Beast.WebSocket provides developers with a robust WebSocket
implementation built on Boost.Asio with a consistent asynchronous
model using a modern C++ approach.
New classes are introduced to represent HTTP messages and their
associated bodies. The parser interface is reworked to use CRTP,
error codes, and trait checks.
New classes:
* basic_headers
Models field/value pairs in a HTTP message.
* message
Models a HTTP message, body behavior defined by template argument.
Parsed message carries metadata generated during parsing.
* parser
Produces parsed messages.
* empty_body, string_body, basic_streambuf_body
Classes used to represent content bodies in various ways.
New functions:
* read, async_read, write, async_write
Read and write HTTP messages on a socket.
New concepts:
* Body: Represents the HTTP Content-Body.
* Field: A HTTP header field.
* FieldSequence: A forward sequence of fields.
* Reader: Parses a Body from a stream of bytes.
* Writer: Serializes a Body to buffers.
basic_parser changes:
* add write methods which throw exceptions instead
* error_code passed via parameter instead of return value
* fold private member calls into existing callbacks
* basic_parser uses CRTP instead of virtual members
* add documentation on Derived requirements for CRTP
impl/http-parser changes:
* joyent renamed to nodejs to reflect upstream changes
New classes:
class async_completion:
Helper class for implementing asynchronous initiation functions.
See n3964:
Library Foundations for Asynchronous Operations, Revision 1
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3964.pdf
class basic_streambuf:
Meets the requirements of Streambuf.
class buffered_readstream:
Buffers a ReadStream with a ConstBufferSequence.
class consuming_buffers:
Adapts a BufferSequence which wraps the underlying buffer
sequence and presents fewer bytes, with the retained bytes
occurring at the end of the sequence.
class handler_alloc:
A C++ Allocator the uses asio handler allocation hooks.
class static_streambuf:
An implementation of the Streambuf concept that uses a
fixed size buffer with size determined at compile-time.
class streambuf_readstream:
Buffers a ReadStream with a Streambuf.
New functions:
append_buffers()
Returns a new BufferSequence which efficiently concatenates
two or more buffer sequences together.
prepare_buffers()
Shortens a buffer sequence. The bytes excluded are at the
end of the underlying buffer sequence.
boost::asio::read_until()
A copy of boost::asio::read_until overloads, modified to work
with a beast::asio::basic_streambuf.
Debugging:
buffers_to_string()
Convert a ConstBufferSequence to a human readable string
suitable for diagnostics.
type_check.h:
Metafunctions for checking asio concepts:
AsyncReadStream, AsyncWriteStream
SyncReadStream, SyncWriteStream
ConstBufferSequence, MutableBufferSequence
Streambuf
Handler
Changes:
* All symbols moved up a namespace level.
* streambuf provides all move and copy special members,
behavior of moved from objects is well-defined.
Fixes:
* Fix basic_streambuf iterator category.
Replace Journal public data members with member function accessors
in order to make Journal lighter weight. The change makes a
Journal cheaper to pass by value.
Also add missing stream checks (e.g., calls to JLOG) to avoid
text processing that ultimately will not be stored in the log.
The Journal API is affected. There are two uses for the
Journal::Severity enum:
o It is used to declare a threshold which log messages must meet
in order to be logged.
o It declares the current logging level which will be compared
to the threshold.
Those uses that affect the threshold are now named threshold()
rather than severity() to make the uses easier to distinguish.
Additionally, Journal no longer carries a Severity variable.
All handling of the threshold() is now delegated to the
Journal::Sink.
Sinks are no longer constructed with a default threshold of
kWarning; their threshold must be passed in on construction.
Env is changed to use the AbstractClient interface,
which generalizes the transport for submitting client
requests to the Env server instance.
The JSONRPCClient implementation is added, supporting
a simple, synchronous interface. Env is changed to
use the JSONRPCClient implementation instead of the
built in JSON-RPC client.
These changes ensure the caller can block until the
Application object can be fully prepared (especially
listening sockets). Solves the problem where tests
can attempt connections before the server sockets are
ready.
* WebSocket blocks until listening
* Application setup blocks until prepared and started
tapENABLE_TESTING is removed from checks, and feature enablement
is the sole method for activating features. Unit tests are updated
to enable required features in the construction of the Env.
Tickets are put on a feature switch instead of a build macro.
* Moved empty path check to DatabaseCon, and only for non-standalone.
* No more "DummyForUnitTest" files getting left behind in repo after running unit tests.
These changes eliminate the Env's OpenLedger member and make
transactions go through the Application associated with each
instance of the Env, making the unit tests follow a code path
closer to the production code path.
* Add Env::open() for open ledger
* Add Env::now()
* Rename to Env::current()
* Inject ManualTimeKeeper in Env Application
* Make Config mutable
* Move setupConfigForUnitTests
* Launch Env Application thread
* Use Application ledgers in Env
* Adjust Application clock on ledger close
* Adjust close time for close resolution
* Scrub obsolete clock types
* Enable features via Env ctor
* Make Env::master Account object global
* Cache SSL context (performance)
* Cache master wallet keys in Ledger ctor (performance)
The first few transactions are added to the open ledger at
the base fee (ie. 10 drops). Once enough transactions are
added, the required fee will jump dramatically. If additional
transactions are added, the fee will grow exponentially.
Transactions that don't have a high enough fee to be applied to
the ledger are added to the queue in order from highest fee to
lowest. Whenever a new ledger is accepted as validated, transactions
are first applied from the queue to the open ledger in fee order
until either all transactions are applied or the fee again jumps
too high for the remaining transactions.
Current implementation is restricted to one transaction in the
queue per account. Some groundwork has been laid to expand in
the future.
Note that this fee logic escalates independently of the load-based
fee logic (ie. LoadFeeTrack). Submitted transactions must meet
the load fee to be considered for the queue, and must meet both
fees to be put into open ledger.
* Remove cxx14 compatibility layer from ripple
* Update travis to clang 3.6 and drop gcc 4.8
* Remove unneeded beast CXX14 defines
* Do not run clang build with gdb with travis
* Update circle ci to clang 3.6 & gcc-5
* Don't run rippled in gdb, clang builds crash gdb
* Staticly link libstdc++, boost, ssl, & protobuf
* Support builds on ubuntu 15.10