// Copyright (c) 2011 The LevelDB Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. See the AUTHORS file for names of contributors. #include "db_impl.h" #include #include #include #include #include #include #include #include "builder.h" #include "db_iter.h" #include "dbformat.h" #include "filename.h" #include "log_reader.h" #include "log_writer.h" #include "memtable.h" #include "replay_iterator.h" #include "table_cache.h" #include "version_set.h" #include "write_batch_internal.h" #include "../hyperleveldb/db.h" #include "../hyperleveldb/env.h" #include "../hyperleveldb/replay_iterator.h" #include "../hyperleveldb/status.h" #include "../hyperleveldb/table.h" #include "../hyperleveldb/table_builder.h" #include "../port/port.h" #include "../table/block.h" #include "../table/merger.h" #include "../table/two_level_iterator.h" #include "../util/coding.h" #include "../util/logging.h" #include "../util/mutexlock.h" namespace hyperleveldb { const int kStraightReads = 50; const int kNumNonTableCacheFiles = 10; struct DBImpl::CompactionState { Compaction* const compaction; // Sequence numbers < smallest_snapshot are not significant since we // will never have to service a snapshot below smallest_snapshot. // Therefore if we have seen a sequence number S <= smallest_snapshot, // we can drop all entries for the same key with sequence numbers < S. SequenceNumber smallest_snapshot; // Files produced by compaction struct Output { uint64_t number; uint64_t file_size; InternalKey smallest, largest; }; std::vector outputs; // State kept for output being generated WritableFile* outfile; TableBuilder* builder; uint64_t total_bytes; Output* current_output() { return &outputs[outputs.size()-1]; } explicit CompactionState(Compaction* c) : compaction(c), outfile(NULL), builder(NULL), total_bytes(0) { } }; // Fix user-supplied options to be reasonable template static void ClipToRange(T* ptr, V minvalue, V maxvalue) { if (static_cast(*ptr) > maxvalue) *ptr = maxvalue; if (static_cast(*ptr) < minvalue) *ptr = minvalue; } Options SanitizeOptions(const std::string& dbname, const InternalKeyComparator* icmp, const InternalFilterPolicy* ipolicy, const Options& src) { Options result = src; result.comparator = icmp; result.filter_policy = (src.filter_policy != NULL) ? ipolicy : NULL; ClipToRange(&result.max_open_files, 64 + kNumNonTableCacheFiles, 50000); ClipToRange(&result.write_buffer_size, 64<<10, 1<<30); ClipToRange(&result.block_size, 1<<10, 4<<20); if (result.info_log == NULL) { // Open a log file in the same directory as the db src.env->CreateDir(dbname); // In case it does not exist src.env->RenameFile(InfoLogFileName(dbname), OldInfoLogFileName(dbname)); Status s = src.env->NewLogger(InfoLogFileName(dbname), &result.info_log); if (!s.ok()) { // No place suitable for logging result.info_log = NULL; } } if (result.block_cache == NULL) { result.block_cache = NewLRUCache(8 << 20); } return result; } DBImpl::DBImpl(const Options& raw_options, const std::string& dbname) : env_(raw_options.env), internal_comparator_(raw_options.comparator), internal_filter_policy_(raw_options.filter_policy), options_(SanitizeOptions(dbname, &internal_comparator_, &internal_filter_policy_, raw_options)), owns_info_log_(options_.info_log != raw_options.info_log), owns_cache_(options_.block_cache != raw_options.block_cache), dbname_(dbname), db_lock_(NULL), shutting_down_(NULL), mem_(new MemTable(internal_comparator_)), imm_(NULL), logfile_(), logfile_number_(0), log_(), seed_(0), writers_lower_(0), writers_upper_(0), bg_fg_cv_(&mutex_), allow_background_activity_(false), num_bg_threads_(0), bg_compaction_cv_(&mutex_), bg_memtable_cv_(&mutex_), bg_optimistic_trip_(false), bg_optimistic_cv_(&mutex_), bg_log_cv_(&mutex_), bg_log_occupied_(false), manual_compaction_(NULL), manual_garbage_cutoff_(raw_options.manual_garbage_collection ? SequenceNumber(0) : kMaxSequenceNumber), straight_reads_(0), backup_cv_(&mutex_), backup_in_progress_(), backup_deferred_delete_(), consecutive_compaction_errors_(0) { mutex_.Lock(); mem_->Ref(); has_imm_.Release_Store(NULL); backup_in_progress_.Release_Store(NULL); env_->StartThread(&DBImpl::CompactMemTableWrapper, this); env_->StartThread(&DBImpl::CompactOptimisticWrapper, this); env_->StartThread(&DBImpl::CompactLevelWrapper, this); num_bg_threads_ = 3; // Reserve ten files or so for other uses and give the rest to TableCache. const int table_cache_size = options_.max_open_files - kNumNonTableCacheFiles; table_cache_ = new TableCache(dbname_, &options_, table_cache_size); versions_ = new VersionSet(dbname_, &options_, table_cache_, &internal_comparator_); for (int i = 0; i < config::kNumLevels; ++i) { levels_locked_[i] = false; } mutex_.Unlock(); } DBImpl::~DBImpl() { // Wait for background work to finish mutex_.Lock(); shutting_down_.Release_Store(this); // Any non-NULL value is ok bg_optimistic_cv_.SignalAll(); bg_compaction_cv_.SignalAll(); bg_memtable_cv_.SignalAll(); while (num_bg_threads_ > 0) { bg_fg_cv_.Wait(); } mutex_.Unlock(); if (db_lock_ != NULL) { env_->UnlockFile(db_lock_); } delete versions_; if (mem_ != NULL) mem_->Unref(); if (imm_ != NULL) imm_->Unref(); log_.reset(); logfile_.reset(); delete table_cache_; if (owns_info_log_) { delete options_.info_log; } if (owns_cache_) { delete options_.block_cache; } } Status DBImpl::NewDB() { VersionEdit new_db; new_db.SetComparatorName(user_comparator()->Name()); new_db.SetLogNumber(0); new_db.SetNextFile(2); new_db.SetLastSequence(0); const std::string manifest = DescriptorFileName(dbname_, 1); WritableFile* file; Status s = env_->NewWritableFile(manifest, &file); if (!s.ok()) { return s; } { log::Writer log(file); std::string record; new_db.EncodeTo(&record); s = log.AddRecord(record); if (s.ok()) { s = file->Close(); } } delete file; if (s.ok()) { // Make "CURRENT" file that points to the new manifest file. s = SetCurrentFile(env_, dbname_, 1); } else { env_->DeleteFile(manifest); } return s; } void DBImpl::MaybeIgnoreError(Status* s) const { if (s->ok() || options_.paranoid_checks) { // No change needed } else { Log(options_.info_log, "Ignoring error %s", s->ToString().c_str()); *s = Status::OK(); } } void DBImpl::DeleteObsoleteFiles() { // Defer if there's background activity mutex_.AssertHeld(); if (backup_in_progress_.Acquire_Load() != NULL) { backup_deferred_delete_ = true; return; } // If you ever release mutex_ in this function, you'll need to do more work in // LiveBackup // Make a set of all of the live files std::set live = pending_outputs_; versions_->AddLiveFiles(&live); std::vector filenames; env_->GetChildren(dbname_, &filenames); // Ignoring errors on purpose uint64_t number; FileType type; for (size_t i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &type)) { bool keep = true; switch (type) { case kLogFile: keep = ((number >= versions_->LogNumber()) || (number == versions_->PrevLogNumber())); break; case kDescriptorFile: // Keep my manifest file, and any newer incarnations' // (in case there is a race that allows other incarnations) keep = (number >= versions_->ManifestFileNumber()); break; case kTableFile: keep = (live.find(number) != live.end()); break; case kTempFile: // Any temp files that are currently being written to must // be recorded in pending_outputs_, which is inserted into "live" keep = (live.find(number) != live.end()); break; case kCurrentFile: case kDBLockFile: case kInfoLogFile: keep = true; break; } if (!keep) { if (type == kTableFile) { table_cache_->Evict(number); } Log(options_.info_log, "Delete type=%d #%lld\n", int(type), static_cast(number)); env_->DeleteFile(dbname_ + "/" + filenames[i]); } } } } Status DBImpl::Recover(VersionEdit* edit) { mutex_.AssertHeld(); // Ignore error from CreateDir since the creation of the DB is // committed only when the descriptor is created, and this directory // may already exist from a previous failed creation attempt. env_->CreateDir(dbname_); assert(db_lock_ == NULL); Status s = env_->LockFile(LockFileName(dbname_), &db_lock_); if (!s.ok()) { return s; } if (!env_->FileExists(CurrentFileName(dbname_))) { if (options_.create_if_missing) { s = NewDB(); if (!s.ok()) { return s; } } else { return Status::InvalidArgument( dbname_, "does not exist (create_if_missing is false)"); } } else { if (options_.error_if_exists) { return Status::InvalidArgument( dbname_, "exists (error_if_exists is true)"); } } s = versions_->Recover(); if (s.ok()) { SequenceNumber max_sequence(0); // Recover from all newer log files than the ones named in the // descriptor (new log files may have been added by the previous // incarnation without registering them in the descriptor). // // Note that PrevLogNumber() is no longer used, but we pay // attention to it in case we are recovering a database // produced by an older version of leveldb. const uint64_t min_log = versions_->LogNumber(); const uint64_t prev_log = versions_->PrevLogNumber(); std::vector filenames; s = env_->GetChildren(dbname_, &filenames); if (!s.ok()) { return s; } std::set expected; versions_->AddLiveFiles(&expected); uint64_t number; FileType type; std::vector logs; for (size_t i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &type)) { expected.erase(number); if (type == kLogFile && ((number >= min_log) || (number == prev_log))) logs.push_back(number); } } if (!expected.empty()) { char buf[50]; snprintf(buf, sizeof(buf), "%d missing files; e.g.", static_cast(expected.size())); return Status::Corruption(buf, TableFileName(dbname_, *(expected.begin()))); } // Recover in the order in which the logs were generated std::sort(logs.begin(), logs.end()); for (size_t i = 0; i < logs.size(); i++) { s = RecoverLogFile(logs[i], edit, &max_sequence); // The previous incarnation may not have written any MANIFEST // records after allocating this log number. So we manually // update the file number allocation counter in VersionSet. versions_->MarkFileNumberUsed(logs[i]); } if (s.ok()) { if (versions_->LastSequence() < max_sequence) { versions_->SetLastSequence(max_sequence); } } } return s; } Status DBImpl::RecoverLogFile(uint64_t log_number, VersionEdit* edit, SequenceNumber* max_sequence) { struct LogReporter : public log::Reader::Reporter { Env* env; Logger* info_log; const char* fname; Status* status; // NULL if options_.paranoid_checks==false virtual void Corruption(size_t bytes, const Status& s) { Log(info_log, "%s%s: dropping %d bytes; %s", (this->status == NULL ? "(ignoring error) " : ""), fname, static_cast(bytes), s.ToString().c_str()); if (this->status != NULL && this->status->ok()) *this->status = s; } }; mutex_.AssertHeld(); // Open the log file std::string fname = LogFileName(dbname_, log_number); SequentialFile* file; Status status = env_->NewSequentialFile(fname, &file); if (!status.ok()) { MaybeIgnoreError(&status); return status; } // Create the log reader. LogReporter reporter; reporter.env = env_; reporter.info_log = options_.info_log; reporter.fname = fname.c_str(); reporter.status = (options_.paranoid_checks ? &status : NULL); // We intentially make log::Reader do checksumming even if // paranoid_checks==false so that corruptions cause entire commits // to be skipped instead of propagating bad information (like overly // large sequence numbers). log::Reader reader(file, &reporter, true/*checksum*/, 0/*initial_offset*/); Log(options_.info_log, "Recovering log #%llu", (unsigned long long) log_number); // Read all the records and add to a memtable std::string scratch; Slice record; WriteBatch batch; MemTable* mem = NULL; while (reader.ReadRecord(&record, &scratch) && status.ok()) { if (record.size() < 12) { reporter.Corruption( record.size(), Status::Corruption("log record too small")); continue; } WriteBatchInternal::SetContents(&batch, record); if (mem == NULL) { mem = new MemTable(internal_comparator_); mem->Ref(); } status = WriteBatchInternal::InsertInto(&batch, mem); MaybeIgnoreError(&status); if (!status.ok()) { break; } const SequenceNumber last_seq = WriteBatchInternal::Sequence(&batch) + WriteBatchInternal::Count(&batch) - 1; if (last_seq > *max_sequence) { *max_sequence = last_seq; } if (mem->ApproximateMemoryUsage() > options_.write_buffer_size) { status = WriteLevel0Table(mem, edit, NULL, NULL); if (!status.ok()) { // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. break; } mem->Unref(); mem = NULL; } } if (status.ok() && mem != NULL) { status = WriteLevel0Table(mem, edit, NULL, NULL); // Reflect errors immediately so that conditions like full // file-systems cause the DB::Open() to fail. } if (mem != NULL) mem->Unref(); delete file; return status; } Status DBImpl::WriteLevel0Table(MemTable* mem, VersionEdit* edit, Version* base, uint64_t* number) { mutex_.AssertHeld(); const uint64_t start_micros = env_->NowMicros(); FileMetaData meta; meta.number = versions_->NewFileNumber(); if (number) { *number = meta.number; } pending_outputs_.insert(meta.number); Iterator* iter = mem->NewIterator(); Log(options_.info_log, "Level-0 table #%llu: started", (unsigned long long) meta.number); Status s; { mutex_.Unlock(); s = BuildTable(dbname_, env_, options_, table_cache_, iter, &meta); mutex_.Lock(); } Log(options_.info_log, "Level-0 table #%llu: %lld bytes %s", (unsigned long long) meta.number, (unsigned long long) meta.file_size, s.ToString().c_str()); delete iter; // Note that if file_size is zero, the file has been deleted and // should not be added to the manifest. int level = 0; if (s.ok() && meta.file_size > 0) { const Slice min_user_key = meta.smallest.user_key(); const Slice max_user_key = meta.largest.user_key(); if (base != NULL) { level = base->PickLevelForMemTableOutput(min_user_key, max_user_key); while (level > 0 && levels_locked_[level]) { --level; } } edit->AddFile(level, meta.number, meta.file_size, meta.smallest, meta.largest); } CompactionStats stats; stats.micros = env_->NowMicros() - start_micros; stats.bytes_written = meta.file_size; stats_[level].Add(stats); return s; } void DBImpl::CompactMemTableThread() { MutexLock l(&mutex_); while (!shutting_down_.Acquire_Load() && !allow_background_activity_) { bg_memtable_cv_.Wait(); } while (!shutting_down_.Acquire_Load()) { while (!shutting_down_.Acquire_Load() && imm_ == NULL) { bg_memtable_cv_.Wait(); } if (shutting_down_.Acquire_Load()) { break; } // Save the contents of the memtable as a new Table VersionEdit edit; Version* base = versions_->current(); base->Ref(); uint64_t number; Status s = WriteLevel0Table(imm_, &edit, base, &number); base->Unref(); base = NULL; if (s.ok() && shutting_down_.Acquire_Load()) { s = Status::IOError("Deleting DB during memtable compaction"); } // Replace immutable memtable with the generated Table if (s.ok()) { edit.SetPrevLogNumber(0); edit.SetLogNumber(logfile_number_); // Earlier logs no longer needed s = versions_->LogAndApply(&edit, &mutex_, &bg_log_cv_, &bg_log_occupied_); } pending_outputs_.erase(number); if (s.ok()) { // Commit to the new state imm_->Unref(); imm_ = NULL; has_imm_.Release_Store(NULL); bg_fg_cv_.SignalAll(); bg_compaction_cv_.Signal(); DeleteObsoleteFiles(); } if (!shutting_down_.Acquire_Load() && !s.ok()) { // Wait a little bit before retrying background compaction in // case this is an environmental problem and we do not want to // chew up resources for failed compactions for the duration of // the problem. bg_fg_cv_.SignalAll(); // In case a waiter can proceed despite the error Log(options_.info_log, "Waiting after memtable compaction error: %s", s.ToString().c_str()); mutex_.Unlock(); env_->SleepForMicroseconds(1000000); mutex_.Lock(); } assert(config::kL0_SlowdownWritesTrigger > 0); if (versions_->NumLevelFiles(0) >= config::kL0_SlowdownWritesTrigger - 1) { bg_optimistic_trip_ = true; bg_optimistic_cv_.Signal(); } } Log(options_.info_log, "cleaning up CompactMemTableThread"); num_bg_threads_ -= 1; bg_fg_cv_.SignalAll(); } void DBImpl::CompactRange(const Slice* begin, const Slice* end) { int max_level_with_files = 1; { MutexLock l(&mutex_); Version* base = versions_->current(); for (int level = 1; level < config::kNumLevels; level++) { if (base->OverlapInLevel(level, begin, end)) { max_level_with_files = level; } } } TEST_CompactMemTable(); // TODO(sanjay): Skip if memtable does not overlap for (int level = 0; level < max_level_with_files; level++) { TEST_CompactRange(level, begin, end); } } void DBImpl::TEST_CompactRange(int level, const Slice* begin,const Slice* end) { assert(level >= 0); assert(level + 1 < config::kNumLevels); InternalKey begin_storage, end_storage; ManualCompaction manual; manual.level = level; manual.done = false; if (begin == NULL) { manual.begin = NULL; } else { begin_storage = InternalKey(*begin, kMaxSequenceNumber, kValueTypeForSeek); manual.begin = &begin_storage; } if (end == NULL) { manual.end = NULL; } else { end_storage = InternalKey(*end, 0, static_cast(0)); manual.end = &end_storage; } MutexLock l(&mutex_); while (!manual.done) { while (manual_compaction_ != NULL) { bg_fg_cv_.Wait(); } manual_compaction_ = &manual; bg_compaction_cv_.Signal(); bg_memtable_cv_.Signal(); while (manual_compaction_ == &manual) { bg_fg_cv_.Wait(); } } } Status DBImpl::TEST_CompactMemTable() { // NULL batch means just wait for earlier writes to be done Status s = Write(WriteOptions(), NULL); if (s.ok()) { // Wait until the compaction completes MutexLock l(&mutex_); while (imm_ != NULL && bg_error_.ok()) { bg_fg_cv_.Wait(); } if (imm_ != NULL) { s = bg_error_; } } return s; } void DBImpl::CompactLevelThread() { MutexLock l(&mutex_); while (!shutting_down_.Acquire_Load() && !allow_background_activity_) { bg_compaction_cv_.Wait(); } while (!shutting_down_.Acquire_Load()) { while (!shutting_down_.Acquire_Load() && manual_compaction_ == NULL && !versions_->NeedsCompaction(levels_locked_, straight_reads_ > kStraightReads)) { bg_compaction_cv_.Wait(); } if (shutting_down_.Acquire_Load()) { break; } assert(manual_compaction_ == NULL || num_bg_threads_ == 3); Status s = BackgroundCompaction(); bg_fg_cv_.SignalAll(); // before the backoff In case a waiter // can proceed despite the error if (s.ok()) { // Success consecutive_compaction_errors_ = 0; } else if (shutting_down_.Acquire_Load()) { // Error most likely due to shutdown; do not wait } else { // Wait a little bit before retrying background compaction in // case this is an environmental problem and we do not want to // chew up resources for failed compactions for the duration of // the problem. Log(options_.info_log, "Waiting after background compaction error: %s", s.ToString().c_str()); mutex_.Unlock(); ++consecutive_compaction_errors_; int seconds_to_sleep = 1; for (int i = 0; i < 3 && i < consecutive_compaction_errors_ - 1; ++i) { seconds_to_sleep *= 2; } env_->SleepForMicroseconds(seconds_to_sleep * 1000000); mutex_.Lock(); } } Log(options_.info_log, "cleaning up CompactLevelThread"); num_bg_threads_ -= 1; bg_fg_cv_.SignalAll(); } Status DBImpl::BackgroundCompaction() { mutex_.AssertHeld(); Compaction* c = NULL; bool is_manual = (manual_compaction_ != NULL); InternalKey manual_end; if (is_manual) { ManualCompaction* m = manual_compaction_; c = versions_->CompactRange(m->level, m->begin, m->end); m->done = (c == NULL); if (c != NULL) { manual_end = c->input(0, c->num_input_files(0) - 1)->largest; } Log(options_.info_log, "Manual compaction at level-%d from %s .. %s; will stop at %s\n", m->level, (m->begin ? m->begin->DebugString().c_str() : "(begin)"), (m->end ? m->end->DebugString().c_str() : "(end)"), (m->done ? "(end)" : manual_end.DebugString().c_str())); } else { int level = versions_->PickCompactionLevel(levels_locked_, straight_reads_ > kStraightReads); if (level != config::kNumLevels) { c = versions_->PickCompaction(versions_->current(), level); } if (c) { assert(!levels_locked_[c->level() + 0]); assert(!levels_locked_[c->level() + 1]); levels_locked_[c->level() + 0] = true; levels_locked_[c->level() + 1] = true; } } Status status; if (c == NULL) { // Nothing to do } else if (!is_manual && c->IsTrivialMove() && c->level() > 0) { // Move file to next level for (size_t i = 0; i < c->num_input_files(0); ++i) { FileMetaData* f = c->input(0, i); c->edit()->DeleteFile(c->level(), f->number); c->edit()->AddFile(c->level() + 1, f->number, f->file_size, f->smallest, f->largest); } status = versions_->LogAndApply(c->edit(), &mutex_, &bg_log_cv_, &bg_log_occupied_); VersionSet::LevelSummaryStorage tmp; for (size_t i = 0; i < c->num_input_files(0); ++i) { FileMetaData* f = c->input(0, i); Log(options_.info_log, "Moved #%lld to level-%d %lld bytes %s: %s\n", static_cast(f->number), c->level() + 1, static_cast(f->file_size), status.ToString().c_str(), versions_->LevelSummary(&tmp)); } } else { CompactionState* compact = new CompactionState(c); status = DoCompactionWork(compact); CleanupCompaction(compact); c->ReleaseInputs(); DeleteObsoleteFiles(); } if (c) { levels_locked_[c->level() + 0] = false; levels_locked_[c->level() + 1] = false; delete c; } if (status.ok()) { // Done } else if (shutting_down_.Acquire_Load()) { // Ignore compaction errors found during shutting down } else { Log(options_.info_log, "Compaction error: %s", status.ToString().c_str()); if (options_.paranoid_checks && bg_error_.ok()) { bg_error_ = status; } } if (is_manual) { ManualCompaction* m = manual_compaction_; if (!status.ok()) { m->done = true; } if (!m->done) { // We only compacted part of the requested range. Update *m // to the range that is left to be compacted. m->tmp_storage = manual_end; m->begin = &m->tmp_storage; } manual_compaction_ = NULL; } return status; } void DBImpl::CompactOptimisticThread() { MutexLock l(&mutex_); while (!shutting_down_.Acquire_Load() && !allow_background_activity_) { bg_optimistic_cv_.Wait(); } while (!shutting_down_.Acquire_Load()) { while (!shutting_down_.Acquire_Load() && !bg_optimistic_trip_) { bg_optimistic_cv_.Wait(); } if (shutting_down_.Acquire_Load()) { break; } bg_optimistic_trip_ = false; Status s = OptimisticCompaction(); if (!shutting_down_.Acquire_Load() && !s.ok()) { // Wait a little bit before retrying background compaction in // case this is an environmental problem and we do not want to // chew up resources for failed compactions for the duration of // the problem. Log(options_.info_log, "Waiting after optimistic compaction error: %s", s.ToString().c_str()); mutex_.Unlock(); env_->SleepForMicroseconds(1000000); mutex_.Lock(); } } Log(options_.info_log, "cleaning up OptimisticCompactThread"); num_bg_threads_ -= 1; bg_fg_cv_.SignalAll(); } Status DBImpl::OptimisticCompaction() { mutex_.AssertHeld(); Log(options_.info_log, "Optimistic compaction started"); bool did_compaction = true; uint64_t iters = 0; while (did_compaction) { ++iters; did_compaction = false; Compaction* c = NULL; for (size_t level = 1; level + 1 < config::kNumLevels; ++level) { if (levels_locked_[level] || levels_locked_[level + 1]) { continue; } Compaction* tmp = versions_->PickCompaction(versions_->current(), level); if (tmp && tmp->IsTrivialMove()) { if (c) { delete c; } c = tmp; break; } else if (c && tmp && c->ratio() < tmp->ratio()) { delete c; c = tmp; } else if (!c) { c = tmp; } else { delete tmp; } } if (!c) { continue; } if (!c->IsTrivialMove() && c->ratio() < .90) { delete c; continue; } assert(!levels_locked_[c->level() + 0]); assert(!levels_locked_[c->level() + 1]); levels_locked_[c->level() + 0] = true; levels_locked_[c->level() + 1] = true; did_compaction = true; Status status; if (c->IsTrivialMove() && c->level() > 0) { // Move file to next level for (size_t i = 0; i < c->num_input_files(0); ++i) { FileMetaData* f = c->input(0, i); c->edit()->DeleteFile(c->level(), f->number); c->edit()->AddFile(c->level() + 1, f->number, f->file_size, f->smallest, f->largest); } status = versions_->LogAndApply(c->edit(), &mutex_, &bg_log_cv_, &bg_log_occupied_); VersionSet::LevelSummaryStorage tmp; for (size_t i = 0; i < c->num_input_files(0); ++i) { FileMetaData* f = c->input(0, i); Log(options_.info_log, "Moved #%lld to level-%d %lld bytes %s: %s\n", static_cast(f->number), c->level() + 1, static_cast(f->file_size), status.ToString().c_str(), versions_->LevelSummary(&tmp)); } } else { CompactionState* compact = new CompactionState(c); status = DoCompactionWork(compact); CleanupCompaction(compact); c->ReleaseInputs(); DeleteObsoleteFiles(); } levels_locked_[c->level() + 0] = false; levels_locked_[c->level() + 1] = false; delete c; if (status.ok()) { // Done } else if (shutting_down_.Acquire_Load()) { // Ignore compaction errors found during shutting down break; } else { Log(options_.info_log, "Compaction error: %s", status.ToString().c_str()); if (options_.paranoid_checks && bg_error_.ok()) { bg_error_ = status; } break; } } Log(options_.info_log, "Optimistic compaction ended after %ld iterations", iters); return Status::OK(); } void DBImpl::CleanupCompaction(CompactionState* compact) { mutex_.AssertHeld(); if (compact->builder != NULL) { // May happen if we get a shutdown call in the middle of compaction compact->builder->Abandon(); delete compact->builder; } else { assert(compact->outfile == NULL); } delete compact->outfile; for (size_t i = 0; i < compact->outputs.size(); i++) { const CompactionState::Output& out = compact->outputs[i]; pending_outputs_.erase(out.number); } delete compact; } Status DBImpl::OpenCompactionOutputFile(CompactionState* compact) { assert(compact != NULL); assert(compact->builder == NULL); uint64_t file_number; { mutex_.Lock(); file_number = versions_->NewFileNumber(); pending_outputs_.insert(file_number); CompactionState::Output out; out.number = file_number; out.smallest.Clear(); out.largest.Clear(); compact->outputs.push_back(out); mutex_.Unlock(); } // Make the output file std::string fname = TableFileName(dbname_, file_number); Status s = env_->NewWritableFile(fname, &compact->outfile); if (s.ok()) { compact->builder = new TableBuilder(options_, compact->outfile); } return s; } Status DBImpl::FinishCompactionOutputFile(CompactionState* compact, Iterator* input) { assert(compact != NULL); assert(compact->outfile != NULL); assert(compact->builder != NULL); const uint64_t output_number = compact->current_output()->number; assert(output_number != 0); // Check for iterator errors Status s = input->status(); const uint64_t current_entries = compact->builder->NumEntries(); if (s.ok()) { s = compact->builder->Finish(); } else { compact->builder->Abandon(); } const uint64_t current_bytes = compact->builder->FileSize(); compact->current_output()->file_size = current_bytes; compact->total_bytes += current_bytes; delete compact->builder; compact->builder = NULL; // Finish and check for file errors if (s.ok()) { s = compact->outfile->Sync(); } if (s.ok()) { s = compact->outfile->Close(); } delete compact->outfile; compact->outfile = NULL; if (s.ok() && current_entries > 0) { // Verify that the table is usable Iterator* iter = table_cache_->NewIterator(ReadOptions(), output_number, current_bytes); s = iter->status(); delete iter; if (s.ok()) { Log(options_.info_log, "Generated table #%llu: %lld keys, %lld bytes", (unsigned long long) output_number, (unsigned long long) current_entries, (unsigned long long) current_bytes); } } return s; } Status DBImpl::InstallCompactionResults(CompactionState* compact) { mutex_.AssertHeld(); Log(options_.info_log, "Compacted %d@%d + %d@%d files => %lld bytes", compact->compaction->num_input_files(0), compact->compaction->level(), compact->compaction->num_input_files(1), compact->compaction->level() + 1, static_cast(compact->total_bytes)); // Add compaction outputs compact->compaction->AddInputDeletions(compact->compaction->edit()); const int level = compact->compaction->level(); for (size_t i = 0; i < compact->outputs.size(); i++) { const CompactionState::Output& out = compact->outputs[i]; compact->compaction->edit()->AddFile( level + 1, out.number, out.file_size, out.smallest, out.largest); } return versions_->LogAndApply(compact->compaction->edit(), &mutex_, &bg_log_cv_, &bg_log_occupied_); } Status DBImpl::DoCompactionWork(CompactionState* compact) { const uint64_t start_micros = env_->NowMicros(); int64_t imm_micros = 0; // Micros spent doing imm_ compactions Log(options_.info_log, "Compacting %d@%d + %d@%d files", compact->compaction->num_input_files(0), compact->compaction->level(), compact->compaction->num_input_files(1), compact->compaction->level() + 1); assert(versions_->NumLevelFiles(compact->compaction->level()) > 0); assert(compact->builder == NULL); assert(compact->outfile == NULL); if (snapshots_.empty()) { compact->smallest_snapshot = versions_->LastSequence(); } else { compact->smallest_snapshot = snapshots_.oldest()->number_; } // Release mutex while we're actually doing the compaction work mutex_.Unlock(); Iterator* input = versions_->MakeInputIterator(compact->compaction); input->SeekToFirst(); Status status; ParsedInternalKey ikey; std::string current_user_key; bool has_current_user_key = false; SequenceNumber last_sequence_for_key = kMaxSequenceNumber; uint64_t i = 0; for (; input->Valid() && !shutting_down_.Acquire_Load(); ) { Slice key = input->key(); // Handle key/value, add to state, etc. bool drop = false; if (!ParseInternalKey(key, &ikey)) { // Do not hide error keys current_user_key.clear(); has_current_user_key = false; last_sequence_for_key = kMaxSequenceNumber; } else { if (!has_current_user_key || user_comparator()->Compare(ikey.user_key, Slice(current_user_key)) != 0) { // First occurrence of this user key current_user_key.assign(ikey.user_key.data(), ikey.user_key.size()); has_current_user_key = true; last_sequence_for_key = kMaxSequenceNumber; } // Just remember that last_sequence_for_key is decreasing over time, and // all of this makes sense. if (last_sequence_for_key <= compact->smallest_snapshot) { // Hidden by an newer entry for same user key drop = true; // (A) } else if (ikey.type == kTypeDeletion && ikey.sequence <= compact->smallest_snapshot && compact->compaction->IsBaseLevelForKey(ikey.user_key)) { // For this user key: // (1) there is no data in higher levels // (2) data in lower levels will have larger sequence numbers // (3) data in layers that are being compacted here and have // smaller sequence numbers will be dropped in the next // few iterations of this loop (by rule (A) above). // Therefore this deletion marker is obsolete and can be dropped. drop = true; } // If we're going to drop this key, and there was no previous version of // this key, and it was written at or after the garbage cutoff, we keep // it. if (drop && last_sequence_for_key == kMaxSequenceNumber && ikey.sequence >= manual_garbage_cutoff_) { drop = false; } last_sequence_for_key = ikey.sequence; } if (!drop) { // Open output file if necessary if (compact->builder == NULL) { status = OpenCompactionOutputFile(compact); if (!status.ok()) { break; } } if (compact->builder->NumEntries() == 0) { compact->current_output()->smallest.DecodeFrom(key); } compact->current_output()->largest.DecodeFrom(key); compact->builder->Add(key, input->value()); // Close output file if it is big enough if (compact->builder->FileSize() >= compact->compaction->MaxOutputFileSize()) { status = FinishCompactionOutputFile(compact, input); if (!status.ok()) { break; } } } input->Next(); } if (status.ok() && shutting_down_.Acquire_Load()) { status = Status::IOError("Deleting DB during compaction"); } if (status.ok() && compact->builder != NULL) { status = FinishCompactionOutputFile(compact, input); } if (status.ok()) { status = input->status(); } delete input; input = NULL; CompactionStats stats; stats.micros = env_->NowMicros() - start_micros - imm_micros; for (int which = 0; which < 2; which++) { for (int i = 0; i < compact->compaction->num_input_files(which); i++) { stats.bytes_read += compact->compaction->input(which, i)->file_size; } } for (size_t i = 0; i < compact->outputs.size(); i++) { stats.bytes_written += compact->outputs[i].file_size; } mutex_.Lock(); stats_[compact->compaction->level() + 1].Add(stats); if (status.ok()) { status = InstallCompactionResults(compact); } VersionSet::LevelSummaryStorage tmp; Log(options_.info_log, "compacted to: %s", versions_->LevelSummary(&tmp)); return status; } namespace { struct IterState { port::Mutex* mu; Version* version; MemTable* mem; MemTable* imm; }; static void CleanupIteratorState(void* arg1, void* arg2) { IterState* state = reinterpret_cast(arg1); state->mu->Lock(); state->mem->Unref(); if (state->imm != NULL) state->imm->Unref(); state->version->Unref(); state->mu->Unlock(); delete state; } } // namespace Iterator* DBImpl::NewInternalIterator(const ReadOptions& options, uint64_t number, SequenceNumber* latest_snapshot, uint32_t* seed, bool external_sync) { IterState* cleanup = new IterState; if (!external_sync) { mutex_.Lock(); } ++straight_reads_; *latest_snapshot = versions_->LastSequence(); // Collect together all needed child iterators std::vector list; list.push_back(mem_->NewIterator()); mem_->Ref(); if (imm_ != NULL) { list.push_back(imm_->NewIterator()); imm_->Ref(); } versions_->current()->AddSomeIterators(options, number, &list); Iterator* internal_iter = NewMergingIterator(&internal_comparator_, &list[0], list.size()); versions_->current()->Ref(); cleanup->mu = &mutex_; cleanup->mem = mem_; cleanup->imm = imm_; cleanup->version = versions_->current(); internal_iter->RegisterCleanup(CleanupIteratorState, cleanup, NULL); *seed = ++seed_; if (!external_sync) { mutex_.Unlock(); } return internal_iter; } Iterator* DBImpl::TEST_NewInternalIterator() { SequenceNumber ignored; uint32_t ignored_seed; return NewInternalIterator(ReadOptions(), 0, &ignored, &ignored_seed, false); } int64_t DBImpl::TEST_MaxNextLevelOverlappingBytes() { MutexLock l(&mutex_); return versions_->MaxNextLevelOverlappingBytes(); } Status DBImpl::Get(const ReadOptions& options, const Slice& key, std::string* value) { Status s; MutexLock l(&mutex_); SequenceNumber snapshot; if (options.snapshot != NULL) { snapshot = reinterpret_cast(options.snapshot)->number_; } else { snapshot = versions_->LastSequence(); } MemTable* mem = mem_; MemTable* imm = imm_; Version* current = versions_->current(); mem->Ref(); if (imm != NULL) imm->Ref(); current->Ref(); bool have_stat_update = false; Version::GetStats stats; // Unlock while reading from files and memtables { mutex_.Unlock(); // First look in the memtable, then in the immutable memtable (if any). LookupKey lkey(key, snapshot); if (mem->Get(lkey, value, &s)) { // Done } else if (imm != NULL && imm->Get(lkey, value, &s)) { // Done } else { s = current->Get(options, lkey, value, &stats); have_stat_update = true; } mutex_.Lock(); } if (have_stat_update && current->UpdateStats(stats)) { bg_compaction_cv_.Signal(); } ++straight_reads_; mem->Unref(); if (imm != NULL) imm->Unref(); current->Unref(); return s; } Iterator* DBImpl::NewIterator(const ReadOptions& options) { SequenceNumber latest_snapshot; uint32_t seed; Iterator* iter = NewInternalIterator(options, 0, &latest_snapshot, &seed, false); return NewDBIterator( this, user_comparator(), iter, (options.snapshot != NULL ? reinterpret_cast(options.snapshot)->number_ : latest_snapshot), seed); } void DBImpl::GetReplayTimestamp(std::string* timestamp) { uint64_t file = 0; uint64_t seqno = 0; { MutexLock l(&mutex_); file = versions_->NewFileNumber(); versions_->ReuseFileNumber(file); seqno = versions_->LastSequence(); } timestamp->clear(); PutVarint64(timestamp, file); PutVarint64(timestamp, seqno); } void DBImpl::AllowGarbageCollectBeforeTimestamp(const std::string& timestamp) { Slice ts_slice(timestamp); uint64_t file = 0; uint64_t seqno = 0; if (timestamp == "all") { // keep zeroes } else if (timestamp == "now") { MutexLock l(&mutex_); seqno = versions_->LastSequence(); if (manual_garbage_cutoff_ < seqno) { manual_garbage_cutoff_ = seqno; } } else if (GetVarint64(&ts_slice, &file) && GetVarint64(&ts_slice, &seqno)) { MutexLock l(&mutex_); if (manual_garbage_cutoff_ < seqno) { manual_garbage_cutoff_ = seqno; } } } bool DBImpl::ValidateTimestamp(const std::string& ts) { uint64_t file = 0; uint64_t seqno = 0; Slice ts_slice(ts); return ts == "all" || ts == "now" || (GetVarint64(&ts_slice, &file) && GetVarint64(&ts_slice, &seqno)); } int DBImpl::CompareTimestamps(const std::string& lhs, const std::string& rhs) { uint64_t now = 0; uint64_t lhs_seqno = 0; uint64_t rhs_seqno = 0; uint64_t tmp; if (lhs == "now" || rhs == "now") { MutexLock l(&mutex_); now = versions_->LastSequence(); } if (lhs == "all") { lhs_seqno = 0; } else if (lhs == "now") { lhs_seqno = now; } else { Slice lhs_slice(lhs); GetVarint64(&lhs_slice, &tmp); GetVarint64(&lhs_slice, &lhs_seqno); } if (rhs == "all") { rhs_seqno = 0; } else if (rhs == "now") { rhs_seqno = now; } else { Slice rhs_slice(rhs); GetVarint64(&rhs_slice, &tmp); GetVarint64(&rhs_slice, &rhs_seqno); } if (lhs_seqno < rhs_seqno) { return -1; } else if (lhs_seqno > rhs_seqno) { return 1; } else { return 0; } } Status DBImpl::GetReplayIterator(const std::string& timestamp, ReplayIterator** iter) { *iter = NULL; Slice ts_slice(timestamp); uint64_t file = 0; uint64_t seqno = 0; if (timestamp == "all") { seqno = 0; } else if (timestamp == "now") { MutexLock l(&mutex_); file = versions_->NewFileNumber(); versions_->ReuseFileNumber(file); seqno = versions_->LastSequence(); } else if (!GetVarint64(&ts_slice, &file) || !GetVarint64(&ts_slice, &seqno)) { return Status::InvalidArgument("Timestamp is not valid"); } ReadOptions options; SequenceNumber latest_snapshot; uint32_t seed; MutexLock l(&mutex_); Iterator* internal_iter = NewInternalIterator(options, file, &latest_snapshot, &seed, true); internal_iter->SeekToFirst(); ReplayIteratorImpl* iterimpl; iterimpl = new ReplayIteratorImpl( this, &mutex_, user_comparator(), internal_iter, mem_, SequenceNumber(seqno)); *iter = iterimpl; replay_iters_.push_back(iterimpl); return Status::OK(); } void DBImpl::ReleaseReplayIterator(ReplayIterator* _iter) { MutexLock l(&mutex_); ReplayIteratorImpl* iter = reinterpret_cast(_iter); for (std::list::iterator it = replay_iters_.begin(); it != replay_iters_.end(); ++it) { if (*it == iter) { iter->cleanup(); // calls delete replay_iters_.erase(it); return; } } } void DBImpl::RecordReadSample(Slice key) { MutexLock l(&mutex_); ++straight_reads_; if (versions_->current()->RecordReadSample(key)) { bg_compaction_cv_.Signal(); } } SequenceNumber DBImpl::LastSequence() { MutexLock l(&mutex_); return versions_->LastSequence(); } const Snapshot* DBImpl::GetSnapshot() { MutexLock l(&mutex_); return snapshots_.New(versions_->LastSequence()); } void DBImpl::ReleaseSnapshot(const Snapshot* s) { MutexLock l(&mutex_); snapshots_.Delete(reinterpret_cast(s)); } // Convenience methods Status DBImpl::Put(const WriteOptions& o, const Slice& key, const Slice& val) { return DB::Put(o, key, val); } Status DBImpl::Delete(const WriteOptions& options, const Slice& key) { return DB::Delete(options, key); } // Information kept for every waiting writer struct DBImpl::Writer { port::Mutex mtx; port::CondVar cv; bool linked; Writer* next; uint64_t start_sequence; uint64_t end_sequence; std::tr1::shared_ptr logfile; std::tr1::shared_ptr log; MemTable* mem; std::tr1::shared_ptr old_logfile; std::tr1::shared_ptr old_log; explicit Writer() : mtx(), cv(&mtx), linked(false), next(NULL), start_sequence(0), end_sequence(0), logfile(), log(), mem(NULL), old_logfile(), old_log() { } ~Writer() throw () { } }; Status DBImpl::Write(const WriteOptions& options, WriteBatch* updates) { Writer w; Status s; s = SequenceWriteBegin(&w, updates); if (s.ok() && updates != NULL) { // NULL batch is for compactions WriteBatchInternal::SetSequence(updates, w.start_sequence); // Add to log and apply to memtable. We do this without holding the lock // because both the log and the memtable are safe for concurrent access. // The synchronization with readers occurs with SequenceWriteEnd. s = w.log->AddRecord(WriteBatchInternal::Contents(updates)); if (s.ok()) { s = WriteBatchInternal::InsertInto(updates, w.mem); } } if (s.ok() && options.sync) { s = w.logfile->Sync(); } SequenceWriteEnd(&w); return s; } Status DBImpl::SequenceWriteBegin(Writer* w, WriteBatch* updates) { Status s; MutexLock l(&mutex_); straight_reads_ = 0; bool force = updates == NULL; bool allow_delay = !force; bool enqueue_mem = false; w->old_log.reset(); w->old_logfile.reset(); while (true) { if (!bg_error_.ok()) { // Yield previous error s = bg_error_; break; } else if (!force && (mem_->ApproximateMemoryUsage() <= options_.write_buffer_size)) { // There is room in current memtable // Note that this is a sloppy check. We can overfill a memtable by the // amount of concurrently written data. break; } else if (imm_ != NULL) { // We have filled up the current memtable, but the previous // one is still being compacted, so we wait. bg_compaction_cv_.Signal(); bg_memtable_cv_.Signal(); bg_fg_cv_.Wait(); } else { // Attempt to switch to a new memtable and trigger compaction of old assert(versions_->PrevLogNumber() == 0); uint64_t new_log_number = versions_->NewFileNumber(); WritableFile* lfile = NULL; s = env_->NewWritableFile(LogFileName(dbname_, new_log_number), &lfile); if (!s.ok()) { // Avoid chewing through file number space in a tight loop. versions_->ReuseFileNumber(new_log_number); break; } w->old_log = log_; w->old_logfile = logfile_; logfile_.reset(lfile); logfile_number_ = new_log_number; log_.reset(new log::Writer(lfile)); imm_ = mem_; has_imm_.Release_Store(imm_); mem_ = new MemTable(internal_comparator_); mem_->Ref(); force = false; // Do not force another compaction if have room enqueue_mem = true; break; } } if (s.ok()) { w->linked = true; w->next = NULL; uint64_t diff = updates ? WriteBatchInternal::Count(updates) : 0; uint64_t ticket = __sync_add_and_fetch(&writers_upper_, 1 + diff); w->start_sequence = ticket - diff; w->end_sequence = ticket; w->logfile = logfile_; w->log = log_; w->mem = mem_; w->mem->Ref(); } if (enqueue_mem) { for (std::list::iterator it = replay_iters_.begin(); it != replay_iters_.end(); ++it) { (*it)->enqueue(mem_, w->start_sequence); } } return s; } void DBImpl::SequenceWriteEnd(Writer* w) { if (!w->linked) { return; } // wait until we are next while (__sync_fetch_and_add(&writers_lower_, 0) < w->start_sequence) ; // swizzle state to make ours visible { MutexLock l(&mutex_); versions_->SetLastSequence(w->end_sequence); } // signal the next writer __sync_fetch_and_add(&writers_lower_, 1 + w->end_sequence - w->start_sequence); // must do in order: log, logfile if (w->old_log) { assert(w->old_logfile); w->old_log.reset(); w->old_logfile.reset(); bg_memtable_cv_.Signal(); } // safe because Unref is synchronized internally if (w->mem) { w->mem->Unref(); } } bool DBImpl::GetProperty(const Slice& property, std::string* value) { value->clear(); MutexLock l(&mutex_); Slice in = property; Slice prefix("leveldb."); if (!in.starts_with(prefix)) return false; in.remove_prefix(prefix.size()); if (in.starts_with("num-files-at-level")) { in.remove_prefix(strlen("num-files-at-level")); uint64_t level; bool ok = ConsumeDecimalNumber(&in, &level) && in.empty(); if (!ok || level >= config::kNumLevels) { return false; } else { char buf[100]; snprintf(buf, sizeof(buf), "%d", versions_->NumLevelFiles(static_cast(level))); *value = buf; return true; } } else if (in == "stats") { char buf[200]; snprintf(buf, sizeof(buf), " Compactions\n" "Level Files Size(MB) Time(sec) Read(MB) Write(MB)\n" "--------------------------------------------------\n" ); value->append(buf); for (int level = 0; level < config::kNumLevels; level++) { int files = versions_->NumLevelFiles(level); if (stats_[level].micros > 0 || files > 0) { snprintf( buf, sizeof(buf), "%3d %8d %8.0f %9.0f %8.0f %9.0f\n", level, files, versions_->NumLevelBytes(level) / 1048576.0, stats_[level].micros / 1e6, stats_[level].bytes_read / 1048576.0, stats_[level].bytes_written / 1048576.0); value->append(buf); } } return true; } else if (in == "sstables") { *value = versions_->current()->DebugString(); return true; } return false; } void DBImpl::GetApproximateSizes( const Range* range, int n, uint64_t* sizes) { // TODO(opt): better implementation Version* v; { MutexLock l(&mutex_); versions_->current()->Ref(); v = versions_->current(); } for (int i = 0; i < n; i++) { // Convert user_key into a corresponding internal key. InternalKey k1(range[i].start, kMaxSequenceNumber, kValueTypeForSeek); InternalKey k2(range[i].limit, kMaxSequenceNumber, kValueTypeForSeek); uint64_t start = versions_->ApproximateOffsetOf(v, k1); uint64_t limit = versions_->ApproximateOffsetOf(v, k2); sizes[i] = (limit >= start ? limit - start : 0); } { MutexLock l(&mutex_); v->Unref(); } } Status DBImpl::LiveBackup(const Slice& _name) { Slice name = _name; size_t name_sz = 0; for (; name_sz < name.size() && name.data()[name_sz] != '\0'; ++name_sz) ; name = Slice(name.data(), name_sz); std::set live; uint64_t ticket = __sync_add_and_fetch(&writers_upper_, 1); while (__sync_fetch_and_add(&writers_lower_, 0) < ticket) ; { MutexLock l(&mutex_); versions_->SetLastSequence(ticket); while (backup_in_progress_.Acquire_Load() != NULL) { backup_cv_.Wait(); } backup_in_progress_.Release_Store(this); while (bg_log_occupied_) { bg_log_cv_.Wait(); } bg_log_occupied_ = true; // note that this logic assumes that DeleteObsoleteFiles never releases // mutex_, so that once we release at this brace, we'll guarantee that it // will see backup_in_progress_. If you change DeleteObsoleteFiles to // release mutex_, you'll need to add some sort of synchronization in place // of this text block. versions_->AddLiveFiles(&live); __sync_fetch_and_add(&writers_lower_, 1); } Status s; std::vector filenames; s = env_->GetChildren(dbname_, &filenames); std::string backup_dir = dbname_ + "/backup-" + name.ToString() + "/"; if (s.ok()) { s = env_->CreateDir(backup_dir); } uint64_t number; FileType type; for (size_t i = 0; i < filenames.size(); i++) { if (!s.ok()) { continue; } if (ParseFileName(filenames[i], &number, &type)) { std::string src = dbname_ + "/" + filenames[i]; std::string target = backup_dir + "/" + filenames[i]; switch (type) { case kLogFile: case kDescriptorFile: case kCurrentFile: case kInfoLogFile: s = env_->CopyFile(src, target); break; case kTableFile: // If it's a file referenced by a version, we have logged that version // and applied it. Our MANIFEST will reflect that, and the file // number assigned to new files will be greater or equal, ensuring // that they aren't overwritten. Any file not in "live" either exists // past the current manifest (output of ongoing compaction) or so far // in the past we don't care (we're going to delete it at the end of // this backup). I'd rather play safe than sorry. // // Under no circumstances should you collapse this to a single // LinkFile without the conditional as it has implications for backups // that share hardlinks. Opening an older backup that has files // hardlinked with newer backups will overwrite "immutable" files in // the newer backups because they aren't in our manifest, and we do an // open/write rather than a creat/rename. We avoid linking these // files. if (live.find(number) != live.end()) { s = env_->LinkFile(src, target); } break; case kTempFile: case kDBLockFile: break; } } } { MutexLock l(&mutex_); backup_in_progress_.Release_Store(NULL); if (s.ok() && backup_deferred_delete_) { DeleteObsoleteFiles(); } backup_deferred_delete_ = false; bg_log_occupied_ = false; bg_log_cv_.Signal(); backup_cv_.Signal(); } return s; } // Default implementations of convenience methods that subclasses of DB // can call if they wish Status DB::Put(const WriteOptions& opt, const Slice& key, const Slice& value) { WriteBatch batch; batch.Put(key, value); return Write(opt, &batch); } Status DB::Delete(const WriteOptions& opt, const Slice& key) { WriteBatch batch; batch.Delete(key); return Write(opt, &batch); } DB::~DB() { } Status DB::Open(const Options& options, const std::string& dbname, DB** dbptr) { *dbptr = NULL; DBImpl* impl = new DBImpl(options, dbname); impl->mutex_.Lock(); VersionEdit edit; Status s = impl->Recover(&edit); // Handles create_if_missing, error_if_exists if (s.ok()) { uint64_t new_log_number = impl->versions_->NewFileNumber(); WritableFile* lfile; s = options.env->NewWritableFile(LogFileName(dbname, new_log_number), &lfile); if (s.ok()) { edit.SetLogNumber(new_log_number); impl->logfile_.reset(lfile); impl->logfile_number_ = new_log_number; impl->log_.reset(new log::Writer(lfile)); s = impl->versions_->LogAndApply(&edit, &impl->mutex_, &impl->bg_log_cv_, &impl->bg_log_occupied_); } if (s.ok()) { impl->DeleteObsoleteFiles(); impl->bg_optimistic_cv_.Signal(); impl->bg_compaction_cv_.Signal(); impl->bg_memtable_cv_.Signal(); } } impl->pending_outputs_.clear(); impl->allow_background_activity_ = true; impl->bg_optimistic_cv_.SignalAll(); impl->bg_compaction_cv_.SignalAll(); impl->bg_memtable_cv_.SignalAll(); impl->mutex_.Unlock(); if (s.ok()) { *dbptr = impl; } else { delete impl; } impl->writers_upper_ = impl->versions_->LastSequence(); impl->writers_lower_ = impl->writers_upper_ + 1; return s; } Snapshot::~Snapshot() { } Status DestroyDB(const std::string& dbname, const Options& options) { Env* env = options.env; std::vector filenames; // Ignore error in case directory does not exist env->GetChildren(dbname, &filenames); if (filenames.empty()) { return Status::OK(); } FileLock* lock; const std::string lockname = LockFileName(dbname); Status result = env->LockFile(lockname, &lock); if (result.ok()) { uint64_t number; FileType type; for (size_t i = 0; i < filenames.size(); i++) { if (ParseFileName(filenames[i], &number, &type) && type != kDBLockFile) { // Lock file will be deleted at end Status del = env->DeleteFile(dbname + "/" + filenames[i]); if (result.ok() && !del.ok()) { result = del; } } } env->UnlockFile(lock); // Ignore error since state is already gone env->DeleteFile(lockname); env->DeleteDir(dbname); // Ignore error in case dir contains other files } return result; } } // namespace hyperleveldb