//------------------------------------------------------------------------------ /* This file is part of rippled: https://github.com/ripple/rippled Copyright (c) 2022 Ripple Labs Inc. Permission to use, copy, modify, and/or distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ //============================================================================== #include #include #include #include #include #include #include #ifdef _MSVC_LANG #include using uint128_t = boost::multiprecision::uint128_t; #else // !defined(_MSVC_LANG) using uint128_t = __uint128_t; #endif // !defined(_MSVC_LANG) namespace ripple { thread_local Number::rounding_mode Number::mode_ = Number::to_nearest; Number::rounding_mode Number::getround() { return mode_; } Number::rounding_mode Number::setround(rounding_mode mode) { return std::exchange(mode_, mode); } // Guard // The Guard class is used to tempoarily add extra digits of // preicision to an operation. This enables the final result // to be correctly rounded to the internal precision of Number. class Number::Guard { std::uint64_t digits_; // 16 decimal guard digits std::uint8_t xbit_ : 1; // has a non-zero digit been shifted off the end std::uint8_t sbit_ : 1; // the sign of the guard digits public: explicit Guard() : digits_{0}, xbit_{0}, sbit_{0} { } // set & test the sign bit void set_positive() noexcept; void set_negative() noexcept; bool is_negative() const noexcept; // add a digit void push(unsigned d) noexcept; // recover a digit unsigned pop() noexcept; // Indicate round direction: 1 is up, -1 is down, 0 is even // This enables the client to round towards nearest, and on // tie, round towards even. int round() noexcept; }; inline void Number::Guard::set_positive() noexcept { sbit_ = 0; } inline void Number::Guard::set_negative() noexcept { sbit_ = 1; } inline bool Number::Guard::is_negative() const noexcept { return sbit_ == 1; } inline void Number::Guard::push(unsigned d) noexcept { xbit_ = xbit_ || (digits_ & 0x0000'0000'0000'000F) != 0; digits_ >>= 4; digits_ |= (d & 0x0000'0000'0000'000FULL) << 60; } inline unsigned Number::Guard::pop() noexcept { unsigned d = (digits_ & 0xF000'0000'0000'0000) >> 60; digits_ <<= 4; return d; } // Returns: // -1 if Guard is less than half // 0 if Guard is exactly half // 1 if Guard is greater than half int Number::Guard::round() noexcept { auto mode = Number::getround(); switch (mode) { case to_nearest: if (digits_ > 0x5000'0000'0000'0000) return 1; if (digits_ < 0x5000'0000'0000'0000) return -1; if (xbit_) return 1; return 0; case towards_zero: return -1; case downward: if (sbit_) { if (digits_ > 0 || xbit_) return 1; } return -1; case upward: if (sbit_) return -1; if (digits_ > 0 || xbit_) return 1; return -1; } } // Number constexpr Number one{1000000000000000, -15, Number::unchecked{}}; void Number::normalize() { if (mantissa_ == 0) { *this = Number{}; return; } bool const negative = (mantissa_ < 0); if (negative) mantissa_ = -mantissa_; auto m = static_cast>(mantissa_); while ((m < minMantissa) && (exponent_ > minExponent)) { m *= 10; --exponent_; } Guard g; while (m > maxMantissa) { if (exponent_ >= maxExponent) throw std::overflow_error("Number::normalize 1"); g.push(m % 10); m /= 10; ++exponent_; } mantissa_ = m; if ((exponent_ < minExponent) || (mantissa_ < minMantissa)) { *this = Number{}; return; } auto r = g.round(); if (r == 1 || (r == 0 && (mantissa_ & 1) == 1)) { ++mantissa_; if (mantissa_ > maxMantissa) { mantissa_ /= 10; ++exponent_; } } if (exponent_ > maxExponent) throw std::overflow_error("Number::normalize 2"); if (negative) mantissa_ = -mantissa_; } Number& Number::operator+=(Number const& y) { if (y == Number{}) return *this; if (*this == Number{}) { *this = y; return *this; } if (*this == -y) { *this = Number{}; return *this; } assert(isnormal() && y.isnormal()); auto xm = mantissa(); auto xe = exponent(); int xn = 1; if (xm < 0) { xm = -xm; xn = -1; } auto ym = y.mantissa(); auto ye = y.exponent(); int yn = 1; if (ym < 0) { ym = -ym; yn = -1; } Guard g; if (xe < ye) { if (xn == -1) g.set_negative(); do { g.push(xm % 10); xm /= 10; ++xe; } while (xe < ye); } else if (xe > ye) { if (yn == -1) g.set_negative(); do { g.push(ym % 10); ym /= 10; ++ye; } while (xe > ye); } if (xn == yn) { xm += ym; if (xm > maxMantissa) { g.push(xm % 10); xm /= 10; ++xe; } auto r = g.round(); if (r == 1 || (r == 0 && (xm & 1) == 1)) { ++xm; if (xm > maxMantissa) { xm /= 10; ++xe; } } if (xe > maxExponent) throw std::overflow_error("Number::addition overflow"); } else { if (xm > ym) { xm = xm - ym; } else { xm = ym - xm; xe = ye; xn = yn; } while (xm < minMantissa) { xm *= 10; xm -= g.pop(); --xe; } auto r = g.round(); if (r == 1 || (r == 0 && (xm & 1) == 1)) { --xm; if (xm < minMantissa) { xm *= 10; --xe; } } if (xe < minExponent) { xm = 0; xe = Number{}.exponent_; } } mantissa_ = xm * xn; exponent_ = xe; return *this; } Number& Number::operator*=(Number const& y) { if (*this == Number{}) return *this; if (y == Number{}) { *this = y; return *this; } assert(isnormal() && y.isnormal()); auto xm = mantissa(); auto xe = exponent(); int xn = 1; if (xm < 0) { xm = -xm; xn = -1; } auto ym = y.mantissa(); auto ye = y.exponent(); int yn = 1; if (ym < 0) { ym = -ym; yn = -1; } auto zm = uint128_t(xm) * uint128_t(ym); auto ze = xe + ye; auto zn = xn * yn; Guard g; while (zm > maxMantissa) { g.push(static_cast(zm % 10)); zm /= 10; ++ze; } xm = static_cast(zm); xe = ze; auto r = g.round(); if (r == 1 || (r == 0 && (xm & 1) == 1)) { ++xm; if (xm > maxMantissa) { xm /= 10; ++xe; } } if (xe < minExponent) { xm = 0; xe = Number{}.exponent_; } if (xe > maxExponent) throw std::overflow_error( "Number::multiplication overflow : exponent is " + std::to_string(xe)); mantissa_ = xm * zn; exponent_ = xe; assert(isnormal() || *this == Number{}); return *this; } Number& Number::operator/=(Number const& y) { if (y == Number{}) throw std::overflow_error("Number: divide by 0"); int np = 1; auto nm = mantissa(); if (nm < 0) { nm = -nm; np = -1; } int dp = 1; auto dm = y.mantissa(); if (dm < 0) { dm = -dm; dp = -1; } // Divide numerator and denominator such that the // denominator is in the range [1, 10). const int offset = -15 - y.exponent(); Number n{nm * (np * dp), exponent() + offset}; Number d{dm, y.exponent() + offset}; // Quadratic least squares fit to 1/x in the range [1, 10] constexpr Number a0{9178756872006464, -16, unchecked{}}; constexpr Number a1{-2149215784206187, -16, unchecked{}}; constexpr Number a2{1405502114116773, -17, unchecked{}}; static_assert(a0.isnormal()); static_assert(a1.isnormal()); static_assert(a2.isnormal()); Number rm2{}; Number rm1{}; Number r = (a2 * d + a1) * d + a0; // Newton–Raphson iteration of 1/x - d with initial guess r // halt when r stops changing, checking for bouncing on the last iteration do { rm2 = rm1; rm1 = r; r = r + r * (one - d * r); } while (r != rm1 && r != rm2); *this = n * r; return *this; } Number::operator rep() const { rep drops = mantissa_; int offset = exponent_; Guard g; if (drops != 0) { if (drops < 0) { g.set_negative(); drops = -drops; } for (; offset < 0; ++offset) { g.push(drops % 10); drops /= 10; } for (; offset > 0; --offset) { if (drops > std::numeric_limits::max() / 10) throw std::overflow_error("Number::operator rep() overflow"); drops *= 10; } auto r = g.round(); if (r == 1 || (r == 0 && (drops & 1) == 1)) { ++drops; } if (g.is_negative()) drops = -drops; } return drops; } Number::operator XRPAmount() const { return XRPAmount{static_cast(*this)}; } std::string to_string(Number const& amount) { // keep full internal accuracy, but make more human friendly if possible if (amount == Number{}) return "0"; auto const exponent = amount.exponent(); auto mantissa = amount.mantissa(); // Use scientific notation for exponents that are too small or too large if (((exponent != 0) && ((exponent < -25) || (exponent > -5)))) { std::string ret = std::to_string(mantissa); ret.append(1, 'e'); ret.append(std::to_string(exponent)); return ret; } bool negative = false; if (mantissa < 0) { mantissa = -mantissa; negative = true; } assert(exponent + 43 > 0); size_t const pad_prefix = 27; size_t const pad_suffix = 23; std::string const raw_value(std::to_string(mantissa)); std::string val; val.reserve(raw_value.length() + pad_prefix + pad_suffix); val.append(pad_prefix, '0'); val.append(raw_value); val.append(pad_suffix, '0'); size_t const offset(exponent + 43); auto pre_from(val.begin()); auto const pre_to(val.begin() + offset); auto const post_from(val.begin() + offset); auto post_to(val.end()); // Crop leading zeroes. Take advantage of the fact that there's always a // fixed amount of leading zeroes and skip them. if (std::distance(pre_from, pre_to) > pad_prefix) pre_from += pad_prefix; assert(post_to >= post_from); pre_from = std::find_if(pre_from, pre_to, [](char c) { return c != '0'; }); // Crop trailing zeroes. Take advantage of the fact that there's always a // fixed amount of trailing zeroes and skip them. if (std::distance(post_from, post_to) > pad_suffix) post_to -= pad_suffix; assert(post_to >= post_from); post_to = std::find_if( std::make_reverse_iterator(post_to), std::make_reverse_iterator(post_from), [](char c) { return c != '0'; }) .base(); std::string ret; if (negative) ret.append(1, '-'); // Assemble the output: if (pre_from == pre_to) ret.append(1, '0'); else ret.append(pre_from, pre_to); if (post_to != post_from) { ret.append(1, '.'); ret.append(post_from, post_to); } return ret; } // Returns f^n // Uses a log_2(n) number of multiplications Number power(Number const& f, unsigned n) { if (n == 0) return one; if (n == 1) return f; auto r = power(f, n / 2); r *= r; if (n % 2 != 0) r *= f; return r; } // Returns f^(1/d) // Uses Newton–Raphson iterations until the result stops changing // to find the non-negative root of the polynomial g(x) = x^d - f // This function, and power(Number f, unsigned n, unsigned d) // treat corner cases such as 0 roots as advised by Annex F of // the C standard, which itself is consistent with the IEEE // floating point standards. Number root(Number f, unsigned d) { if (f == one || d == 1) return f; if (d == 0) { if (f == -one) return one; if (abs(f) < one) return Number{}; throw std::overflow_error("Number::root infinity"); } if (f < Number{} && d % 2 == 0) throw std::overflow_error("Number::root nan"); if (f == Number{}) return f; // Scale f into the range (0, 1) such that f's exponent is a multiple of d auto e = f.exponent() + 16; auto const di = static_cast(d); auto ex = [e = e, di = di]() // Euclidean remainder of e/d { int k = (e >= 0 ? e : e - (di - 1)) / di; int k2 = e - k * di; if (k2 == 0) return 0; return di - k2; }(); e += ex; f = Number{f.mantissa(), f.exponent() - e}; // f /= 10^e; bool neg = false; if (f < Number{}) { neg = true; f = -f; } // Quadratic least squares curve fit of f^(1/d) in the range [0, 1] auto const D = ((6 * di + 11) * di + 6) * di + 1; auto const a0 = 3 * di * ((2 * di - 3) * di + 1); auto const a1 = 24 * di * (2 * di - 1); auto const a2 = -30 * (di - 1) * di; Number r = ((Number{a2} * f + Number{a1}) * f + Number{a0}) / Number{D}; if (neg) { f = -f; r = -r; } // Newton–Raphson iteration of f^(1/d) with initial guess r // halt when r stops changing, checking for bouncing on the last iteration Number rm1{}; Number rm2{}; do { rm2 = rm1; rm1 = r; r = (Number(d - 1) * r + f / power(r, d - 1)) / Number(d); } while (r != rm1 && r != rm2); // return r * 10^(e/d) to reverse scaling return Number{r.mantissa(), r.exponent() + e / di}; } Number root2(Number f) { if (f == one) return f; if (f < Number{}) throw std::overflow_error("Number::root nan"); if (f == Number{}) return f; // Scale f into the range (0, 1) such that f's exponent is a multiple of d auto e = f.exponent() + 16; if (e % 2 != 0) ++e; f = Number{f.mantissa(), f.exponent() - e}; // f /= 10^e; // Quadratic least squares curve fit of f^(1/d) in the range [0, 1] auto const D = 105; auto const a0 = 18; auto const a1 = 144; auto const a2 = -60; Number r = ((Number{a2} * f + Number{a1}) * f + Number{a0}) / Number{D}; // Newton–Raphson iteration of f^(1/2) with initial guess r // halt when r stops changing, checking for bouncing on the last iteration Number rm1{}; Number rm2{}; do { rm2 = rm1; rm1 = r; r = (r + f / r) / Number(2); } while (r != rm1 && r != rm2); // return r * 10^(e/2) to reverse scaling return Number{r.mantissa(), r.exponent() + e / 2}; } // Returns f^(n/d) Number power(Number const& f, unsigned n, unsigned d) { if (f == one) return f; auto g = std::gcd(n, d); if (g == 0) throw std::overflow_error("Number::power nan"); if (d == 0) { if (f == -one) return one; if (abs(f) < one) return Number{}; // abs(f) > one throw std::overflow_error("Number::power infinity"); } if (n == 0) return one; n /= g; d /= g; if ((n % 2) == 1 && (d % 2) == 0 && f < Number{}) throw std::overflow_error("Number::power nan"); return root(power(f, n), d); } } // namespace ripple