#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include using namespace ripple; namespace hook { std::vector> getTransactionalStakeHolders(STTx const& tx, ReadView const& rv) { if (!rv.rules().enabled(featureHooks)) return {}; if (!tx.isFieldPresent(sfAccount)) return {}; std::optional destAcc = tx.at(~sfDestination); std::optional otxnAcc = tx.at(~sfAccount); if (!otxnAcc) return {}; uint16_t tt = tx.getFieldU16(sfTransactionType); std::map> tshEntries; int upto = 0; auto const ADD_TSH = [&otxnAcc, &tshEntries, &upto]( const AccountID& acc_r, bool rb) { if (acc_r != *otxnAcc) { if (tshEntries.find(acc_r) != tshEntries.end()) tshEntries[acc_r].second |= rb; else tshEntries.emplace(acc_r, std::make_pair(upto++, rb)); } }; bool const tshSTRONG = true; // tshROLLBACK bool const tshWEAK = false; // tshCOLLECT auto const getNFTOffer = [](std::optional id, ReadView const& rv) -> std::shared_ptr { if (!id || *id == beast::zero) return nullptr; return rv.read(keylet::nftoffer(*id)); }; bool const fixV1 = rv.rules().enabled(fixXahauV1); bool const fixV2 = rv.rules().enabled(fixXahauV2); switch (tt) { case ttREMIT: { if (destAcc) ADD_TSH(*destAcc, tshSTRONG); if (tx.isFieldPresent(sfInform)) { auto const inform = tx.getAccountID(sfInform); if (*otxnAcc != inform && *destAcc != inform) ADD_TSH(inform, tshWEAK); } if (tx.isFieldPresent(sfURITokenIDs)) { STVector256 tokenIds = tx.getFieldV256(sfURITokenIDs); for (uint256 const klRaw : tokenIds) { Keylet const id{ltURI_TOKEN, klRaw}; if (!rv.exists(id)) continue; auto const ut = rv.read(id); if (!ut || ut->getFieldU16(sfLedgerEntryType) != ltURI_TOKEN) continue; auto const owner = ut->getAccountID(sfOwner); auto const issuer = ut->getAccountID(sfIssuer); if (issuer != owner && issuer != *destAcc) { ADD_TSH( issuer, (ut->getFlags() & lsfBurnable) ? tshSTRONG : tshWEAK); } } } break; } case ttIMPORT: { if (tx.isFieldPresent(sfIssuer)) ADD_TSH(tx.getAccountID(sfIssuer), fixV2 ? tshWEAK : tshSTRONG); break; } case ttURITOKEN_BURN: { Keylet const id{ltURI_TOKEN, tx.getFieldH256(sfURITokenID)}; if (!rv.exists(id)) return {}; auto const ut = rv.read(id); if (!ut || ut->getFieldU16(sfLedgerEntryType) != ltURI_TOKEN) return {}; auto const owner = ut->getAccountID(sfOwner); auto const issuer = ut->getAccountID(sfIssuer); // three possible burn scenarios: // the burner is the owner and issuer of the token // the burner is the owner and not the issuer of the token // the burner is the issuer and not the owner of the token if (issuer == owner) break; // pass, already a TSH // new logic if (fixV1) { // the owner burns their token, and the issuer is a weak TSH if (*otxnAcc == owner && rv.exists(keylet::account(issuer))) ADD_TSH(issuer, tshWEAK); // the issuer burns the owner's token, and the owner is a weak // TSH else if (rv.exists(keylet::account(owner))) ADD_TSH(owner, tshWEAK); break; } // old logic { if (*otxnAcc == owner) { // the owner burns their token, and the issuer is a weak TSH ADD_TSH(issuer, tshSTRONG); } else { // the issuer burns the owner's token, and the owner is a // weak TSH ADD_TSH(owner, tshSTRONG); } } break; } case ttURITOKEN_BUY: { Keylet const id{ltURI_TOKEN, tx.getFieldH256(sfURITokenID)}; if (!rv.exists(id)) return {}; auto const ut = rv.read(id); if (!ut || ut->getFieldU16(sfLedgerEntryType) != ltURI_TOKEN) return {}; auto const owner = ut->getAccountID(sfOwner); if (owner != tx.getAccountID(sfAccount)) { // current owner is a strong TSH ADD_TSH(owner, tshSTRONG); } // issuer is also a strong TSH if the burnable flag is set auto const issuer = ut->getAccountID(sfIssuer); if (issuer != owner) ADD_TSH( issuer, (ut->getFlags() & lsfBurnable) ? tshSTRONG : tshWEAK); break; } case ttURITOKEN_MINT: { // destination is a strong tsh if (fixV2 && tx.isFieldPresent(sfDestination)) ADD_TSH(tx.getAccountID(sfDestination), tshSTRONG); break; } case ttURITOKEN_CANCEL_SELL_OFFER: { if (!fixV2) break; Keylet const id{ltURI_TOKEN, tx.getFieldH256(sfURITokenID)}; if (!rv.exists(id)) return {}; auto const ut = rv.read(id); if (!ut || ut->getFieldU16(sfLedgerEntryType) != ltURI_TOKEN) return {}; if (ut->isFieldPresent(sfDestination)) { auto const dest = ut->getAccountID(sfDestination); ADD_TSH(dest, tshWEAK); } break; } case ttURITOKEN_CREATE_SELL_OFFER: { Keylet const id{ltURI_TOKEN, tx.getFieldH256(sfURITokenID)}; if (!rv.exists(id)) return {}; auto const ut = rv.read(id); if (!ut || ut->getFieldU16(sfLedgerEntryType) != ltURI_TOKEN) return {}; auto const owner = ut->getAccountID(sfOwner); auto const issuer = ut->getAccountID(sfIssuer); // issuer is a strong TSH if the burnable flag is set if (issuer != owner) ADD_TSH( issuer, (ut->getFlags() & lsfBurnable) ? tshSTRONG : tshWEAK); // destination is a strong tsh if (tx.isFieldPresent(sfDestination)) ADD_TSH(tx.getAccountID(sfDestination), tshSTRONG); break; } // NFT case ttNFTOKEN_MINT: case ttCLAIM_REWARD: { if (tx.isFieldPresent(sfIssuer)) ADD_TSH(tx.getAccountID(sfIssuer), tshSTRONG); break; }; case ttNFTOKEN_BURN: case ttNFTOKEN_CREATE_OFFER: { if (!tx.isFieldPresent(sfNFTokenID) || !tx.isFieldPresent(sfAccount)) return {}; uint256 nid = tx.getFieldH256(sfNFTokenID); bool hasOwner = tx.isFieldPresent(sfOwner); AccountID owner = tx.getAccountID(hasOwner ? sfOwner : sfAccount); if (!nft::findToken(rv, owner, nid)) return {}; auto const issuer = nft::getIssuer(nid); bool issuerCanRollback = nft::getFlags(nid) & tfStrongTSH; ADD_TSH(issuer, issuerCanRollback); if (hasOwner) ADD_TSH(owner, tshWEAK); break; } case ttNFTOKEN_ACCEPT_OFFER: { auto const bo = getNFTOffer(tx[~sfNFTokenBuyOffer], rv); auto const so = getNFTOffer(tx[~sfNFTokenSellOffer], rv); if (!bo && !so) return {}; // issuer only has rollback ability if NFT specifies it in flags uint256 nid = (bo ? bo : so)->getFieldH256(sfNFTokenID); auto const issuer = nft::getIssuer(nid); bool issuerCanRollback = nft::getFlags(nid) & tfStrongTSH; ADD_TSH(issuer, issuerCanRollback); if (bo) { ADD_TSH(bo->getAccountID(sfOwner), tshSTRONG); if (bo->isFieldPresent(sfDestination)) ADD_TSH(bo->getAccountID(sfDestination), tshSTRONG); } if (so) { ADD_TSH(so->getAccountID(sfOwner), tshSTRONG); if (so->isFieldPresent(sfDestination)) ADD_TSH(so->getAccountID(sfDestination), tshSTRONG); } break; } case ttNFTOKEN_CANCEL_OFFER: { if (!tx.isFieldPresent(sfNFTokenOffers)) return {}; auto const& offerVec = tx.getFieldV256(sfNFTokenOffers); for (auto const& offerID : offerVec) { auto const offer = getNFTOffer(offerID, rv); if (offer) { ADD_TSH(offer->getAccountID(sfOwner), tshWEAK); if (offer->isFieldPresent(sfDestination)) ADD_TSH(offer->getAccountID(sfDestination), tshWEAK); // issuer can't stop people canceling their offers, but can // get weak executions uint256 nid = offer->getFieldH256(sfNFTokenID); auto const issuer = nft::getIssuer(nid); ADD_TSH(issuer, tshWEAK); } } break; } // self transactions case ttACCOUNT_SET: case ttOFFER_CANCEL: case ttTICKET_CREATE: case ttHOOK_SET: case ttOFFER_CREATE: { break; } case ttREGULAR_KEY_SET: { if (!tx.isFieldPresent(sfRegularKey)) return {}; ADD_TSH(tx.getAccountID(sfRegularKey), tshSTRONG); break; } case ttDEPOSIT_PREAUTH: { if (!tx.isFieldPresent(sfAuthorize)) return {}; ADD_TSH(tx.getAccountID(sfAuthorize), tshSTRONG); break; } // simple two party transactions case ttPAYMENT: case ttESCROW_CREATE: case ttCHECK_CREATE: case ttACCOUNT_DELETE: case ttPAYCHAN_CREATE: case ttINVOKE: { if (destAcc) ADD_TSH(*destAcc, tshSTRONG); break; } case ttTRUST_SET: { if (!tx.isFieldPresent(sfLimitAmount)) return {}; auto const& lim = tx.getFieldAmount(sfLimitAmount); AccountID const& issuer = lim.getIssuer(); ADD_TSH(issuer, tshWEAK); break; } case ttESCROW_CANCEL: case ttESCROW_FINISH: { // new logic if (fixV1) { if (!tx.isFieldPresent(sfOwner)) return {}; AccountID const owner = tx.getAccountID(sfOwner); bool const hasSeq = tx.isFieldPresent(sfOfferSequence); bool const hasID = tx.isFieldPresent(sfEscrowID); if (!hasSeq && !hasID) return {}; Keylet kl = hasSeq ? keylet::escrow(owner, tx.getFieldU32(sfOfferSequence)) : Keylet(ltESCROW, tx.getFieldH256(sfEscrowID)); auto escrow = rv.read(kl); if (!escrow || escrow->getFieldU16(sfLedgerEntryType) != ltESCROW) return {}; // this should always be the same as owner, but defensively... AccountID const src = escrow->getAccountID(sfAccount); AccountID const dst = escrow->getAccountID(sfDestination); // the source account is a strong transacitonal stakeholder for // fin and can ADD_TSH(src, tshSTRONG); // the dest acc is a strong tsh for fin and weak for can if (src != dst) ADD_TSH(dst, tt == ttESCROW_FINISH ? tshSTRONG : tshWEAK); break; } // old logic { if (!tx.isFieldPresent(sfOwner) || !tx.isFieldPresent(sfOfferSequence)) return {}; auto escrow = rv.read(keylet::escrow( tx.getAccountID(sfOwner), tx.getFieldU32(sfOfferSequence))); if (!escrow) return {}; ADD_TSH(escrow->getAccountID(sfAccount), tshSTRONG); ADD_TSH( escrow->getAccountID(sfDestination), tt == ttESCROW_FINISH ? tshSTRONG : tshWEAK); break; } } case ttPAYCHAN_FUND: case ttPAYCHAN_CLAIM: { if (!tx.isFieldPresent(sfChannel)) return {}; auto chan = rv.read(Keylet{ltPAYCHAN, tx.getFieldH256(sfChannel)}); if (!chan) return {}; ADD_TSH(chan->getAccountID(sfAccount), tshSTRONG); ADD_TSH(chan->getAccountID(sfDestination), tshWEAK); break; } case ttCHECK_CASH: case ttCHECK_CANCEL: { if (!tx.isFieldPresent(sfCheckID)) return {}; auto check = rv.read(Keylet{ltCHECK, tx.getFieldH256(sfCheckID)}); if (!check) return {}; ADD_TSH(check->getAccountID(sfAccount), tshSTRONG); ADD_TSH(check->getAccountID(sfDestination), tshWEAK); break; } // the owners of accounts whose keys appear on a signer list are // entitled to prevent their inclusion case ttSIGNER_LIST_SET: { STArray const& signerEntries = tx.getFieldArray(sfSignerEntries); for (auto const& entryObj : signerEntries) if (entryObj.isFieldPresent(sfAccount)) ADD_TSH(entryObj.getAccountID(sfAccount), tshSTRONG); break; } case ttGENESIS_MINT: { if (tx.isFieldPresent(sfGenesisMints)) { auto const& mints = tx.getFieldArray(sfGenesisMints); for (auto const& mint : mints) { if (mint.isFieldPresent(sfDestination)) { ADD_TSH(mint.getAccountID(sfDestination), tshWEAK); } } } break; } case ttCLAWBACK: { auto const amount = tx.getFieldAmount(sfAmount); ADD_TSH(amount.getIssuer(), tshWEAK); break; } default: return {}; } std::vector> ret{tshEntries.size()}; for (auto& [a, e] : tshEntries) ret[e.first] = std::pair{a, e.second}; return ret; } } // namespace hook namespace hook_float { using namespace hook_api; static int64_t const minMantissa = 1000000000000000ull; static int64_t const maxMantissa = 9999999999999999ull; static int32_t const minExponent = -96; static int32_t const maxExponent = 80; inline int32_t get_exponent(int64_t float1) { if (float1 < 0) return INVALID_FLOAT; if (float1 == 0) return 0; uint64_t float_in = (uint64_t)float1; float_in >>= 54U; float_in &= 0xFFU; return ((int32_t)float_in) - 97; } inline int64_t get_mantissa(int64_t float1) { if (float1 < 0) return INVALID_FLOAT; if (float1 == 0) return 0; float1 -= ((((uint64_t)float1) >> 54U) << 54U); return float1; } inline bool is_negative(int64_t float1) { return ((float1 >> 62U) & 1ULL) == 0; } inline int64_t invert_sign(int64_t float1) { int64_t r = (int64_t)(((uint64_t)float1) ^ (1ULL << 62U)); return r; } inline int64_t set_sign(int64_t float1, bool set_negative) { bool neg = is_negative(float1); if ((neg && set_negative) || (!neg && !set_negative)) return float1; return invert_sign(float1); } inline int64_t set_mantissa(int64_t float1, uint64_t mantissa) { if (mantissa > maxMantissa) return MANTISSA_OVERSIZED; if (mantissa < minMantissa) return MANTISSA_UNDERSIZED; return float1 - get_mantissa(float1) + mantissa; } inline int64_t set_exponent(int64_t float1, int32_t exponent) { if (exponent > maxExponent) return EXPONENT_OVERSIZED; if (exponent < minExponent) return EXPONENT_UNDERSIZED; uint64_t exp = (exponent + 97); exp <<= 54U; float1 &= ~(0xFFLL << 54); float1 += (int64_t)exp; return float1; } inline int64_t make_float(ripple::IOUAmount& amt) { int64_t man_out = amt.mantissa(); int64_t float_out = 0; bool neg = man_out < 0; if (neg) man_out *= -1; float_out = set_sign(float_out, neg); float_out = set_mantissa(float_out, (uint64_t)man_out); float_out = set_exponent(float_out, amt.exponent()); return float_out; } inline int64_t make_float(uint64_t mantissa, int32_t exponent, bool neg) { if (mantissa == 0) return 0; if (mantissa > maxMantissa) return MANTISSA_OVERSIZED; if (mantissa < minMantissa) return MANTISSA_UNDERSIZED; if (exponent > maxExponent) return EXPONENT_OVERSIZED; if (exponent < minExponent) return EXPONENT_UNDERSIZED; int64_t out = 0; out = set_mantissa(out, mantissa); out = set_exponent(out, exponent); out = set_sign(out, neg); return out; } } // namespace hook_float using namespace hook_float; using hook::Bytes; inline int32_t no_free_slots(hook::HookContext& hookCtx) { return hook_api::max_slots - hookCtx.slot.size() <= 0; } inline std::optional get_free_slot(hook::HookContext& hookCtx) { // allocate a slot int32_t slot_into = 0; if (hookCtx.slot_free.size() > 0) { slot_into = hookCtx.slot_free.front(); hookCtx.slot_free.pop(); return slot_into; } // no slots were available in the queue so increment slot counter until we // find a free slot usually this will be the next available but the hook // developer may have allocated any slot ahead of when the counter gets // there do { slot_into = ++hookCtx.slot_counter; } while (hookCtx.slot.find(slot_into) != hookCtx.slot.end() && // this condition should always be met, if for some reason, somehow // it is not then we will return the final slot every time. hookCtx.slot_counter <= hook_api::max_slots); if (hookCtx.slot_counter > hook_api::max_slots) return {}; return slot_into; } // cu_ptr is a pointer into memory, bounds check is assumed to have already // happened inline std::optional parseCurrency(uint8_t* cu_ptr, uint32_t cu_len) { if (cu_len == 20) { // normal 20 byte currency return Currency::fromVoid(cu_ptr); } else if (cu_len == 3) { // 3 byte ascii currency // need to check what data is in these three bytes, to ensure ISO4217 // compliance auto const validateChar = [](uint8_t c) -> bool { return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '?' || c == '!' || c == '@' || c == '#' || c == '$' || c == '%' || c == '^' || c == '&' || c == '*' || c == '<' || c == '>' || c == '(' || c == ')' || c == '{' || c == '}' || c == '[' || c == ']' || c == '|'; }; if (!validateChar(*((uint8_t*)(cu_ptr + 0U))) || !validateChar(*((uint8_t*)(cu_ptr + 1U))) || !validateChar(*((uint8_t*)(cu_ptr + 2U)))) return {}; uint8_t cur_buf[20] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, *((uint8_t*)(cu_ptr + 0U)), *((uint8_t*)(cu_ptr + 1U)), *((uint8_t*)(cu_ptr + 2U)), 0, 0, 0, 0, 0}; return Currency::fromVoid(cur_buf); } else return {}; } uint32_t hook::computeHookStateOwnerCount(uint32_t hookStateCount) { return hookStateCount; } inline int64_t serialize_keylet( ripple::Keylet& kl, uint8_t* memory, uint32_t write_ptr, uint32_t write_len) { if (write_len < 34) return hook_api::TOO_SMALL; memory[write_ptr + 0] = (kl.type >> 8) & 0xFFU; memory[write_ptr + 1] = (kl.type >> 0) & 0xFFU; for (int i = 0; i < 32; ++i) memory[write_ptr + 2 + i] = kl.key.data()[i]; return 34; } std::optional unserialize_keylet(uint8_t* ptr, uint32_t len) { if (len != 34) return {}; uint16_t ktype = ((uint16_t)ptr[0] << 8) + ((uint16_t)ptr[1]); return ripple::Keylet{ static_cast(ktype), ripple::uint256::fromVoid(ptr + 2)}; } bool hook::isEmittedTxn(ripple::STTx const& tx) { return tx.isFieldPresent(ripple::sfEmitDetails); } int64_t hook::computeExecutionFee(uint64_t instructionCount) { int64_t fee = (int64_t)instructionCount; if (fee < instructionCount) return 0x7FFFFFFFFFFFFFFFLL; return fee; } int64_t hook::computeCreationFee(uint64_t byteCount) { int64_t fee = ((int64_t)byteCount) * 500ULL; if (fee < byteCount) return 0x7FFFFFFFFFFFFFFFLL; return fee; } // many datatypes can be encoded into an int64_t inline int64_t data_as_int64(void const* ptr_raw, uint32_t len) { if (len > 8) return hook_api::hook_return_code::TOO_BIG; uint8_t const* ptr = reinterpret_cast(ptr_raw); uint64_t output = 0; for (int i = 0, j = (len - 1) * 8; i < len; ++i, j -= 8) output += (((uint64_t)ptr[i]) << j); if ((1ULL << 63U) & output) return hook_api::hook_return_code::TOO_BIG; return (int64_t)output; } /* returns true iff every even char is ascii and every odd char is 00 * only a hueristic, may be inaccurate in edgecases */ inline bool is_UTF16LE(const uint8_t* buffer, size_t len) { if (len % 2 != 0 || len == 0) return false; for (int i = 0; i < len; i += 2) if (buffer[i + 0] == 0 || buffer[i + 1] != 0) return false; return true; } // return true if sleAccount has been modified as a result of the call bool hook::addHookNamespaceEntry(ripple::SLE& sleAccount, ripple::uint256 ns) { STVector256 vec = sleAccount.getFieldV256(sfHookNamespaces); for (auto u : vec.value()) if (u == ns) return false; vec.push_back(ns); sleAccount.setFieldV256(sfHookNamespaces, vec); return true; } // return true if sleAccount has been modified as a result of the call bool hook::removeHookNamespaceEntry(ripple::SLE& sleAccount, ripple::uint256 ns) { if (sleAccount.isFieldPresent(sfHookNamespaces)) { STVector256 const& vec = sleAccount.getFieldV256(sfHookNamespaces); if (vec.size() == 0) { // clean up structure if it's present but empty sleAccount.makeFieldAbsent(sfHookNamespaces); return true; } else { // defensively ensure the uniqueness of the namespace array std::set spaces; for (auto u : vec.value()) if (u != ns) spaces.emplace(u); // drop through if it wasn't present (see comment block 20 lines // above) if (spaces.size() != vec.size()) { if (spaces.size() == 0) sleAccount.makeFieldAbsent(sfHookNamespaces); else { std::vector nv; nv.reserve(spaces.size()); for (auto u : spaces) nv.push_back(u); sleAccount.setFieldV256( sfHookNamespaces, STVector256{std::move(nv)}); } return true; } } } return false; } // Called by Transactor.cpp to determine if a transaction type can trigger a // given hook... The HookOn field in the SetHook transaction determines which // transaction types (tt's) trigger the hook. Every bit except ttHookSet is // active low, so for example ttESCROW_FINISH = 2, so if the 2nd bit (counting // from 0) from the right is 0 then the hook will trigger on ESCROW_FINISH. If // it is 1 then ESCROW_FINISH will not trigger the hook. However ttHOOK_SET = 22 // is active high, so by default (HookOn == 0) ttHOOK_SET is not triggered by // transactions. If you wish to set a hook that has control over ttHOOK_SET then // set bit 1U<<22. bool hook::canHook(ripple::TxType txType, ripple::uint256 hookOn) { // invert ttHOOK_SET bit hookOn ^= UINT256_BIT[ttHOOK_SET]; // invert entire field hookOn = ~hookOn; return (hookOn & UINT256_BIT[txType]) != beast::zero; } bool hook::canEmit(ripple::TxType txType, ripple::uint256 hookCanEmit) { return hook::canHook(txType, hookCanEmit); } ripple::uint256 hook::getHookCanEmit( ripple::STObject const& hookObj, SLE::pointer const& hookDef) { // default allows all transaction types uint256 defaultHookCanEmit = UINT256_BIT[ttHOOK_SET]; uint256 hookCanEmit = (hookObj.isFieldPresent(sfHookCanEmit) ? hookObj.getFieldH256(sfHookCanEmit) : hookDef->isFieldPresent(sfHookCanEmit) ? hookDef->getFieldH256(sfHookCanEmit) : defaultHookCanEmit); return hookCanEmit; } // Update HookState ledger objects for the hook... only called after accept() // assumes the specified acc has already been checked for authoriation (hook // grants) TER hook::setHookState( ripple::ApplyContext& applyCtx, ripple::AccountID const& acc, ripple::uint256 const& ns, ripple::uint256 const& key, ripple::Slice const& data) { auto& view = applyCtx.view(); auto j = applyCtx.app.journal("View"); auto const sleAccount = view.peek(ripple::keylet::account(acc)); if (!sleAccount) return tefINTERNAL; // if the blob is too large don't set it if (data.size() > hook::maxHookStateDataSize()) return temHOOK_DATA_TOO_LARGE; auto hookStateKeylet = ripple::keylet::hookState(acc, key, ns); auto hookStateDirKeylet = ripple::keylet::hookStateDir(acc, ns); uint32_t stateCount = sleAccount->getFieldU32(sfHookStateCount); uint32_t oldStateReserve = computeHookStateOwnerCount(stateCount); auto hookState = view.peek(hookStateKeylet); bool createNew = !hookState; // if the blob is nil then delete the entry if it exists if (data.empty()) { if (!view.peek(hookStateKeylet)) return tesSUCCESS; // a request to remove a non-existent entry is // defined as success if (!view.peek(hookStateDirKeylet)) return tefBAD_LEDGER; auto const hint = (*hookState)[sfOwnerNode]; // Remove the node from the namespace directory if (!view.dirRemove( hookStateDirKeylet, hint, hookStateKeylet.key, false)) return tefBAD_LEDGER; bool nsDestroyed = !view.peek(hookStateDirKeylet); // remove the actual hook state obj view.erase(hookState); // adjust state object count if (stateCount > 0) --stateCount; // guard this because in the "impossible" event it is // already 0 we'll wrap back to int_max // if removing this state entry would destroy the allotment then reduce // the owner count if (computeHookStateOwnerCount(stateCount) < oldStateReserve) adjustOwnerCount(view, sleAccount, -1, j); sleAccount->setFieldU32(sfHookStateCount, stateCount); if (nsDestroyed) hook::removeHookNamespaceEntry(*sleAccount, ns); view.update(sleAccount); /* // if the root page of this namespace was removed then also remove the root page // from the owner directory if (!view.peek(hookStateDirKeylet) && rootHint) { if (!view.dirRemove(keylet::ownerDir(acc), *rootHint, hookStateDirKeylet.key, false)) return tefBAD_LEDGER; } */ return tesSUCCESS; } std::uint32_t ownerCount{(*sleAccount)[sfOwnerCount]}; if (createNew) { ++stateCount; if (computeHookStateOwnerCount(stateCount) > oldStateReserve) { // the hook used its allocated allotment of state entries for its // previous ownercount increment ownercount and give it another // allotment ++ownerCount; XRPAmount const newReserve{view.fees().accountReserve(ownerCount)}; if (STAmount((*sleAccount)[sfBalance]).xrp() < newReserve) return tecINSUFFICIENT_RESERVE; adjustOwnerCount(view, sleAccount, 1, j); } // update state count sleAccount->setFieldU32(sfHookStateCount, stateCount); view.update(sleAccount); // create an entry hookState = std::make_shared(hookStateKeylet); } hookState->setFieldVL(sfHookStateData, data); hookState->setFieldH256(sfHookStateKey, key); if (createNew) { bool nsExists = !!view.peek(hookStateDirKeylet); auto const page = view.dirInsert( hookStateDirKeylet, hookStateKeylet.key, describeOwnerDir(acc)); if (!page) return tecDIR_FULL; hookState->setFieldU64(sfOwnerNode, *page); // add new data to ledger view.insert(hookState); // update namespace vector where necessary if (!nsExists) { if (addHookNamespaceEntry(*sleAccount, ns)) view.update(sleAccount); } } else { view.update(hookState); } return tesSUCCESS; } hook::HookResult hook::apply( ripple::uint256 const& hookSetTxnID, /* this is the txid of the sethook, used for caching (one day) */ ripple::uint256 const& hookHash, /* hash of the actual hook byte code, used for metadata */ ripple::uint256 const& hookCanEmit, ripple::uint256 const& hookNamespace, ripple::Blob const& wasm, std::map< std::vector, /* param name */ std::vector /* param value */ > const& hookParams, std::map< ripple::uint256, /* hook hash */ std::map, std::vector>> const& hookParamOverrides, HookStateMap& stateMap, ApplyContext& applyCtx, ripple::AccountID const& account, /* the account the hook is INSTALLED ON not always the otxn account */ bool hasCallback, bool isCallback, bool isStrong, uint32_t wasmParam, uint8_t hookChainPosition, std::shared_ptr const& provisionalMeta) { HookContext hookCtx = { .applyCtx = applyCtx, // we will return this context object (RVO / move constructed) .result = {.hookSetTxnID = hookSetTxnID, .hookHash = hookHash, .hookCanEmit = hookCanEmit, .accountKeylet = keylet::account(account), .hookKeylet = keylet::hook(account), .account = account, .otxnAccount = applyCtx.tx.getAccountID(sfAccount), .hookNamespace = hookNamespace, .stateMap = stateMap, .changedStateCount = 0, .hookParamOverrides = hookParamOverrides, .hookParams = hookParams, .hookSkips = {}, .exitType = applyCtx.view().rules().enabled(fixXahauV3) ? hook_api::ExitType::UNSET : hook_api::ExitType::ROLLBACK, // default is to rollback // unless hook calls accept() .exitReason = std::string(""), .exitCode = -1, .hasCallback = hasCallback, .isCallback = isCallback, .isStrong = isStrong, .wasmParam = wasmParam, .hookChainPosition = hookChainPosition, .foreignStateSetDisabled = false, .provisionalMeta = provisionalMeta}, .emitFailure = isCallback && wasmParam & 1 ? std::optional( (*(applyCtx.view().peek(keylet::emittedTxn( applyCtx.tx.getFieldH256(sfTransactionHash))))) .downcast()) : std::optional()}; auto const& j = applyCtx.app.journal("View"); HookExecutor executor{hookCtx}; executor.executeWasm( wasm.data(), (size_t)wasm.size(), isCallback, wasmParam, j); JLOG(j.trace()) << "HookInfo[" << HC_ACC() << "]: " << (hookCtx.result.exitType == hook_api::ExitType::ROLLBACK ? "ROLLBACK" : "ACCEPT") << " RS: '" << hookCtx.result.exitReason.c_str() << "' RC: " << hookCtx.result.exitCode; return hookCtx.result; } /* If XRPLD is running with trace log level hooks may produce debugging output * to the trace log specifying both a string and an integer to output */ DEFINE_HOOK_FUNCTION( int64_t, trace_num, uint32_t read_ptr, uint32_t read_len, int64_t number) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx on // current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (!j.trace()) return 0; if (read_len > 128) read_len = 128; if (read_len > 0) { // skip \0 if present at the end if (*((const char*)memory + read_ptr + read_len - 1) == '\0') read_len--; if (read_len > 0) { j.trace() << "HookTrace[" << HC_ACC() << "]: " << std::string_view( (const char*)memory + read_ptr, read_len) << ": " << number; return 0; } } j.trace() << "HookTrace[" << HC_ACC() << "]: " << number; return 0; HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, trace, uint32_t mread_ptr, uint32_t mread_len, uint32_t dread_ptr, uint32_t dread_len, uint32_t as_hex) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx on // current stack if (NOT_IN_BOUNDS(mread_ptr, mread_len, memory_length) || NOT_IN_BOUNDS(dread_ptr, dread_len, memory_length)) return OUT_OF_BOUNDS; if (!j.trace()) return 0; if (mread_len > 128) mread_len = 128; if (dread_len > 1023) dread_len = 1023; uint8_t output_storage[2200]; size_t out_len = 0; uint8_t* output = output_storage; if (mread_len > 0) { memcpy(output, memory + mread_ptr, mread_len); out_len += mread_len; // detect and skip \0 if it appears at the end if (output[out_len - 1] == '\0') out_len--; output[out_len++] = ':'; output[out_len++] = ' '; } output = output_storage + out_len; if (dread_len > 0) { if (as_hex) { out_len += dread_len * 2; for (int i = 0; i < dread_len && i < memory_length; ++i) { uint8_t high = (memory[dread_ptr + i] >> 4) & 0xFU; uint8_t low = (memory[dread_ptr + i] & 0xFU); high += (high < 10U ? '0' : 'A' - 10); low += (low < 10U ? '0' : 'A' - 10); output[i * 2 + 0] = high; output[i * 2 + 1] = low; } } else if (is_UTF16LE(memory + dread_ptr, dread_len)) { out_len += dread_len / 2; // is_UTF16LE will only return true if read_len is even for (int i = 0; i < (dread_len / 2); ++i) output[i] = memory[dread_ptr + i * 2]; } else { out_len += dread_len; memcpy(output, memory + dread_ptr, dread_len); } } if (out_len > 0) { j.trace() << "HookTrace[" << HC_ACC() << "]: " << std::string_view((const char*)output_storage, out_len); } return 0; HOOK_TEARDOWN(); } // zero pad on the left a key to bring it up to 32 bytes std::optional inline make_state_key(std::string_view source) { size_t source_len = source.size(); if (source_len > 32 || source_len < 1) return std::nullopt; unsigned char key_buffer[32]; int i = 0; int pad = 32 - source_len; // zero pad on the left for (; i < pad; ++i) key_buffer[i] = 0; const char* data = source.data(); for (; i < 32; ++i) key_buffer[i] = data[i - pad]; return ripple::uint256::fromVoid(key_buffer); } DEFINE_HOOK_FUNCTION( int64_t, state_set, uint32_t read_ptr, uint32_t read_len, uint32_t kread_ptr, uint32_t kread_len) { return state_foreign_set( hookCtx, frameCtx, read_ptr, read_len, kread_ptr, kread_len, 0, 0, 0, 0); } // update or create a hook state object // read_ptr = data to set, kread_ptr = key // RH NOTE passing 0 size causes a delete operation which is as-intended /* uint32_t write_ptr, uint32_t write_len, uint32_t kread_ptr, uint32_t kread_len, // key uint32_t nread_ptr, uint32_t nread_len, // namespace uint32_t aread_ptr, uint32_t aread_len ) // account */ DEFINE_HOOK_FUNCTION( int64_t, state_foreign_set, uint32_t read_ptr, uint32_t read_len, uint32_t kread_ptr, uint32_t kread_len, uint32_t nread_ptr, uint32_t nread_len, uint32_t aread_ptr, uint32_t aread_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (read_ptr == 0 && read_len == 0) { // valid, this is a delete operation } else if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (kread_len > 32) return TOO_BIG; if (kread_len < 1) return TOO_SMALL; if (nread_len != 0 && nread_len != 32) return INVALID_ARGUMENT; if (aread_len != 0 && aread_len != 20) return INVALID_ARGUMENT; if (NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length)) return OUT_OF_BOUNDS; // ns can be null if and only if this is a local set if (nread_ptr == 0 && nread_len == 0 && !(aread_ptr == 0 && aread_len == 0)) return INVALID_ARGUMENT; if ((nread_len && NOT_IN_BOUNDS(nread_ptr, nread_len, memory_length)) || (kread_len && NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length)) || (aread_len && NOT_IN_BOUNDS(aread_ptr, aread_len, memory_length))) return OUT_OF_BOUNDS; uint32_t maxSize = hook::maxHookStateDataSize(); if (read_len > maxSize) return TOO_BIG; uint256 ns = nread_len == 0 ? hookCtx.result.hookNamespace : uint256::fromVoid(memory + nread_ptr); ripple::AccountID acc = aread_len == 20 ? AccountID::fromVoid(memory + aread_ptr) : hookCtx.result.account; auto const key = make_state_key( std::string_view{(const char*)(memory + kread_ptr), (size_t)kread_len}); if (view.rules().enabled(fixXahauV1)) { auto const sleAccount = view.peek(hookCtx.result.accountKeylet); if (!sleAccount) return tefINTERNAL; } if (!key) return INTERNAL_ERROR; ripple::Blob data{memory + read_ptr, memory + read_ptr + read_len}; hook::HookAPI api(hookCtx); auto const result = api.state_foreign_set(*key, ns, acc, data); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } ripple::TER hook::finalizeHookState( HookStateMap const& stateMap, ripple::ApplyContext& applyCtx, ripple::uint256 const& txnID) { auto const& j = applyCtx.app.journal("View"); uint16_t changeCount = 0; // write all changes to state, if in "apply" mode for (const auto& accEntry : stateMap) { const auto& acc = accEntry.first; for (const auto& nsEntry : std::get<2>(accEntry.second)) { const auto& ns = nsEntry.first; for (const auto& cacheEntry : nsEntry.second) { bool is_modified = cacheEntry.second.first; const auto& key = cacheEntry.first; const auto& blob = cacheEntry.second.second; if (is_modified) { changeCount++; if (changeCount > max_state_modifications + 1) { // overflow JLOG(j.warn()) << "HooKError[TX:" << txnID << "]: SetHooKState failed: Too many state changes"; return tecHOOK_REJECTED; } // this entry isn't just cached, it was actually modified auto slice = Slice(blob.data(), blob.size()); TER result = setHookState(applyCtx, acc, ns, key, slice); if (!isTesSuccess(result)) { JLOG(j.warn()) << "HookError[TX:" << txnID << "]: SetHookState failed: " << result << " Key: " << key << " Value: " << slice; return result; } // ^ should not fail... checks were done before map insert } } } } return tesSUCCESS; } bool /* retval of true means an error */ hook::gatherHookParameters( std::shared_ptr const& hookDef, ripple::STObject const& hookObj, std::map, std::vector>& parameters, beast::Journal const& j_) { if (!hookDef->isFieldPresent(sfHookParameters)) { JLOG(j_.fatal()) << "HookError[]: Failure: hook def missing parameters (send)"; return true; } // first defaults auto const& defaultParameters = hookDef->getFieldArray(sfHookParameters); for (auto const& hookParameterObj : defaultParameters) { parameters[hookParameterObj.getFieldVL(sfHookParameterName)] = hookParameterObj.getFieldVL(sfHookParameterValue); } // and then custom if (hookObj.isFieldPresent(sfHookParameters)) { auto const& hookParameters = hookObj.getFieldArray(sfHookParameters); for (auto const& hookParameterObj : hookParameters) { parameters[hookParameterObj.getFieldVL(sfHookParameterName)] = hookParameterObj.getFieldVL(sfHookParameterValue); } } return false; } ripple::TER hook::removeEmissionEntry(ripple::ApplyContext& applyCtx) { auto const& j = applyCtx.app.journal("View"); auto const& tx = applyCtx.tx; if (!const_cast(tx).isFieldPresent(sfEmitDetails)) return tesSUCCESS; auto key = keylet::emittedTxn(tx.getTransactionID()); auto const& sle = applyCtx.view().peek(key); if (!sle) return tesSUCCESS; if (!applyCtx.view().dirRemove( keylet::emittedDir(), sle->getFieldU64(sfOwnerNode), key, false)) { JLOG(j.fatal()) << "HookError[TX:" << tx.getTransactionID() << "]: removeEmissionEntry failed tefBAD_LEDGER"; return tefBAD_LEDGER; } applyCtx.view().erase(sle); return tesSUCCESS; } TER hook::finalizeHookResult( hook::HookResult& hookResult, ripple::ApplyContext& applyCtx, bool doEmit) { auto const& j = applyCtx.app.journal("View"); // open views do not modify add/remove ledger entries if (applyCtx.view().open()) return tesSUCCESS; // RH TODO: this seems hacky... and also maybe there's a way this cast might // fail? ApplyViewImpl& avi = dynamic_cast(applyCtx.view()); uint16_t exec_index = avi.nextHookExecutionIndex(); // apply emitted transactions to the ledger (by adding them to the emitted // directory) if we are allowed to std::vector> emission_txnid; if (doEmit) { DBG_PRINTF("emitted txn count: %d\n", hookResult.emittedTxn.size()); for (; hookResult.emittedTxn.size() > 0; hookResult.emittedTxn.pop()) { auto& tpTrans = hookResult.emittedTxn.front(); auto& id = tpTrans->getID(); JLOG(j.trace()) << "HookEmit[" << HR_ACC() << "]: " << id; applyCtx.app.getHashRouter().setFlags(id, SF_EMITTED); std::shared_ptr ptr = tpTrans->getSTransaction(); auto emittedId = keylet::emittedTxn(id); auto sleEmitted = applyCtx.view().peek(emittedId); if (!sleEmitted) { auto const& emitDetails = const_cast(*ptr) .getField(sfEmitDetails) .downcast(); emission_txnid.emplace_back( id, emitDetails.getFieldH256(sfEmitNonce)); sleEmitted = std::make_shared(emittedId); // RH TODO: add a new constructor to STObject to avoid this // serder thing ripple::Serializer s; ptr->add(s); SerialIter sit(s.slice()); sleEmitted->emplace_back(ripple::STObject(sit, sfEmittedTxn)); auto page = applyCtx.view().dirInsert( keylet::emittedDir(), emittedId, [&](SLE::ref sle) { (*sle)[sfFlags] = lsfEmittedDir; }); if (page) { (*sleEmitted)[sfOwnerNode] = *page; applyCtx.view().insert(sleEmitted); } else { JLOG(j.warn()) << "HookError[" << HR_ACC() << "]: " << "Emission Directory full when trying to insert " << id; return tecDIR_FULL; } } } } bool const fixV2 = applyCtx.view().rules().enabled(fixXahauV2); // add a metadata entry for this hook execution result { STObject meta{sfHookExecution}; meta.setFieldU8(sfHookResult, hookResult.exitType); meta.setAccountID(sfHookAccount, hookResult.account); // RH NOTE: this is probably not necessary, a direct cast should always // put the (negative) 1 bit at the MSB however to ensure this is // consistent across different arch/compilers it's done explicitly here. uint64_t unsigned_exit_code = (hookResult.exitCode >= 0 ? hookResult.exitCode : 0x8000000000000000ULL + (-1 * hookResult.exitCode)); meta.setFieldU64(sfHookReturnCode, unsigned_exit_code); meta.setFieldVL( sfHookReturnString, ripple::Slice{ hookResult.exitReason.data(), hookResult.exitReason.size()}); meta.setFieldU64(sfHookInstructionCount, hookResult.instructionCount); meta.setFieldU16( sfHookEmitCount, emission_txnid.size()); // this will never wrap, hard limit meta.setFieldU16(sfHookExecutionIndex, exec_index); meta.setFieldU16(sfHookStateChangeCount, hookResult.changedStateCount); meta.setFieldH256(sfHookHash, hookResult.hookHash); // add informational flags in fix2 if (fixV2) { uint32_t flags = 0; if (hookResult.isStrong) flags |= hefSTRONG; if (hookResult.isCallback) flags |= hefCALLBACK; if (hookResult.executeAgainAsWeak) flags |= hefDOAAW; meta.setFieldU32(sfFlags, flags); } avi.addHookExecutionMetaData(std::move(meta)); } // if any txns were emitted then add them to the HookEmissions if (applyCtx.view().rules().enabled(featureHooksUpdate1) && !emission_txnid.empty()) { for (auto const& [etxnid, enonce] : emission_txnid) { STObject meta{sfHookEmission}; meta.setFieldH256(sfHookHash, hookResult.hookHash); meta.setAccountID(sfHookAccount, hookResult.account); meta.setFieldH256(sfEmittedTxnID, etxnid); if (fixV2) meta.setFieldH256(sfEmitNonce, enonce); avi.addHookEmissionMetaData(std::move(meta)); } } return tesSUCCESS; } /* Retrieve the state into write_ptr identified by the key in kread_ptr */ DEFINE_HOOK_FUNCTION( int64_t, state, uint32_t write_ptr, uint32_t write_len, uint32_t kread_ptr, uint32_t kread_len) { return state_foreign( hookCtx, frameCtx, write_ptr, write_len, kread_ptr, kread_len, 0, 0, 0, 0); } /* This api actually serves both local and foreign state requests * feeding aread_ptr = 0 and aread_len = 0 will cause it to read local * feeding nread_len = 0 will cause hook's native namespace to be used */ DEFINE_HOOK_FUNCTION( int64_t, state_foreign, uint32_t write_ptr, uint32_t write_len, uint32_t kread_ptr, uint32_t kread_len, // key uint32_t nread_ptr, uint32_t nread_len, // namespace uint32_t aread_ptr, uint32_t aread_len) // account { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack bool is_foreign = false; if (aread_ptr == 0) { // valid arguments, local state if (aread_len != 0) return INVALID_ARGUMENT; } else { // valid arguments, foreign state is_foreign = true; if (aread_len != 20) return INVALID_ARGUMENT; } if (kread_len > 32) return TOO_BIG; if (kread_len < 1) return TOO_SMALL; if (write_len < 1 && write_ptr != 0) return TOO_SMALL; if (!is_foreign && nread_len == 0) { // local account will be populated with local hook namespace unless // otherwise specified } else if (nread_len != 32) return INVALID_ARGUMENT; if (NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length) || NOT_IN_BOUNDS(nread_ptr, nread_len, memory_length) || NOT_IN_BOUNDS(aread_ptr, aread_len, memory_length) || NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; uint256 ns = nread_len == 0 ? hookCtx.result.hookNamespace : uint256::fromVoid(memory + nread_ptr); ripple::AccountID acc = is_foreign ? AccountID::fromVoid(memory + aread_ptr) : hookCtx.result.account; auto const key = make_state_key( std::string_view{(const char*)(memory + kread_ptr), (size_t)kread_len}); if (!key) return INVALID_ARGUMENT; hook::HookAPI api(hookCtx); auto const result = api.state_foreign(*key, ns, acc); if (!result) return result.error(); auto const& b = result.value(); WRITE_WASM_MEMORY_OR_RETURN_AS_INT64( write_ptr, write_len, b.data(), b.size(), false); HOOK_TEARDOWN(); } // Cause the originating transaction to go through, save state changes and emit // emitted tx, exit hook DEFINE_HOOK_FUNCTION( int64_t, accept, uint32_t read_ptr, uint32_t read_len, int64_t error_code) { HOOK_SETUP(); HOOK_EXIT(read_ptr, read_len, error_code, hook_api::ExitType::ACCEPT); HOOK_TEARDOWN(); } // Cause the originating transaction to be rejected, discard state changes and // discard emitted tx, exit hook DEFINE_HOOK_FUNCTION( int64_t, rollback, uint32_t read_ptr, uint32_t read_len, int64_t error_code) { HOOK_SETUP(); HOOK_EXIT(read_ptr, read_len, error_code, hook_api::ExitType::ROLLBACK); HOOK_TEARDOWN(); } // Write the TxnID of the originating transaction into the write_ptr DEFINE_HOOK_FUNCTION( int64_t, otxn_id, uint32_t write_ptr, uint32_t write_len, uint32_t flags) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.otxn_id(flags); if (!result) return result.error(); auto const& txID = result.value(); if (txID.size() > write_len) return TOO_SMALL; if (NOT_IN_BOUNDS(write_ptr, txID.size(), memory_length) || NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; WRITE_WASM_MEMORY_AND_RETURN( write_ptr, txID.size(), txID.data(), txID.size(), memory, memory_length); HOOK_TEARDOWN(); } // Return the tt (Transaction Type) numeric code of the originating transaction DEFINE_HOOK_FUNCNARG(int64_t, otxn_type) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); return api.otxn_type(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, otxn_slot, uint32_t slot_into) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.otxn_slot(slot_into); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } // Return the burden of the originating transaction... this will be 1 unless the // originating transaction was itself an emitted transaction from a previous // hook invocation DEFINE_HOOK_FUNCNARG(int64_t, otxn_burden) { HOOK_SETUP(); hook::HookAPI api(hookCtx); return api.otxn_burden(); HOOK_TEARDOWN(); } // Return the generation of the originating transaction... this will be 1 unless // the originating transaction was itself an emitted transaction from a previous // hook invocation DEFINE_HOOK_FUNCNARG(int64_t, otxn_generation) { HOOK_SETUP(); hook::HookAPI api(hookCtx); return api.otxn_generation(); HOOK_TEARDOWN(); } // Return the generation of a hypothetically emitted transaction from this hook DEFINE_HOOK_FUNCNARG(int64_t, etxn_generation) { // proxy only, no setup or teardown hook::HookAPI api(hookCtx); return api.etxn_generation(); } // Return the current ledger sequence number DEFINE_HOOK_FUNCNARG(int64_t, ledger_seq) { HOOK_SETUP(); hook::HookAPI api(hookCtx); return api.ledger_seq(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, ledger_last_hash, uint32_t write_ptr, uint32_t write_len) { HOOK_SETUP(); if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (write_len < 32) return TOO_SMALL; hook::HookAPI api(hookCtx); auto const hash = api.ledger_last_hash(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, hash.data(), 32, memory, memory_length); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCNARG(int64_t, ledger_last_time) { HOOK_SETUP(); hook::HookAPI api(hookCtx); return api.ledger_last_time(); HOOK_TEARDOWN(); } // Dump a field from the originating transaction into the hook's memory DEFINE_HOOK_FUNCTION( int64_t, otxn_field, uint32_t write_ptr, uint32_t write_len, uint32_t field_id) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (write_ptr == 0) { if (write_len != 0) return INVALID_ARGUMENT; // otherwise pass, we're trying to return the data as an int64_t } else if NOT_IN_BOUNDS (write_ptr, write_len, memory_length) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); auto const result = api.otxn_field(field_id); if (!result) return result.error(); auto const& field = result.value(); Serializer s; field->add(s); WRITE_WASM_MEMORY_OR_RETURN_AS_INT64( write_ptr, write_len, s.getDataPtr(), s.getDataLength(), field->getSType() == STI_ACCOUNT); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, slot, uint32_t write_ptr, uint32_t write_len, uint32_t slot_no) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (write_ptr == 0) { // in this mode the function returns the data encoded in an int64_t if (write_len != 0) return INVALID_ARGUMENT; } else { if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (write_len < 1) return TOO_SMALL; } hook::HookAPI api(hookCtx); auto const result = api.slot(slot_no); if (!result) return result.error(); Serializer s; (*result)->add(s); WRITE_WASM_MEMORY_OR_RETURN_AS_INT64( write_ptr, write_len, s.getDataPtr(), s.getDataLength(), (*result)->getSType() == STI_ACCOUNT); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, slot_clear, uint32_t slot_no) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_clear(slot_no); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, slot_count, uint32_t slot_no) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_count(slot_no); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, slot_set, uint32_t read_ptr, uint32_t read_len, // readptr is a keylet uint32_t slot_into /* providing 0 allocates a slot to you */) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); Bytes data{memory + read_ptr, memory + read_ptr + read_len}; auto const result = api.slot_set(data, slot_into); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, slot_size, uint32_t slot_no) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_size(slot_no); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, slot_subarray, uint32_t parent_slot, uint32_t array_id, uint32_t new_slot) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_subarray(parent_slot, array_id, new_slot); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, slot_subfield, uint32_t parent_slot, uint32_t field_id, uint32_t new_slot) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_subfield(parent_slot, field_id, new_slot); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, slot_type, uint32_t slot_no, uint32_t flags) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_type(slot_no, flags); if (!result) return result.error(); if (flags == 0) { auto const base = std::get<0>(*result); return base.getFName().fieldCode; } else { auto const amount = std::get<1>(*result); return amount.native(); } HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, slot_float, uint32_t slot_no) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.slot_float(slot_no); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, util_keylet, uint32_t write_ptr, uint32_t write_len, uint32_t keylet_type, uint32_t a, uint32_t b, uint32_t c, uint32_t d, uint32_t e, uint32_t f) { HOOK_SETUP(); if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (write_len < 34) return TOO_SMALL; bool const v1 = applyCtx.view().rules().enabled(featureHooksUpdate1); if (keylet_type == 0) return INVALID_ARGUMENT; auto const last = v1 ? keylet_code::LAST_KLTYPE_V1 : keylet_code::LAST_KLTYPE_V0; if (keylet_type > last) return INVALID_ARGUMENT; try { switch (keylet_type) { // keylets that take a keylet and an 8 byte uint case keylet_code::QUALITY: { if (a == 0 || b == 0) return INVALID_ARGUMENT; if (e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t read_ptr = a, read_len = b; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (read_len != 34) return INVALID_ARGUMENT; // ensure it's a dir keylet or we will fail an assertion if (*(read_ptr + memory) != 0 || *(read_ptr + memory + 1) != 0x64U) return INVALID_ARGUMENT; std::optional kl = unserialize_keylet(memory + read_ptr, read_len); if (!kl) return NO_SUCH_KEYLET; uint64_t arg = (((uint64_t)c) << 32U) + ((uint64_t)d); ripple::Keylet kl_out = ripple::keylet::quality(*kl, arg); return serialize_keylet(kl_out, memory, write_ptr, write_len); } // keylets that take a 32 byte uint case keylet_code::HOOK_DEFINITION: case keylet_code::CHILD: case keylet_code::EMITTED_TXN: case keylet_code::UNCHECKED: { if (a == 0 || b == 0) return INVALID_ARGUMENT; if (c != 0 || d != 0 || e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t read_ptr = a, read_len = b; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (read_len != 32) return INVALID_ARGUMENT; uint256 id = uint256::fromVoid(memory + read_ptr); ripple::Keylet kl = keylet_type == keylet_code::CHILD ? ripple::keylet::child(id) : keylet_type == keylet_code::EMITTED_TXN ? ripple::keylet::emittedTxn(id) : keylet_type == keylet_code::HOOK_DEFINITION ? ripple::keylet::hookDefinition(id) : ripple::keylet::unchecked(id); return serialize_keylet(kl, memory, write_ptr, write_len); } // keylets that take a 20 byte account id case keylet_code::OWNER_DIR: case keylet_code::SIGNERS: case keylet_code::ACCOUNT: case keylet_code::HOOK: { if (a == 0 || b == 0) return INVALID_ARGUMENT; if (c != 0 || d != 0 || e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t read_ptr = a, read_len = b; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (read_len != 20) return INVALID_ARGUMENT; ripple::AccountID id = AccountID::fromVoid(memory + read_ptr); ripple::Keylet kl = keylet_type == keylet_code::HOOK ? ripple::keylet::hook(id) : keylet_type == keylet_code::SIGNERS ? ripple::keylet::signers(id) : keylet_type == keylet_code::OWNER_DIR ? ripple::keylet::ownerDir(id) : ripple::keylet::account(id); return serialize_keylet(kl, memory, write_ptr, write_len); } // keylets that take 20 byte account id, and 4 byte uint case keylet_code::OFFER: case keylet_code::CHECK: case keylet_code::ESCROW: case keylet_code::NFT_OFFER: { if (a == 0 || b == 0) return INVALID_ARGUMENT; if (e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t read_ptr = a, read_len = b; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (read_len != 20) return INVALID_ARGUMENT; ripple::AccountID id = AccountID::fromVoid(memory + read_ptr); std::variant seq; if (d == 0) seq = c; else if (d != 32) return INVALID_ARGUMENT; else { if (NOT_IN_BOUNDS(c, 32, memory_length)) return OUT_OF_BOUNDS; seq = uint256::fromVoid(memory + c); } ripple::Keylet kl = keylet_type == keylet_code::CHECK ? ripple::keylet::check(id, seq) : keylet_type == keylet_code::ESCROW ? ripple::keylet::escrow(id, seq) : keylet_type == keylet_code::NFT_OFFER ? ripple::keylet::nftoffer(id, seq) : ripple::keylet::offer(id, seq); return serialize_keylet(kl, memory, write_ptr, write_len); } // keylets that take a 32 byte uint and an 8byte uint64 case keylet_code::PAGE: { if (a == 0 || b == 0) return INVALID_ARGUMENT; if (e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t kread_ptr = a, kread_len = b; if (NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length)) return OUT_OF_BOUNDS; if (b != 32) return INVALID_ARGUMENT; uint64_t index = (((uint64_t)c) << 32U) + ((uint64_t)d); ripple::Keylet kl = ripple::keylet::page(uint256::fromVoid(memory + a), index); return serialize_keylet(kl, memory, write_ptr, write_len); } // keylets that take both a 20 byte account id and a 32 byte uint case keylet_code::HOOK_STATE: { if (a == 0 || b == 0 || c == 0 || d == 0 || e == 0 || f == 0) return INVALID_ARGUMENT; uint32_t aread_ptr = a, aread_len = b, kread_ptr = c, kread_len = d, nread_ptr = e, nread_len = f; if (NOT_IN_BOUNDS(aread_ptr, aread_len, memory_length) || NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length) || NOT_IN_BOUNDS(nread_ptr, nread_len, memory_length)) return OUT_OF_BOUNDS; if (aread_len != 20 || kread_len != 32 || nread_len != 32) return INVALID_ARGUMENT; ripple::Keylet kl = ripple::keylet::hookState( AccountID::fromVoid(memory + aread_ptr), uint256::fromVoid(memory + kread_ptr), uint256::fromVoid(memory + nread_ptr)); return serialize_keylet(kl, memory, write_ptr, write_len); } case keylet_code::HOOK_STATE_DIR: { if (a == 0 || b == 0 || c == 0 || d == 0) return INVALID_ARGUMENT; if (e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t aread_ptr = a, aread_len = b, nread_ptr = c, nread_len = d; if (NOT_IN_BOUNDS(aread_ptr, aread_len, memory_length) || NOT_IN_BOUNDS(nread_ptr, nread_len, memory_length)) return OUT_OF_BOUNDS; if (aread_len != 20 || nread_len != 32) return INVALID_ARGUMENT; ripple::Keylet kl = ripple::keylet::hookStateDir( AccountID::fromVoid(memory + aread_ptr), uint256::fromVoid(memory + nread_ptr)); return serialize_keylet(kl, memory, write_ptr, write_len); } // skip is overloaded, has a single, optional 4 byte argument case keylet_code::SKIP: { if (c != 0 || d != 0 || e != 0 || f != 0 || b > 1) return INVALID_ARGUMENT; ripple::Keylet kl = (b == 0 ? ripple::keylet::skip() : ripple::keylet::skip(a)); return serialize_keylet(kl, memory, write_ptr, write_len); } // no arguments case keylet_code::AMENDMENTS: case keylet_code::FEES: case keylet_code::NEGATIVE_UNL: case keylet_code::EMITTED_DIR: { if (a != 0 || b != 0 || c != 0 || d != 0 || e != 0 || f != 0) return INVALID_ARGUMENT; auto makeKeyCache = [](ripple::Keylet kl) -> std::array { std::array d; d[0] = (kl.type >> 8) & 0xFFU; d[1] = (kl.type >> 0) & 0xFFU; for (int i = 0; i < 32; ++i) d[2 + i] = kl.key.data()[i]; return d; }; static std::array cAmendments = makeKeyCache(ripple::keylet::amendments()); static std::array cFees = makeKeyCache(ripple::keylet::fees()); static std::array cNegativeUNL = makeKeyCache(ripple::keylet::negativeUNL()); static std::array cEmittedDir = makeKeyCache(ripple::keylet::emittedDir()); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, keylet_type == keylet_code::AMENDMENTS ? cAmendments.data() : keylet_type == keylet_code::FEES ? cFees.data() : keylet_type == keylet_code::NEGATIVE_UNL ? cNegativeUNL.data() : cEmittedDir.data(), 34, memory, memory_length); } case keylet_code::LINE: { if (a == 0 || b == 0 || c == 0 || d == 0 || e == 0 || f == 0) return INVALID_ARGUMENT; uint32_t hi_ptr = a, hi_len = b, lo_ptr = c, lo_len = d, cu_ptr = e, cu_len = f; if (NOT_IN_BOUNDS(hi_ptr, hi_len, memory_length) || NOT_IN_BOUNDS(lo_ptr, lo_len, memory_length) || NOT_IN_BOUNDS(cu_ptr, cu_len, memory_length)) return OUT_OF_BOUNDS; if (hi_len != 20 || lo_len != 20) return INVALID_ARGUMENT; std::optional cur = parseCurrency(memory + cu_ptr, cu_len); if (!cur) return INVALID_ARGUMENT; auto kl = ripple::keylet::line( AccountID::fromVoid(memory + hi_ptr), AccountID::fromVoid(memory + lo_ptr), *cur); return serialize_keylet(kl, memory, write_ptr, write_len); } // keylets that take two 20 byte account ids case keylet_code::DEPOSIT_PREAUTH: { if (a == 0 || b == 0 || c == 0 || d == 0) return INVALID_ARGUMENT; if (e != 0 || f != 0) return INVALID_ARGUMENT; uint32_t aread_ptr = a, aread_len = b; uint32_t bread_ptr = c, bread_len = d; if (NOT_IN_BOUNDS(aread_ptr, aread_len, memory_length) || NOT_IN_BOUNDS(bread_ptr, bread_len, memory_length)) return OUT_OF_BOUNDS; if (aread_len != 20 || bread_len != 20) return INVALID_ARGUMENT; ripple::AccountID aid = AccountID::fromVoid(memory + aread_ptr); ripple::AccountID bid = AccountID::fromVoid(memory + bread_ptr); ripple::Keylet kl = ripple::keylet::depositPreauth(aid, bid); return serialize_keylet(kl, memory, write_ptr, write_len); } // keylets that take two 20 byte account ids and a 4 byte uint case keylet_code::PAYCHAN: { if (a == 0 || b == 0 || c == 0 || d == 0 || e == 0) return INVALID_ARGUMENT; uint32_t aread_ptr = a, aread_len = b; uint32_t bread_ptr = c, bread_len = d; if (NOT_IN_BOUNDS(aread_ptr, aread_len, memory_length) || NOT_IN_BOUNDS(bread_ptr, bread_len, memory_length)) return OUT_OF_BOUNDS; if (aread_len != 20 || bread_len != 20) return INVALID_ARGUMENT; ripple::AccountID aid = AccountID::fromVoid(memory + aread_ptr); ripple::AccountID bid = AccountID::fromVoid(memory + bread_ptr); std::variant seq; if (f == 0) seq = e; else if (f != 32) return INVALID_ARGUMENT; else { if (NOT_IN_BOUNDS(e, 32, memory_length)) return OUT_OF_BOUNDS; seq = uint256::fromVoid(memory + e); } ripple::Keylet kl = ripple::keylet::payChan(aid, bid, seq); return serialize_keylet(kl, memory, write_ptr, write_len); } } } catch (std::exception& e) { JLOG(j.warn()) << "HookError[" << HC_ACC() << "]: Keylet exception " << e.what(); return INTERNAL_ERROR; } return NO_SUCH_KEYLET; HOOK_TEARDOWN(); } /* Emit a transaction from this hook. Transaction must be in STObject form, * fully formed and valid. XRPLD does not modify transactions it only checks * them for validity. */ DEFINE_HOOK_FUNCTION( int64_t, emit, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (write_len < 32) return TOO_SMALL; // Delegate to decoupled HookAPI for emit logic hook::HookAPI api(hookCtx); ripple::Slice txBlob{ reinterpret_cast(memory + read_ptr), read_len}; if (auto res = api.emit(txBlob)) { auto const& tpTrans = *res; // 32 bytes auto const& txID = tpTrans->getID(); if (txID.size() > write_len) return TOO_SMALL; if (NOT_IN_BOUNDS(write_ptr, txID.size(), memory_length)) return OUT_OF_BOUNDS; auto const write_txid = [&]() -> int64_t { WRITE_WASM_MEMORY_AND_RETURN( write_ptr, txID.size(), txID.data(), txID.size(), memory, memory_length); }; int64_t result = write_txid(); if (result == 32) hookCtx.result.emittedTxn.push(tpTrans); return result; } else { return res.error(); } HOOK_TEARDOWN(); } // When implemented will return the hash of the current hook DEFINE_HOOK_FUNCTION( int64_t, hook_hash, uint32_t write_ptr, uint32_t write_len, int32_t hook_no) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (write_len < 32) return TOO_SMALL; if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); auto const result = api.hook_hash(hook_no); if (!result) return result.error(); auto const& hash = result.value(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, hash.data(), hash.size(), memory, memory_length); HOOK_TEARDOWN(); } // Write the account id that the running hook is installed on into write_ptr DEFINE_HOOK_FUNCTION( int64_t, hook_account, uint32_t write_ptr, uint32_t ptr_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(write_ptr, ptr_len, memory_length)) return OUT_OF_BOUNDS; if (ptr_len < 20) return TOO_SMALL; hook::HookAPI api(hookCtx); auto const result = api.hook_account(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, 20, result.data(), 20, memory, memory_length); HOOK_TEARDOWN(); } // Deterministic nonces (can be called multiple times) // Writes nonce into the write_ptr DEFINE_HOOK_FUNCTION( int64_t, etxn_nonce, uint32_t write_ptr, uint32_t write_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx, view on current stack if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; // It is also checked in api.etxn_nonce, but for backwards compatibility, it // must be checked before the TOO_SMALL check. if (hookCtx.emit_nonce_counter > hook_api::max_nonce) return TOO_MANY_NONCES; if (write_len < 32) return TOO_SMALL; hook::HookAPI api(hookCtx); auto const result = api.etxn_nonce(); if (!result) return result.error(); auto const& hash = result.value(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, 32, hash.data(), 32, memory, memory_length); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, ledger_nonce, uint32_t write_ptr, uint32_t write_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx, view on current stack if (write_len < 32) return TOO_SMALL; if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); auto const result = api.ledger_nonce(); if (!result) return result.error(); auto const& hash = result.value(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, 32, hash.data(), 32, memory, memory_length); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, ledger_keylet, uint32_t write_ptr, uint32_t write_len, uint32_t lread_ptr, uint32_t lread_len, uint32_t hread_ptr, uint32_t hread_len) { HOOK_SETUP(); if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length) || NOT_IN_BOUNDS(lread_ptr, lread_len, memory_length) || NOT_IN_BOUNDS(hread_ptr, hread_len, memory_length)) return OUT_OF_BOUNDS; if (lread_len < 34U || hread_len < 34U || write_len < 34U) return TOO_SMALL; if (lread_len > 34U || hread_len > 34U || write_len > 34U) return TOO_BIG; std::optional klLo = unserialize_keylet(memory + lread_ptr, lread_len); if (!klLo) return INVALID_ARGUMENT; std::optional klHi = unserialize_keylet(memory + hread_ptr, hread_len); if (!klHi) return INVALID_ARGUMENT; hook::HookAPI api(hookCtx); auto const result = api.ledger_keylet(*klLo, *klHi); if (!result) return result.error(); auto kl_out = result.value(); return serialize_keylet(kl_out, memory, write_ptr, write_len); HOOK_TEARDOWN(); } // Reserve one or more transactions for emission from the running hook DEFINE_HOOK_FUNCTION(int64_t, etxn_reserve, uint32_t count) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.etxn_reserve(count); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } // Compute the burden of an emitted transaction based on a number of factors DEFINE_HOOK_FUNCNARG(int64_t, etxn_burden) { HOOK_SETUP(); hook::HookAPI api(hookCtx); auto const burden = api.etxn_burden(); if (!burden) return burden.error(); return burden.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, util_sha512h, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx, view on current stack if (write_len < 32) return TOO_SMALL; if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length) || NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); auto const hash = api.util_sha512h(ripple::Slice{memory + read_ptr, read_len}); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, 32, hash.data(), 32, memory, memory_length); HOOK_TEARDOWN(); } // Given an serialized object in memory locate and return the offset and length // of the payload of a subfield of that object. Arrays are returned fully // formed. If successful returns offset and length joined as int64_t. Use // SUB_OFFSET and SUB_LENGTH to extract. DEFINE_HOOK_FUNCTION( int64_t, sto_subfield, uint32_t read_ptr, uint32_t read_len, uint32_t field_id) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); Bytes data{memory + read_ptr, memory + read_ptr + read_len}; auto const result = api.sto_subfield(data, field_id); if (!result) return result.error(); auto const& pair = result.value(); return (uint64_t(pair.first) << 32U) + (uint32_t)pair.second; HOOK_TEARDOWN(); } // Same as subfield but indexes into a serialized array DEFINE_HOOK_FUNCTION( int64_t, sto_subarray, uint32_t read_ptr, uint32_t read_len, uint32_t index_id) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); Bytes data{memory + read_ptr, memory + read_ptr + read_len}; auto const result = api.sto_subarray(data, index_id); if (!result) return result.error(); auto const& pair = result.value(); return (uint64_t(pair.first) << 32U) + (uint32_t)pair.second; HOOK_TEARDOWN(); } // Convert an account ID into a base58-check encoded r-address DEFINE_HOOK_FUNCTION( int64_t, util_raddr, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); auto const result = api.util_raddr(Bytes{memory + read_ptr, memory + read_ptr + read_len}); if (!result) return result.error(); auto const& raddr = result.value(); if (write_len < raddr.size()) return TOO_SMALL; WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, raddr.c_str(), raddr.size(), memory, memory_length); HOOK_TEARDOWN(); } // Convert a base58-check encoded r-address into a 20 byte account id DEFINE_HOOK_FUNCTION( int64_t, util_accid, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (write_len < 20) return TOO_SMALL; if (read_len > 49) return TOO_BIG; // RH TODO we shouldn't need to slice this input but the base58 routine // fails if we dont... maybe some encoding or padding that shouldnt be there // or maybe something that should be there char buffer[50]; for (int i = 0; i < read_len; ++i) buffer[i] = *(memory + read_ptr + i); buffer[read_len] = 0; std::string raddr{buffer}; hook::HookAPI api(hookCtx); auto const result = api.util_accid(raddr); if (!result) return result.error(); auto const& accountID = result.value(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, accountID.data(), 20, memory, memory_length); HOOK_TEARDOWN(); } /** * Check if any of the integer intervals overlap * [a,b, c,d, ... ] ::== {a-b}, {c-d}, ... * TODO: naive implementation consider revising if * will be called with > 4 regions */ inline bool overlapping_memory(std::vector regions) { for (uint64_t i = 0; i < regions.size() - 2; i += 2) { uint64_t a = regions[i + 0]; uint64_t b = regions[i + 1]; for (uint64_t j = i + 2; j < regions.size(); j += 2) { uint64_t c = regions[j + 0]; uint64_t d = regions[j + 1]; // only valid ways not to overlap are // // |===| |===| // a b c d // // or // |===| |===| // c d a b if (d <= a || b <= c) { // no collision continue; } return true; } } return false; } /** * Inject a field into an sto if there is sufficient space * Field must be fully formed and wrapped (NOT JUST PAYLOAD) * sread - source object * fread - field to inject */ DEFINE_HOOK_FUNCTION( int64_t, sto_emplace, uint32_t write_ptr, uint32_t write_len, uint32_t sread_ptr, uint32_t sread_len, uint32_t fread_ptr, uint32_t fread_len, uint32_t field_id) { HOOK_SETUP(); if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(sread_ptr, sread_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(fread_ptr, fread_len, memory_length)) return OUT_OF_BOUNDS; if (write_len < sread_len + fread_len) return TOO_SMALL; // RH TODO: put these constants somewhere (votable?) if (sread_len > 1024 * 16) return TOO_BIG; if (sread_len < 2) return TOO_SMALL; if (fread_len == 0 && fread_ptr == 0) { // this is a delete operation if (overlapping_memory( {write_ptr, write_ptr + write_len, sread_ptr, sread_ptr + sread_len})) return MEM_OVERLAP; } else { if (fread_len > 4096) return TOO_BIG; if (fread_len < 2) return TOO_SMALL; // check for buffer overlaps if (overlapping_memory( {write_ptr, write_ptr + write_len, sread_ptr, sread_ptr + sread_len, fread_ptr, fread_ptr + fread_len})) return MEM_OVERLAP; } hook::HookAPI api(hookCtx); Bytes source{memory + sread_ptr, memory + sread_ptr + sread_len}; std::optional field; if (fread_len > 0 && fread_ptr > 0) field = Bytes{memory + fread_ptr, memory + fread_ptr + fread_len}; auto const result = api.sto_emplace(source, field, field_id); if (!result) return result.error(); auto const& bytes = result.value(); if (bytes.size() > write_len) return INTERNAL_ERROR; WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, bytes.data(), bytes.size(), memory, memory_length); HOOK_TEARDOWN(); } /** * Remove a field from an sto if the field is present */ DEFINE_HOOK_FUNCTION( int64_t, sto_erase, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len, uint32_t field_id) { // proxy only no setup or teardown int64_t ret = sto_emplace( hookCtx, frameCtx, write_ptr, write_len, read_ptr, read_len, 0, 0, field_id); if (ret > 0 && ret == read_len) return DOESNT_EXIST; return ret; } DEFINE_HOOK_FUNCTION( int64_t, sto_validate, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack // RH TODO: see if an internal ripple function/class would do this better if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; Bytes data{read_ptr + memory, read_ptr + read_len + memory}; hook::HookAPI api(hookCtx); auto const result = api.sto_validate(data); if (!result) return result.error(); return result.value() ? 1 : 0; HOOK_TEARDOWN(); } // Validate either an secp256k1 signature or an ed25519 signature, using the // XRPLD convention for identifying the key type. Pointer prefixes: d = data, s // = signature, k = public key. DEFINE_HOOK_FUNCTION( int64_t, util_verify, uint32_t dread_ptr, uint32_t dread_len, uint32_t sread_ptr, uint32_t sread_len, uint32_t kread_ptr, uint32_t kread_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(dread_ptr, dread_len, memory_length) || NOT_IN_BOUNDS(sread_ptr, sread_len, memory_length) || NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length)) return OUT_OF_BOUNDS; ripple::Slice key{ reinterpret_cast(kread_ptr + memory), kread_len}; ripple::Slice data{ reinterpret_cast(dread_ptr + memory), dread_len}; ripple::Slice sig{ reinterpret_cast(sread_ptr + memory), sread_len}; hook::HookAPI api(hookCtx); auto const result = api.util_verify(data, sig, key); if (!result) return result.error(); return result.value() ? 1 : 0; HOOK_TEARDOWN(); } // Return the current fee base of the current ledger (multiplied by a margin) DEFINE_HOOK_FUNCNARG(int64_t, fee_base) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); return api.fee_base(); HOOK_TEARDOWN(); } // Return the fee base for a hypothetically emitted transaction from the current // hook based on byte count DEFINE_HOOK_FUNCTION( int64_t, etxn_fee_base, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; hook::HookAPI api(hookCtx); ripple::Slice tx{ reinterpret_cast(read_ptr + memory), read_len}; auto const fee_base = api.etxn_fee_base(tx); if (!fee_base) return fee_base.error(); return fee_base.value(); HOOK_TEARDOWN(); } // Populate an sfEmitDetails field in a soon-to-be emitted transaction DEFINE_HOOK_FUNCTION( int64_t, etxn_details, uint32_t write_ptr, uint32_t write_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; int64_t expected_size = 138U; if (!hookCtx.result.hasCallback) expected_size -= 22U; if (write_len < expected_size) return TOO_SMALL; hook::HookAPI api(hookCtx); auto const result = api.etxn_details(memory + write_ptr); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } // Guard function... very important. Enforced on SetHook transaction, keeps // track of how many times a runtime loop iterates and terminates the hook if // the iteration count rises above a preset number of iterations as determined // by the hook developer DEFINE_HOOK_FUNCTION(int32_t, _g, uint32_t id, uint32_t maxitr) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (hookCtx.guard_map.find(id) == hookCtx.guard_map.end()) hookCtx.guard_map[id] = 1; else hookCtx.guard_map[id]++; if (hookCtx.guard_map[id] > maxitr) { if (id > 0xFFFFU) { JLOG(j.trace()) << "HookInfo[" << HC_ACC() << "]: Macro guard violation. " << "Src line: " << (id & 0xFFFFU) << " " << "Macro line: " << (id >> 16) << " " << "Iterations: " << hookCtx.guard_map[id]; } else { JLOG(j.trace()) << "HookInfo[" << HC_ACC() << "]: Guard violation. " << "Src line: " << id << " " << "Iterations: " << hookCtx.guard_map[id]; } hookCtx.result.exitType = hook_api::ExitType::ROLLBACK; hookCtx.result.exitCode = GUARD_VIOLATION; return RC_ROLLBACK; } return 1; HOOK_TEARDOWN(); } #define RETURN_IF_INVALID_FLOAT(float1) \ { \ if (float1 < 0) \ return hook_api::INVALID_FLOAT; \ if (float1 != 0) \ { \ uint64_t mantissa = get_mantissa(float1); \ int32_t exponent = get_exponent(float1); \ if (mantissa < minMantissa || mantissa > maxMantissa || \ exponent > maxExponent || exponent < minExponent) \ return INVALID_FLOAT; \ } \ } DEFINE_HOOK_FUNCTION( int64_t, trace_float, uint32_t read_ptr, uint32_t read_len, int64_t float1) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx on // current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (!j.trace()) return 0; if (read_len > 128) read_len = 128; // omit \0 if present if (read_len > 0 && *((const char*)memory + read_ptr + read_len - 1) == '\0') read_len--; if (float1 == 0) { j.trace() << "HookTrace[" << HC_ACC() << "]: " << (read_len == 0 ? "" : std::string_view( (const char*)memory + read_ptr, read_len)) << ": Float 0*10^(0) "; return 0; } uint64_t man = get_mantissa(float1); int32_t exp = get_exponent(float1); bool neg = is_negative(float1); if (man < minMantissa || man > maxMantissa || exp < minExponent || exp > maxExponent) { j.trace() << "HookTrace[" << HC_ACC() << "]:" << (read_len == 0 ? "" : std::string_view( (const char*)memory + read_ptr, read_len)) << ": Float "; return 0; } j.trace() << "HookTrace[" << HC_ACC() << "]:" << (read_len == 0 ? "" : std::string_view( (const char*)memory + read_ptr, read_len)) << ": Float " << (neg ? "-" : "") << man << "*10^(" << exp << ")"; return 0; HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_set, int32_t exp, int64_t mantissa) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack hook::HookAPI api(hookCtx); auto const result = api.float_set(exp, mantissa); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, float_int, int64_t float1, uint32_t decimal_places, uint32_t absolute) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_int(float1, decimal_places, absolute); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_multiply, int64_t float1, int64_t float2) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); RETURN_IF_INVALID_FLOAT(float2); hook::HookAPI api(hookCtx); auto const result = api.float_multiply(float1, float2); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, float_mulratio, int64_t float1, uint32_t round_up, uint32_t numerator, uint32_t denominator) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_mulratio(float1, round_up, numerator, denominator); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_negate, int64_t float1) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); return api.float_negate(float1); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, float_compare, int64_t float1, int64_t float2, uint32_t mode) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); RETURN_IF_INVALID_FLOAT(float2); hook::HookAPI api(hookCtx); auto const result = api.float_compare(float1, float2, mode); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_sum, int64_t float1, int64_t float2) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); RETURN_IF_INVALID_FLOAT(float2); hook::HookAPI api(hookCtx); auto const result = api.float_sum(float1, float2); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, float_sto, uint32_t write_ptr, uint32_t write_len, uint32_t cread_ptr, uint32_t cread_len, uint32_t iread_ptr, uint32_t iread_len, int64_t float1, uint32_t field_code) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack std::optional currency; std::optional issuer; // bounds and argument checks if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; if (cread_len == 0) { if (cread_ptr != 0) return INVALID_ARGUMENT; } else { if (cread_len != 20 && cread_len != 3) return INVALID_ARGUMENT; if (NOT_IN_BOUNDS(cread_ptr, cread_len, memory_length)) return OUT_OF_BOUNDS; currency = parseCurrency(memory + cread_ptr, cread_len); if (!currency) return INVALID_ARGUMENT; } if (iread_len == 0) { if (iread_ptr != 0) return INVALID_ARGUMENT; } else { if (iread_len != 20) return INVALID_ARGUMENT; if (NOT_IN_BOUNDS(iread_ptr, iread_len, memory_length)) return OUT_OF_BOUNDS; issuer = AccountID::fromVoid(memory + iread_ptr); } RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_sto(currency, issuer, float1, field_code, write_len); if (!result) return result.error(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, (*result).data(), (*result).size(), memory, memory_length); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, float_sto_set, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (read_len < 8) return NOT_AN_OBJECT; if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; Bytes data{read_ptr + memory, read_ptr + read_len + memory}; hook::HookAPI api(hookCtx); auto const result = api.float_sto_set(data); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_divide, int64_t float1, int64_t float2) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); RETURN_IF_INVALID_FLOAT(float2); hook::HookAPI api(hookCtx); auto const result = api.float_divide(float1, float2); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCNARG(int64_t, float_one) { hook::HookAPI api(hookCtx); return api.float_one(); } DEFINE_HOOK_FUNCTION(int64_t, float_invert, int64_t float1) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_invert(float1); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_mantissa, int64_t float1) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_mantissa(float1); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_sign, int64_t float1) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); return api.float_sign(float1); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_log, int64_t float1) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_log(float1); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, float_root, int64_t float1, uint32_t n) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack RETURN_IF_INVALID_FLOAT(float1); hook::HookAPI api(hookCtx); auto const result = api.float_root(float1, n); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, otxn_param, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; Bytes paramName{read_ptr + memory, read_ptr + read_len + memory}; hook::HookAPI api(hookCtx); auto const result = api.otxn_param(paramName); if (!result) return result.error(); auto const& val = result.value(); if (val.size() > write_len) return TOO_SMALL; WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, val.data(), val.size(), memory, memory_length); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, hook_param, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; Bytes paramName{read_ptr + memory, read_ptr + read_len + memory}; hook::HookAPI api(hookCtx); auto const result = api.hook_param(paramName); if (!result) return result.error(); auto const& val = result.value(); WRITE_WASM_MEMORY_AND_RETURN( write_ptr, write_len, val.data(), val.size(), memory, memory_length); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, hook_param_set, uint32_t read_ptr, uint32_t read_len, uint32_t kread_ptr, uint32_t kread_len, uint32_t hread_ptr, uint32_t hread_len) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length) || NOT_IN_BOUNDS(kread_ptr, kread_len, memory_length) || NOT_IN_BOUNDS(hread_ptr, hread_len, memory_length)) return OUT_OF_BOUNDS; { // those checks are also done in the HookAPI // but we need to check them here too for backwards compatibility if (kread_len < 1) return TOO_SMALL; if (kread_len > hook::maxHookParameterKeySize()) return TOO_BIG; if (hread_len != 32) return INVALID_ARGUMENT; if (read_len > hook::maxHookParameterValueSize()) return TOO_BIG; } Bytes paramName{kread_ptr + memory, kread_ptr + kread_len + memory}; Bytes paramValue{read_ptr + memory, read_ptr + read_len + memory}; ripple::uint256 hash = ripple::uint256::fromVoid(memory + hread_ptr); hook::HookAPI api(hookCtx); auto const result = api.hook_param_set(hash, paramName, paramValue); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, hook_skip, uint32_t read_ptr, uint32_t read_len, uint32_t flags) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, // hookCtx on current stack if (NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (read_len != 32) return INVALID_ARGUMENT; ripple::uint256 hash = ripple::uint256::fromVoid(memory + read_ptr); hook::HookAPI api(hookCtx); auto const result = api.hook_skip(hash, flags); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCNARG(int64_t, hook_pos) { hook::HookAPI api(hookCtx); return api.hook_pos(); } DEFINE_HOOK_FUNCNARG(int64_t, hook_again) { HOOK_SETUP(); hook::HookAPI api(hookCtx); auto const result = api.hook_again(); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION(int64_t, meta_slot, uint32_t slot_into) { HOOK_SETUP(); hook::HookAPI api(hookCtx); auto const result = api.meta_slot(slot_into); if (!result) return result.error(); return result.value(); HOOK_TEARDOWN(); } DEFINE_HOOK_FUNCTION( int64_t, xpop_slot, uint32_t slot_into_tx, uint32_t slot_into_meta) { HOOK_SETUP(); hook::HookAPI api(hookCtx); auto const result = api.xpop_slot(slot_into_tx, slot_into_meta); if (!result) return result.error(); return std::get<0>(result.value()) << 16U | std::get<1>(result.value()); HOOK_TEARDOWN(); } /* DEFINE_HOOK_FUNCTION( int64_t, str_find, uint32_t hread_ptr, uint32_t hread_len, uint32_t nread_ptr, uint32_t nread_len, uint32_t mode, uint32_t n) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, hookCtx on current stack if (NOT_IN_BOUNDS(hread_ptr, hread_len, memory_length) || NOT_IN_BOUNDS(nread_ptr, nread_len, memory_length)) return OUT_OF_BOUNDS; if (hread_len > 32*1024) return TOO_BIG; if (nread_len > 256) return TOO_BIG; if (hread_len == 0) return TOO_SMALL; if (mode > 3) return INVALID_ARGUMENT; if (n >= hread_len) return INVALID_ARGUMENT; // overload for str_len if (nread_ptr == 0) { if (nread_len != 0) return INVALID_ARGUMENT; return strnlen((const char*)(hread_ptr + memory), hread_len); } bool insensitive = mode % 2 == 1; // just the haystack based on where to start search from hread_ptr += n; hread_len -= n; if (NOT_IN_BOUNDS(hread_ptr, hread_len, memory_length)) return OUT_OF_BOUNDS; std::string_view haystack{(const char*)(memory + hread_ptr), hread_len}; if (mode < 2) { // plain string mode: 0 == case sensitive std::string_view needle{(const char*)(memory + nread_ptr), nread_len}; auto found = std::search( haystack.begin(), haystack.end(), needle.begin(), needle.end(), insensitive ? [](char ch1, char ch2) { return std::toupper(ch1) == std::toupper(ch2); } : [](char ch1, char ch2) { return ch1 == ch2; } ); if (found == haystack.end()) return DOESNT_EXIST; return found - haystack.begin(); } else { // regex mode mode: 2 == case sensitive return NOT_IMPLEMENTED; } } DEFINE_HOOK_FUNCTION( int64_t, str_replace, uint32_t write_ptr, uint32_t write_len, uint32_t hread_ptr, uint32_t hread_len, uint32_t nread_ptr, uint32_t nread_len, uint32_t rread_ptr, uint32_t rread_len, uint32_t mode, uint32_t n) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, hookCtx on current stack if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length) || NOT_IN_BOUNDS(hread_ptr, hread_len, memory_length) || NOT_IN_BOUNDS(nread_ptr, nread_len, memory_length) || NOT_IN_BOUNDS(rread_ptr, rread_len, memory_length)) return OUT_OF_BOUNDS; if (hread_len > 32*1024) return TOO_BIG; if (nread_len > 256) return TOO_BIG; if (hread_len == 0) return TOO_SMALL; if (nread_len == 0) return TOO_SMALL; return NOT_IMPLEMENTED; } DEFINE_HOOK_FUNCTION( int64_t, str_compare, uint32_t fread_ptr, uint32_t fread_len, uint32_t sread_ptr, uint32_t sread_len, uint32_t mode) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, hookCtx on current stack if (NOT_IN_BOUNDS(fread_ptr, fread_len, memory_length) || NOT_IN_BOUNDS(sread_ptr, sread_len, memory_length)) return OUT_OF_BOUNDS; if (mode > 1) return INVALID_ARGUMENT; if (fread_len > 255 || sread_len > 255) return TOO_BIG; if (fread_len == 0 || sread_len == 0) return TOO_SMALL; bool insensitive = mode == 1; const char* it1 = (const char*)(memory + fread_ptr); const char* it2 = (const char*)(memory + sread_ptr); const char* end1 = it1 + fread_len; const char* end2 = it2 + sread_len; if (insensitive) for(; it1 < end1 && it2 < end2; ++it1, ++it2) { if (*it1 < *it2) return 0; if (*it1 > *it2) return 2; } else for(; it1 < end1 && it2 < end2; ++it1, ++it2) { if (std::tolower(*it1) < std::tolower(*it2)) return 0; if (std::tolower(*it1) > std::tolower(*it2)) return 2; } return 1; } inline ssize_t findNul(const void* vptr, size_t len) { const char* ptr = (const char*)vptr; ssize_t found = -1; for (size_t i = 0; i < len; ++i) if (ptr[i] == '\0') { found = i; break; } return found; } // Overloaded API: // If operand_type == 0: // Copy read_ptr/len to write_ptr/len, do nothing else. // If operand_type > 0: // Copy read_ptr/len to write_ptr/len up to nul terminator, then // If operand_type == 1: // Concatenate operand as an i32 to the end of the string in write_ptr // If operand_type == 2: // Concatenate operand as an u32 to the end of the string in write_ptr // If operand_type == 3/4: // As above with i/u64 // If operand_type == 5: // As above with operand interpreted as an XFL. Top 4 bits of operand_type are // precision for this type. // If operand_type == 6: // Interpret the four most significant bytes of operand as a ptr, and the // four least significant bytes as a length. // Write the bytes at this location to the end of write_ptr. // Finally: // Add a nul terminator to the end of write_ptr. DEFINE_HOOK_FUNCTION( int64_t, str_concat, uint32_t write_ptr, uint32_t write_len, uint32_t read_ptr, uint32_t read_len, uint64_t operand, uint32_t operand_type) { HOOK_SETUP(); // populates memory_ctx, memory, memory_length, applyCtx, hookCtx on current stack if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length) || NOT_IN_BOUNDS(read_ptr, read_len, memory_length)) return OUT_OF_BOUNDS; if (write_len > 1024 || read_len > 1024) return TOO_BIG; if (write_len == 0 || read_len == 0) return TOO_SMALL; if (write_len < read_len) return TOO_SMALL; uint8_t precision = (uint8_t)((operand_type & 0xF000U) >> 28U); operand_type &= 0xFU; if (operand_type > 6) return INVALID_ARGUMENT; //copy operation if (operand_type == 0) { size_t bytecount = std::min(write_len, read_len); memcpy(memory + write_ptr, memory + read_ptr, bytecount); return bytecount; } ssize_t nuloffset = findNul(memory + read_ptr, read_len); if (nuloffset < 0) return NOT_A_STRING; else if (write_len <= nuloffset) return TOO_SMALL; uint32_t write_start = write_ptr; // copy the lhs into the write buffer if (write_ptr != read_ptr) { size_t bytecount = std::min(write_len, std::min(read_len, (uint32_t)nuloffset)); memcpy(memory + write_ptr, memory + read_ptr, bytecount); write_ptr += bytecount; write_len -= bytecount; } else { write_ptr += nuloffset; write_len -= nuloffset; } if (write_len == 0) return TOO_SMALL; const ssize_t lhscount = write_ptr - write_start; // defensive check if (NOT_IN_BOUNDS(write_ptr, write_len, memory_length)) return OUT_OF_BOUNDS; auto write_num = [&](T i, const char* fmt) -> ssize_t { char buf[128]; int result = snprintf(buf, 128, fmt, i); if (result < 0) return TOO_BIG; if (result + 1 > write_len) return TOO_SMALL; // defensive size_t bytecount = std::min((uint32_t)result, std::min(127U, write_len - 1)); memcpy(memory + write_ptr, buf, bytecount); *(memory + write_ptr + bytecount) = '\0'; return bytecount + 1 + lhscount; }; // rhs switch (operand_type) { case 1: return write_num(( int32_t)operand, "%d"); case 2: return write_num((uint32_t)operand, "%u"); case 3: return write_num(( int64_t)operand, "%lld"); case 4: return write_num((uint64_t)operand, "%llu"); case 5: { // XFL int32_t e = get_exponent((int64_t)operand); uint64_t m = get_mantissa((int64_t)operand); bool neg = is_negative((int64_t)operand); double out = ((double)m) * pow(10, e); if (neg) out *= -1.0f; if (precision > 0) { char fmtstr[10]; fmtstr[0] = '%'; fmtstr[1] = '.'; snprintf(fmtstr+2, 8, "%dg", precision); return write_num(out, fmtstr); } return write_num(out, "%g"); } case 6: { // STR uint32_t ptr = (operand) >> 32U; uint32_t len = (operand) & 0xFFFFFFFFU; if (NOT_IN_BOUNDS(ptr, len, memory_length)) return OUT_OF_BOUNDS; ssize_t nul = findNul(memory + ptr, len); if (nul < 0) return NOT_A_STRING; if (nul > write_len - 1) return TOO_SMALL; // defensive size_t bytecount = std::min((uint32_t)nul, std::min(len, write_len - 1)); memcpy(memory + write_ptr, memory + ptr, bytecount); *(memory + write_ptr + bytecount) = '\0'; return bytecount + 1 + lhscount; } default: return INVALID_ARGUMENT; } } */