//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2012, 2013 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #include #include #include #include #include #include namespace ripple { std::string toBase58 (AccountID const& v) { return base58EncodeToken( TOKEN_ACCOUNT_ID, v.data(), v.size()); } template<> boost::optional parseBase58 (std::string const& s) { auto const result = decodeBase58Token( s, TOKEN_ACCOUNT_ID); if (result.empty()) return boost::none; AccountID id; if (result.size() != id.size()) return boost::none; std::memcpy(id.data(), result.data(), result.size()); return id; } boost::optional deprecatedParseBitcoinAccountID (std::string const& s) { auto const result = decodeBase58TokenBitcoin( s, TOKEN_ACCOUNT_ID); if (result.empty()) return boost::none; AccountID id; if (result.size() != id.size()) return boost::none; std::memcpy(id.data(), result.data(), result.size()); return id; } bool deprecatedParseBase58 (AccountID& account, Json::Value const& jv) { if (! jv.isString()) return false; auto const result = parseBase58(jv.asString()); if (! result) return false; account = *result; return true; } template<> boost::optional parseHex (std::string const& s) { if (s.size() != 40) return boost::none; AccountID id; if (! id.SetHex(s, true)) return boost::none; return id; } template<> boost::optional parseHexOrBase58 (std::string const& s) { auto result = parseHex(s); if (! result) result = parseBase58(s); return result; } //------------------------------------------------------------------------------ /* Calculation of the Account ID The AccountID is a 160-bit identifier that uniquely distinguishes an account. The account may or may not exist in the ledger. Even for accounts that are not in the ledger, cryptographic operations may be performed which affect the ledger. For example, designating an account not in the ledger as a regular key for an account that is in the ledger. Why did we use half of SHA512 for most things but then SHA256 followed by RIPEMD160 for account IDs? Why didn't we do SHA512 half then RIPEMD160? Or even SHA512 then RIPEMD160? For that matter why RIPEMD160 at all why not just SHA512 and keep only 160 bits? Answer (David Schwartz): The short answer is that we kept Bitcoin's behavior. The longer answer was that: 1) Using a single hash could leave ripple vulnerable to length extension attacks. 2) Only RIPEMD160 is generally considered safe at 160 bits. Any of those schemes would have been acceptable. However, the one chosen avoids any need to defend the scheme chosen. (Against any criticism other than unnecessary complexity.) "The historical reason was that in the very early days, we wanted to give people as few ways to argue that we were less secure than Bitcoin. So where there was no good reason to change something, it was not changed." */ AccountID calcAccountID (PublicKey const& pk) { ripesha_hasher rsh; rsh(pk.data(), pk.size()); auto const d = static_cast< ripesha_hasher::result_type>(rsh); AccountID id; static_assert(sizeof(d) == id.size(), ""); std::memcpy(id.data(), d.data(), d.size()); return id; } AccountID const& xrpAccount() { static AccountID const account(0); return account; } AccountID const& noAccount() { static AccountID const account(1); return account; } bool to_issuer (AccountID& issuer, std::string const& s) { if (s.size () == (160 / 4)) { issuer.SetHex (s); return true; } auto const account = parseBase58(s); if (! account) return false; issuer = *account; return true; } //------------------------------------------------------------------------------ /* VFALCO NOTE An alternate implementation could use a pair of insert-only hash maps that each use a single large memory allocation to store a fixed size hash table and all of the AccountID/string pairs laid out in memory (wouldn't use std::string here just a length prefixed or zero terminated array). Possibly using boost::intrusive as the basis for the unordered container. This would cut down to one allocate/free cycle per swap of the map. */ AccountIDCache::AccountIDCache( std::size_t capacity) : capacity_(capacity) { m1_.reserve(capacity_); } std::string AccountIDCache::toBase58( AccountID const& id) const { std::lock_guard< std::mutex> lock(mutex_); auto iter = m1_.find(id); if (iter != m1_.end()) return iter->second; iter = m0_.find(id); std::string result; if (iter != m0_.end()) { result = iter->second; // Can use insert-only hash maps if // we didn't erase from here. m0_.erase(iter); } else { result = ripple::toBase58(id); } if (m1_.size() >= capacity_) { m0_ = std::move(m1_); m1_.clear(); m1_.reserve(capacity_); } m1_.emplace(id, result); return result; } } // ripple