This commit expands the detection capabilities of the Byzantine
validation detector. Prior to this commit, only validators that
were on a server's UNL were monitored. Now, all the validations
that a server receives are passed through the detector.
- Simplify and consolidate code for parsing hex input.
- Replace beast::endian::order with boost::endian::order.
- Simplify CountedObject code.
- Remove pre-C++17 workarounds in favor of C++17 based solutions.
- Improve `base_uint` and simplify its hex-parsing interface by
consolidating the `SexHex` and `SetHexExact` methods into one
API: `parseHex` which forces callers to verify the result of
the operation; as a result some public-facing API endpoints
may now return errors when passed values that were previously
accepted.
- Remove the simple fallback implementations of SHA2 and RIPEMD
introduced to reduce our dependency on OpenSSL. The code is
slow and rarely, if ever, exercised and we rely on OpenSSL
functionality for Boost.ASIO as well.
* Document delete_batch, back_off_milliseconds, age_threshold_seconds.
* Convert those time values to chrono types.
* Fix bug that ignored age_threshold_seconds.
* Add a "recovery buffer" to the config that gives the node a chance to
recover before aborting online delete.
* Add begin/end log messages around the SQL queries.
* Add a new configuration section: [sqlite] to allow tuning the sqlite
database operations. Ignored on full/large history servers.
* Update documentation of [node_db] and [sqlite] in the
rippled-example.cfg file.
Resolves#3321
A deliberately malformed token can cause the server to crash during
startup. This is not remotely exploitable and would require someone
with access to the configuration file of the server to make changes
and then restart the server.
Acknowledgements:
Guido Vranken for responsibly disclosing this issue.
Bug Bounties and Responsible Disclosures:
We welcome reviews of the rippled code and urge researchers to
responsibly disclose any issues they may find.
Ripple is generously sponsoring a bug bounty program for the
rippled project. For more information please visit:
https://ripple.com/bug-bounty
* Whenever a node downloads a new VL, send it to all peers that
haven't already sent or received it. It also saves it to the
database_dir as a Json text file named "cache." plus the public key of
the list signer. Any files that exist for public keys provided in
[validator_list_keys] will be loaded and processed if any download
from [validator_list_sites] fails or no [validator_list_sites] are
configured.
* Whenever a node receives a broadcast VL message, it treats it as if
it had downloaded it on it's own, broadcasting to other peers as
described above.
* Because nodes normally download the VL once every 5 minutes, a single
node downloading a VL with an updated sequence number could
potentially propagate across a large part of a well-connected network
before any other nodes attempt to download, decreasing the amount of
time that different parts of the network are using different VLs.
* Send all of our current valid VLs to new peers on connection.
This is probably the "noisiest" part of this change, but will give
poorly connected or poorly networked nodes the best chance of syncing
quickly. Nodes which have no http(s) access configured or available
can get a VL with no extra effort.
* Requests on the peer port to the /vl/<pubkey> endpoint will return
that VL in the same JSON format as is used to download now, IF the
node trusts and has a valid instance of that VL.
* Upgrade protocol version to 2.1. VLs will only be sent to 2.1 and
higher nodes.
* Resolves#2953
Manifests which are revoked can include ephemeral keys although doing
so does not make sense: a revoked manifest isn't used for signing and
so don't need to define an ephemeral key.
The new 'Domain' field allows validator operators to associate a domain
name with their manifest in a transparent and independently verifiable
fashion.
It is important to point out that while this system can cryptographically
prove that a particular validator claims to be associated with a domain
it does *NOT* prove that the validator is, actually, associated with that
domain.
Domain owners will have to cryptographically attest to operating particular
validators that claim to be associated with that domain. One option for
doing so would be by making available a file over HTTPS under the domain
being claimed, which is verified separately (e.g. by ensuring that the
certificate used to serve the file matches the domain being claimed) and
which contains the long-term master public keys of validator(s) associated
with that domain.
Credit for an early prototype of this idea goes to GitHub user @cryptobrad
who introduced a PR that would allow a validator list publisher to attest
that a particular validator was associated with a domain. The idea may be
worth revisiting as a way of verifying the domain name claimed by the
validator's operator.
* RIPD-1617, RIPD-1619, RIPD-1621:
Verify serialized public keys more strictly before
using them.
* RIPD-1618:
* Simplify the base58 decoder logic.
* Reduce the complexity of the base58 encoder and
eliminate a potential out-of-bounds memory access.
* Improve type safety by using an `enum class` to
enforce strict type checking for token types.
* RIPD-1616:
Avoid calling `memcpy` with a null pointer even if the
size is specified as zero, since it results in undefined
behavior.
Acknowledgements:
Ripple thanks Guido Vranken for responsibly disclosing these
issues.
Bug Bounties and Responsible Disclosures:
We welcome reviews of the rippled code and urge researchers
to responsibly disclose any issues that they may find. For
more on Ripple's Bug Bounty program, please visit:
https://ripple.com/bug-bounty
Allow manifest revoking validator keys to be stored in a separate
[validator_key_revocation] config field, so the validator can run
again with new keys and token.
Instead of specifying a static list of trusted validators in the config
or validators file, the configuration can now include trusted validator
list publisher keys.
The trusted validator list and quorum are now reset each consensus
round using the latest validator lists and the list of recent
validations seen. The minimum validation quorum is now only
configurable via the command line.