This introduces a considerable change in the way that peers handshake. Instead
of sending the TMHello protocol message, the peer making the connection (client
role) sends an HTTP Upgrade request along with some special headers. The peer
acting in the server role sends an HTTP response completing the upgrade and
transition to RTXP (Ripple Transaction Protocol, a.k.a. peer protocol). If the
server has no available slots, then it sends a 503 Service Unavailable HTTP
response with a JSON content-body containing IP addresses of other servers to
try. The information that was previously contained in the TMHello message is
now communicated in the HTTP request and HTTP response including the secure
cookie to prevent man in the middle attacks. This information is documented
in the overlay README.md file.
To prevent disruption on the network, the handshake feature is rolled out in
two parts. This is part 1, where new servents acting in the client role will
send the old style TMHello handshake, and new servents acting in the server
role can automatically detect and accept both the old style TMHello handshake,
or the HTTP request accordingly. This detection happens in the Server module,
which supports the universal port. An experimental .cfg setting allows clients
to instead send HTTP handshakes when establishing peer connections. When this
code has reached a significant fraction of the network, these clients will be
able to establish a connection to the Ripple network using HTTP handshakes.
These changes clean up the handling of the socket for peers. It fixes a long
standing bug in the graceful close sequence, where remaining data such as the
IP addresses of other servers to try, did not get sent. Redundant state
variables for the peer are removed and the treatment of completion handlers is
streamlined. The treatment of SSL short reads and secure shutdown is also fixed.
Logging for the peers in the overlay module are divided into two partitions:
"Peer" and "Protocol". The Peer partition records activity taking place on the
socket while the Protocol partition informs about RTXP specific actions such as
transaction relay, fetch packs, and consensus rounds. The severity on the log
partitions may be adjusted independently to diagnose problems. Every log
message for peers is prefixed with a small, unique integer id in brackets,
to accurately associate log messages with peers.
HTTP handshaking is the first step in implementing the Hub and Spoke feature,
which transforms the network from a homogeneous network where all peers are
the same, into a structured network where peers with above average capabilities
in their ability to process ledgers and transactions self-assemble to form a
backbone of high powered machines which in turn serve a much larger number of
'leaves' with lower capacities with a goal to improve the number of
transactions that may be retired over time.
Split out and rename STValidation
Split out and rename STBlob
Split out and rename STAccount
Split out STPathSet
Split STVector256 and move UintTypes to protocol/
Rename to STBase
Rename to STLedgerEntry
Rename to SOTemplate
Rename to STTx
Remove obsolete AgedHistory
Remove types.h and add missing includes
Remove unnecessary includes in app.h
Remove unnecessary includes in app.h
Remove include app.h from app1.cpp
This transforms a ConstBufferSequence into a new ConstBufferSequence whose
data is encoded according to the Content transfer encoding rules of RFC2616.
The implementation does not copy any memory.
* Use signal_set as cross platform way of handling SIGINT
* Remove polling on main thread for shutdown.
* Add extra logging for received signal.
* Clean up exit handling on error in setup routines.
* Reuse isStopped() from Stoppable for status (could be isStopping() instead).
* Ctrl-C should now work for standalone mode as well on Windows.
Also small fixes to Resolver:
* Add Resolver prefix to logging.
* Fix AsyncObject::removeReference() logic.
* Fix work remaining logic.
Transactions that return tesSUCCESS have only been accepted and
propagated on the Ripple network and should not be considered
final until they have been included in a validated ledger.
* Remove CKey dependency on RippleAddress
* Create RAII ec_key wrapper that hides EC_KEY and other OpenSSL details
* Move CKey member logic into free functions
* Delete CKey class
* Rename units that are no longer CKey-related
* Delete code that was unused
When the ServerHandler is constructed before the Overlay, an incoming
connection received after the server's listening ports have been opened
but before the Overlay object has been created causes a crash.
The RPC account_lines and account_offers commands respond with the correct
ledger info. account_offers, account_lines and book_offers allow admins
unlimited size on the limit param. Specifying a negative value on limit clamps
to the minimum value allowed. Incorrect types for limit are correctly reported
in the result.
PeerImp::detach had a default argument graceful=true which did not
correctly close the socket and cause the Overlay to often hang on exit.
The logging for Overlay and Peers has been reworked. All the socket activity
is logged to Peers while protocol activity goes to Protocol. Every log line
is prefixed by a small integer ID unique to the connection.
* Removed graceful PeerImp::detach option
* Peer and Protocol log message handle respective types of logging
* Log messages prefixed with peer unique integer
* Prevent call to timer ancel from throwing an exception
* New src/ripple/crypto and src/ripple/protocol directories
* Merged src/ripple/common into src/ripple/basics
* Move resource/api files up a level
* Add headers for "include what you use"
* Normalized include guards
* Renamed to JsonFields.h
* Remove obsolete files
* Remove net.h unity header
* Remove resource.h unity header
* Removed some deprecated unity includes
The creation of self-signed certificates slows down the command
line client when launched repeatedly during unit test.
* Contexts are no longer generated for the command line client
* A port with no secure protocols generates an empty context
* Allow pathfinding requests where the starting currency may have
multiple issuers.
* Cache paths over all issuers to avoid repeating work.
* Clear the ledger checkpoint in one retry case.
* Add an additional node at the front of paths when the starting issuer
is not the source account.
* Restrict to 80-columns and other style cleanups.
* Make pathfinding a free function and hide the class Pathfinder.
* Split off unrelated utility functions into separate files.
Conflicts:
src/ripple/rpc/handlers/RipplePathFind.cpp
This changes the behavior and configuration specification of the listening
ports that rippled uses to accept incoming connections for the supported
protocols: peer (Peer Protocol), http (JSON-RPC over HTTP), https (JSON-RPC)
over HTTPS, ws (Websockets Clients), and wss (Secure Websockets Clients).
Each listening port is now capable of handshaking in multiple protocols
specified in the configuration file (subject to some restrictions). Each
port can be configured to provide its own SSL certificate, or to use a
self-signed certificate. Ports can be configured to share settings, this
allows multiple ports to use the same certificate or values. The list of
ports is dynamic, administrators can open as few or as many ports as they
like. Authentication settings such as user/password or admin user/admin
password (for administrative commands on RPC or Websockets interfaces) can
also be specified per-port.
As the configuration file has changed significantly, administrators will
need to update their ripple.cfg files and carefully review the documentation
and new settings.
Changes:
* rippled-example.cfg updated with documentation and new example settings:
All obsolete websocket, rpc, and peer configuration sections have been
removed, the documentation updated, and a new documented set of example
settings added.
* HTTP::Writer abstraction for sending HTTP server requests and responses
* HTTP::Handler handler improvements to support Universal Port
* HTTP::Handler handler supports legacy Peer protocol handshakes
* HTTP::Port uses shared_ptr<boost::asio::ssl::context>
* HTTP::PeerImp and Overlay use ssl_bundle to support Universal Port
* New JsonWriter to stream message and body through HTTP server
* ServerHandler refactored to support Universal Port and legacy peers
* ServerHandler Setup struct updated for Universal Port
* Refactor some PeerFinder members
* WSDoor and Websocket code stores and uses the HTTP::Port configuration
* Websocket autotls class receives the current secure/plain SSL setting
* Remove PeerDoor and obsolete Overlay peer accept code
* Remove obsolete RPCDoor and synchronous RPC handling code
* Remove other obsolete classes, types, and files
* Command line tool uses ServerHandler Setup for port and authorization info
* Fix handling of admin_user, admin_password in administrative commands
* Fix adminRole to check credentials for Universal Port
* Updated Overlay README.md
* Overlay sends IP:port redirects on HTTP Upgrade peer connection requests:
Incoming peers who handshake using the HTTP Upgrade mechanism don't get
a slot, and always get HTTP Status 503 redirect containing a JSON
content-body with a set of alternate IP and port addresses to try, learned
from PeerFinder. A future commit related to the Hub and Spoke feature will
change the response to grant the peer a slot when there are peer slots
available.
* HTTP responses to outgoing Peer connect requests parse redirect IP:ports:
When the [overlay] configuration section (which is experimental) has
http_handshake = 1, HTTP redirect responses will have the JSON content-body
parsed to obtain the redirect IP:port addresses.
* Use a single io_service for HTTP::Server and Overlay:
This is necessary to allow HTTP::Server to pass sockets to and from Overlay
and eventually Websockets. Unfortunately Websockets is not so easily changed
to use an externally provided io_service. This will be addressed in a future
commit, and is one step necessary ease the restriction on ports configured
to offer Websocket protocols in the .cfg file.
This fixes a case where stop can sometimes skip calling close on some
I/O objects or crash in a rare circumstance where a connection is in the
process of being torn down at the exact time the server is stopped. When
the acceptor receives errors, it logs the error and continues listening
instead of stopping.
The stop sequence for Overlay had a race condition where autoconnect could
be called after close_all, resulting in a hang on exit. This resolves the
problem by putting the close and timer operations on a strand:
* Rename some Overlay members
* Put close on strand and tidy up members
* Use completion handler instead of coroutine for timer
* Use App io_service in PeerFinder