revoke trust from Peer `from` to Peer `to`; as if `from` removed `to` from its UNL. @param from The peer revoking trust @param to The peer being revoked */ void untrust(Peer const& from, Peer const& to) { graph_.disconnect(from, to); } //< Whether from trusts to bool trusts(Peer const& from, Peer const& to) const { return graph_.connected(from, to); } /** Range over trusted peers @param a The node granting trust @return boost transformed range over nodes `a` trusts, i.e. the nodes in its UNL */ auto trustedPeers(Peer const& a) const { return graph_.outVertices(a); } /** An example of nodes that fail the whitepaper no-forking condition */ struct ForkInfo { std::set unlA; std::set unlB; int overlap; double required; }; //< Return nodes that fail the white-paper no-forking condition std::vector forkablePairs(double quorum) const { // Check the forking condition by looking at intersection // of UNL between all pairs of nodes. // TODO: Use the improved bound instead of the whitepaper bound. using UNL = std::set; std::set unique; for (Peer const peer : graph_.outVertices()) { unique.emplace( std::begin(trustedPeers(peer)), std::end(trustedPeers(peer))); } std::vector uniqueUNLs(unique.begin(), unique.end()); std::vector res; // Loop over all pairs of uniqueUNLs for (int i = 0; i < uniqueUNLs.size(); ++i) { for (int j = (i + 1); j < uniqueUNLs.size(); ++j) { auto const& unlA = uniqueUNLs[i]; auto const& unlB = uniqueUNLs[j]; double rhs = 2.0 * (1. - quorum) * std::max(unlA.size(), unlB.size()); int intersectionSize = std::count_if(unlA.begin(), unlA.end(), [&](Peer p) { return unlB.find(p) != unlB.end(); }); if (intersectionSize < rhs) { res.emplace_back( ForkInfo{unlA, unlB, intersectionSize, rhs}); } } } return res; } /** Check whether this trust graph satisfies the whitepaper no-forking condition */ bool canFork(double quorum) const { return !forkablePairs(quorum).empty(); } }; } // namespace csf } // namespace test } // namespace ripple #endif