Payments do not remove unfunded and expired offers when a payment
fails. However, offer crossing is now using the payment engine and needs
to know what offers were found in a removable state, even on failure.
Replace Journal public data members with member function accessors
in order to make Journal lighter weight. The change makes a
Journal cheaper to pass by value.
Also add missing stream checks (e.g., calls to JLOG) to avoid
text processing that ultimately will not be stored in the log.
Add a new algorithm for finding the liquidity in a payment path. There
is still a reverse and forward pass, but the forward pass starts at the
limiting step rather than the payment source. This insures the limiting
step is completely consumed rather than potentially leaving a 'dust'
amount in the forward pass.
Each step in a payment is either a book step, a direct step (account to
account step), or an xrp endpoint. Each step in the existing
implementation is a triple, where each element in the triple is either
an account of a book, for a total of eight step types.
Since accounts are considered in pairs, rather than triples, transfer
fees are handled differently. In V1 of payments, in the payment path
A -> gw ->B, if A redeems to gw, and gw issues to B, a transfer fee is
changed. In the new code, a transfer fee is changed even if A issues to
gw.
When placing an offer that sells XRP, if the account's balance was
low enough that paying the transaction fee would drop the balance
below the reserve, the transaction should return tecUNFUNDED_OFFER.
The existing implementation returned a tesSUCCESS instead. Although
the net result is the same as far as the transaction's effects are
concerned (the offer is not placed on the books and the transaction
fee is charged) the incorrect result code makes deciphering metadata
difficult.
Add unit test that verifies the new behavior.
* Test whether offers which either already below the reserve (or
would go below during processing) can execute if they cross.
* Test the "Fill or Kill" and "Immediate or Cancel" flags.
With the addition of multisigning there are a variety of reasons
a signature may fail. We now return a more descriptive message
for the reason certain signature checks fail.
The RippleAddress class was used to represent a number of fundamentally
different types: account public keys, account secret keys, node public
keys, node secret keys, seeds and generators.
The class is replaced by the following types:
* PublicKey for account and node public keys
* SecretKey for account and node private keys
* Generator for generating secp256k1 accounts
* Seed for account, node and generator seeds
tapENABLE_TESTING is removed from checks, and feature enablement
is the sole method for activating features. Unit tests are updated
to enable required features in the construction of the Env.
Tickets are put on a feature switch instead of a build macro.
These changes eliminate the Env's OpenLedger member and make
transactions go through the Application associated with each
instance of the Env, making the unit tests follow a code path
closer to the production code path.
* Add Env::open() for open ledger
* Add Env::now()
* Rename to Env::current()
* Inject ManualTimeKeeper in Env Application
* Make Config mutable
* Move setupConfigForUnitTests
* Launch Env Application thread
* Use Application ledgers in Env
* Adjust Application clock on ledger close
* Adjust close time for close resolution
* Scrub obsolete clock types
* Enable features via Env ctor
* Make Env::master Account object global
* Cache SSL context (performance)
* Cache master wallet keys in Ledger ctor (performance)
This is designed for use by proxies in front of rippled. Configured IPs
can forward identifying user data in HTTP headers, including
user name and origin IP. If the user name exists, then resource limits
are lifted for that session. However, administrative commands are still
reserved only for administrative sessions.
Very small payment could fail when STAmount::mulRound underflowed
and returned zero, when it should have rounded up to the smallest
representable value.
* Move InboundTransactions to app/ledger
* Move TransactionAcquire to app/ledger
* Move LocalTxs to app/ledger
* Move Transaction to app/misc
* Move TransactionMaster to app/ledger
The first few transactions are added to the open ledger at
the base fee (ie. 10 drops). Once enough transactions are
added, the required fee will jump dramatically. If additional
transactions are added, the fee will grow exponentially.
Transactions that don't have a high enough fee to be applied to
the ledger are added to the queue in order from highest fee to
lowest. Whenever a new ledger is accepted as validated, transactions
are first applied from the queue to the open ledger in fee order
until either all transactions are applied or the fee again jumps
too high for the remaining transactions.
Current implementation is restricted to one transaction in the
queue per account. Some groundwork has been laid to expand in
the future.
Note that this fee logic escalates independently of the load-based
fee logic (ie. LoadFeeTrack). Submitted transactions must meet
the load fee to be considered for the queue, and must meet both
fees to be put into open ledger.
* Remove cxx14 compatibility layer from ripple
* Update travis to clang 3.6 and drop gcc 4.8
* Remove unneeded beast CXX14 defines
* Do not run clang build with gdb with travis
* Update circle ci to clang 3.6 & gcc-5
* Don't run rippled in gdb, clang builds crash gdb
* Staticly link libstdc++, boost, ssl, & protobuf
* Support builds on ubuntu 15.10
o Remove warning written to log by sign_for command.
o The sign_for RPC command previously only worked in the
"json sign_for" form. The command now works as a straight
"sign_for". The "offline" parameter also works.
o Don't autofill Fee or Paths when signing offline.
The digest for a transaction (its transaction ID, or tid) is
computed once upon constructed when the STTx is deserialized.
Subsequent calls to retrieve the digest use the cached value.
Any code which modifies the STTx and then attempts to
retrieve the digest will terminate the process with a
logic error contract violation.
* Nested types removed
* All STTx are contained as const
(Except in transaction sign, which must modify)
* tid in STTx is computed once on deserialization
* All checks flow through ripple::checkValidity, which transparently caches result flags.
* All external transaction submission code paths use checkValidity.
* SF_SIGGOOD flag no longer appears outside of HashRouter / checkValidity.
* Validity can be forced in known or trusted scenarios.
* Remove ripple::RippleMutex and ripple::RippleRecursiveMutex
and use std::mutex and std::recursive_mutex respectively.
* Use std::lock_guard instead of std::unique_lock when the
additional features of std::unique_lock are not needed.
On a SusPayFinish, a check is added to make sure that the
presented digest matches the digest in the SusPay ledger
entry. Another check is added to make Finish transactions
containing sfProof fields that are not 32 bytes malformed.
This includes regression unit tests.
Eventually multisign will need to be enabled onto the network, at
which point compiling it in or out will no longer be an option.
In preparation, the compile guards are removed and multisign is
being enabled with a Feature.
You can locally enable a Feature using your config file. To
enable multisign with your config file add a section like this:
[features]
MultiSign
The exact spelling and capitalization of both "features" and
"MultiSign" is important. If you don't get those right multisign
will not be enabled.
There is a minor issue. The "sign_for" and "submit_multisigned"
RPC commands are only enabled if multisign is enabled. However
those commands are still shown in the help message even if
multisign is disabled. This is because the code that produces
the help message doesn't read the config file (where the Features
are kept). This problem will become irrelevant once multisign is
enabled onto the network.
An account can be made signable with only its regular key by
disabling the master key. Now an account can also be made
exclusively multisigned by both disabling the master key and
having no regular key.
In order to prevent an account from becoming unsignable the
network uses these rules:
o An account can always add or replace a regular key or a
SignerList as long as the fee and reserve can be met by the
account.
o The master key on an account can be disabled if either a
regular key or a SignerList (or both) is present on the account.
Either the regular key or the SignerList can be used to
re-enable the master key later if that is desired.
o The regular key on an account may only be removed if either the
master key is enabled or the account has a SignerList (or both).
o The SignerList on an account may only be removed if either the
master key is enabled or a regular key is present (or both).
As a consequence of this change, the tecMASTER_DISABLED error
code is renamed to tecNO_ALTERNATIVE_KEY. The error code number
(130 decimal) is unchanged.
Multisigned transactions place a higher load on the network than
non-multisigned transactions, requiring a higher fee.
- A non-multisigned transaction always has a minimum fee - the
network base fee.
- A multisigned transaction has a minimum fee equal to the number
of multisigners plus one times the network base fee.