mirror of
https://github.com/Xahau/xahaud.git
synced 2025-12-06 17:27:52 +00:00
Add Beast fork from JUCE commit 265fb0e8ebc26e1469d6edcc68d2ca9acefeb508
This commit is contained in:
855
modules/beast_core/containers/beast_ReferenceCountedArray.h
Normal file
855
modules/beast_core/containers/beast_ReferenceCountedArray.h
Normal file
@@ -0,0 +1,855 @@
|
||||
//------------------------------------------------------------------------------
|
||||
/*
|
||||
This file is part of Beast: https://github.com/vinniefalco/Beast
|
||||
Copyright 2013, Vinnie Falco <vinnie.falco@gmail.com>
|
||||
|
||||
Portions of this file are from JUCE.
|
||||
Copyright (c) 2013 - Raw Material Software Ltd.
|
||||
Please visit http://www.juce.com
|
||||
|
||||
Permission to use, copy, modify, and/or distribute this software for any
|
||||
purpose with or without fee is hereby granted, provided that the above
|
||||
copyright notice and this permission notice appear in all copies.
|
||||
|
||||
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||||
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||||
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
|
||||
ANY SPECIAL , DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||||
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
||||
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
|
||||
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
||||
*/
|
||||
//==============================================================================
|
||||
|
||||
#ifndef BEAST_REFERENCECOUNTEDARRAY_BEASTHEADER
|
||||
#define BEAST_REFERENCECOUNTEDARRAY_BEASTHEADER
|
||||
|
||||
#include "../memory/beast_ReferenceCountedObject.h"
|
||||
#include "beast_ArrayAllocationBase.h"
|
||||
#include "beast_ElementComparator.h"
|
||||
#include "../threads/beast_CriticalSection.h"
|
||||
|
||||
|
||||
//==============================================================================
|
||||
/**
|
||||
Holds a list of objects derived from ReferenceCountedObject.
|
||||
|
||||
A ReferenceCountedArray holds objects derived from ReferenceCountedObject,
|
||||
and takes care of incrementing and decrementing their ref counts when they
|
||||
are added and removed from the array.
|
||||
|
||||
To make all the array's methods thread-safe, pass in "CriticalSection" as the templated
|
||||
TypeOfCriticalSectionToUse parameter, instead of the default DummyCriticalSection.
|
||||
|
||||
@see Array, OwnedArray, StringArray
|
||||
*/
|
||||
template <class ObjectClass, class TypeOfCriticalSectionToUse = DummyCriticalSection>
|
||||
class ReferenceCountedArray
|
||||
{
|
||||
public:
|
||||
typedef ReferenceCountedObjectPtr<ObjectClass> ObjectClassPtr;
|
||||
|
||||
//==============================================================================
|
||||
/** Creates an empty array.
|
||||
@see ReferenceCountedObject, Array, OwnedArray
|
||||
*/
|
||||
ReferenceCountedArray() noexcept
|
||||
: numUsed (0)
|
||||
{
|
||||
}
|
||||
|
||||
/** Creates a copy of another array */
|
||||
ReferenceCountedArray (const ReferenceCountedArray& other) noexcept
|
||||
{
|
||||
const ScopedLockType lock (other.getLock());
|
||||
numUsed = other.size();
|
||||
data.setAllocatedSize (numUsed);
|
||||
memcpy (data.elements, other.getRawDataPointer(), numUsed * sizeof (ObjectClass*));
|
||||
|
||||
for (int i = numUsed; --i >= 0;)
|
||||
if (ObjectClass* o = data.elements[i])
|
||||
o->incReferenceCount();
|
||||
}
|
||||
|
||||
/** Creates a copy of another array */
|
||||
template <class OtherObjectClass, class OtherCriticalSection>
|
||||
ReferenceCountedArray (const ReferenceCountedArray<OtherObjectClass, OtherCriticalSection>& other) noexcept
|
||||
{
|
||||
const typename ReferenceCountedArray<OtherObjectClass, OtherCriticalSection>::ScopedLockType lock (other.getLock());
|
||||
numUsed = other.size();
|
||||
data.setAllocatedSize (numUsed);
|
||||
memcpy (data.elements, other.getRawDataPointer(), numUsed * sizeof (ObjectClass*));
|
||||
|
||||
for (int i = numUsed; --i >= 0;)
|
||||
if (ObjectClass* o = data.elements[i])
|
||||
o->incReferenceCount();
|
||||
}
|
||||
|
||||
/** Copies another array into this one.
|
||||
Any existing objects in this array will first be released.
|
||||
*/
|
||||
ReferenceCountedArray& operator= (const ReferenceCountedArray& other) noexcept
|
||||
{
|
||||
ReferenceCountedArray otherCopy (other);
|
||||
swapWithArray (otherCopy);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Copies another array into this one.
|
||||
Any existing objects in this array will first be released.
|
||||
*/
|
||||
template <class OtherObjectClass>
|
||||
ReferenceCountedArray<ObjectClass, TypeOfCriticalSectionToUse>& operator= (const ReferenceCountedArray<OtherObjectClass, TypeOfCriticalSectionToUse>& other) noexcept
|
||||
{
|
||||
ReferenceCountedArray<ObjectClass, TypeOfCriticalSectionToUse> otherCopy (other);
|
||||
swapWithArray (otherCopy);
|
||||
return *this;
|
||||
}
|
||||
|
||||
/** Destructor.
|
||||
Any objects in the array will be released, and may be deleted if not referenced from elsewhere.
|
||||
*/
|
||||
~ReferenceCountedArray()
|
||||
{
|
||||
clear();
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Removes all objects from the array.
|
||||
|
||||
Any objects in the array that are not referenced from elsewhere will be deleted.
|
||||
*/
|
||||
void clear()
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
while (numUsed > 0)
|
||||
if (ObjectClass* o = data.elements [--numUsed])
|
||||
o->decReferenceCount();
|
||||
|
||||
bassert (numUsed == 0);
|
||||
data.setAllocatedSize (0);
|
||||
}
|
||||
|
||||
/** Returns the current number of objects in the array. */
|
||||
inline int size() const noexcept
|
||||
{
|
||||
return numUsed;
|
||||
}
|
||||
|
||||
/** Returns a pointer to the object at this index in the array.
|
||||
|
||||
If the index is out-of-range, this will return a null pointer, (and
|
||||
it could be null anyway, because it's ok for the array to hold null
|
||||
pointers as well as objects).
|
||||
|
||||
@see getUnchecked
|
||||
*/
|
||||
inline ObjectClassPtr operator[] (const int index) const noexcept
|
||||
{
|
||||
return getObjectPointer (index);
|
||||
}
|
||||
|
||||
/** Returns a pointer to the object at this index in the array, without checking
|
||||
whether the index is in-range.
|
||||
|
||||
This is a faster and less safe version of operator[] which doesn't check the index passed in, so
|
||||
it can be used when you're sure the index is always going to be legal.
|
||||
*/
|
||||
inline ObjectClassPtr getUnchecked (const int index) const noexcept
|
||||
{
|
||||
return getObjectPointerUnchecked (index);
|
||||
}
|
||||
|
||||
/** Returns a raw pointer to the object at this index in the array.
|
||||
|
||||
If the index is out-of-range, this will return a null pointer, (and
|
||||
it could be null anyway, because it's ok for the array to hold null
|
||||
pointers as well as objects).
|
||||
|
||||
@see getUnchecked
|
||||
*/
|
||||
inline ObjectClass* getObjectPointer (const int index) const noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
return isPositiveAndBelow (index, numUsed) ? data.elements [index]
|
||||
: nullptr;
|
||||
}
|
||||
|
||||
/** Returns a raw pointer to the object at this index in the array, without checking
|
||||
whether the index is in-range.
|
||||
*/
|
||||
inline ObjectClass* getObjectPointerUnchecked (const int index) const noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
bassert (isPositiveAndBelow (index, numUsed));
|
||||
return data.elements [index];
|
||||
}
|
||||
|
||||
/** Returns a pointer to the first object in the array.
|
||||
|
||||
This will return a null pointer if the array's empty.
|
||||
@see getLast
|
||||
*/
|
||||
inline ObjectClassPtr getFirst() const noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
return numUsed > 0 ? data.elements [0]
|
||||
: static_cast <ObjectClass*> (nullptr);
|
||||
}
|
||||
|
||||
/** Returns a pointer to the last object in the array.
|
||||
|
||||
This will return a null pointer if the array's empty.
|
||||
@see getFirst
|
||||
*/
|
||||
inline ObjectClassPtr getLast() const noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
return numUsed > 0 ? data.elements [numUsed - 1]
|
||||
: static_cast <ObjectClass*> (nullptr);
|
||||
}
|
||||
|
||||
/** Returns a pointer to the actual array data.
|
||||
This pointer will only be valid until the next time a non-const method
|
||||
is called on the array.
|
||||
*/
|
||||
inline ObjectClass** getRawDataPointer() const noexcept
|
||||
{
|
||||
return data.elements;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Returns a pointer to the first element in the array.
|
||||
This method is provided for compatibility with standard C++ iteration mechanisms.
|
||||
*/
|
||||
inline ObjectClass** begin() const noexcept
|
||||
{
|
||||
return data.elements;
|
||||
}
|
||||
|
||||
/** Returns a pointer to the element which follows the last element in the array.
|
||||
This method is provided for compatibility with standard C++ iteration mechanisms.
|
||||
*/
|
||||
inline ObjectClass** end() const noexcept
|
||||
{
|
||||
return data.elements + numUsed;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Finds the index of the first occurrence of an object in the array.
|
||||
|
||||
@param objectToLookFor the object to look for
|
||||
@returns the index at which the object was found, or -1 if it's not found
|
||||
*/
|
||||
int indexOf (const ObjectClass* const objectToLookFor) const noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
ObjectClass** e = data.elements.getData();
|
||||
ObjectClass** const endPointer = e + numUsed;
|
||||
|
||||
while (e != endPointer)
|
||||
{
|
||||
if (objectToLookFor == *e)
|
||||
return static_cast <int> (e - data.elements.getData());
|
||||
|
||||
++e;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
/** Returns true if the array contains a specified object.
|
||||
|
||||
@param objectToLookFor the object to look for
|
||||
@returns true if the object is in the array
|
||||
*/
|
||||
bool contains (const ObjectClass* const objectToLookFor) const noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
ObjectClass** e = data.elements.getData();
|
||||
ObjectClass** const endPointer = e + numUsed;
|
||||
|
||||
while (e != endPointer)
|
||||
{
|
||||
if (objectToLookFor == *e)
|
||||
return true;
|
||||
|
||||
++e;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/** Appends a new object to the end of the array.
|
||||
|
||||
This will increase the new object's reference count.
|
||||
|
||||
@param newObject the new object to add to the array
|
||||
@see set, insert, addIfNotAlreadyThere, addSorted, addArray
|
||||
*/
|
||||
void add (ObjectClass* const newObject) noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
data.ensureAllocatedSize (numUsed + 1);
|
||||
data.elements [numUsed++] = newObject;
|
||||
|
||||
if (newObject != nullptr)
|
||||
newObject->incReferenceCount();
|
||||
}
|
||||
|
||||
/** Inserts a new object into the array at the given index.
|
||||
|
||||
If the index is less than 0 or greater than the size of the array, the
|
||||
element will be added to the end of the array.
|
||||
Otherwise, it will be inserted into the array, moving all the later elements
|
||||
along to make room.
|
||||
|
||||
This will increase the new object's reference count.
|
||||
|
||||
@param indexToInsertAt the index at which the new element should be inserted
|
||||
@param newObject the new object to add to the array
|
||||
@see add, addSorted, addIfNotAlreadyThere, set
|
||||
*/
|
||||
void insert (int indexToInsertAt,
|
||||
ObjectClass* const newObject) noexcept
|
||||
{
|
||||
if (indexToInsertAt >= 0)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (indexToInsertAt > numUsed)
|
||||
indexToInsertAt = numUsed;
|
||||
|
||||
data.ensureAllocatedSize (numUsed + 1);
|
||||
|
||||
ObjectClass** const e = data.elements + indexToInsertAt;
|
||||
const int numToMove = numUsed - indexToInsertAt;
|
||||
|
||||
if (numToMove > 0)
|
||||
memmove (e + 1, e, sizeof (ObjectClass*) * (size_t) numToMove);
|
||||
|
||||
*e = newObject;
|
||||
|
||||
if (newObject != nullptr)
|
||||
newObject->incReferenceCount();
|
||||
|
||||
++numUsed;
|
||||
}
|
||||
else
|
||||
{
|
||||
add (newObject);
|
||||
}
|
||||
}
|
||||
|
||||
/** Appends a new object at the end of the array as long as the array doesn't
|
||||
already contain it.
|
||||
|
||||
If the array already contains a matching object, nothing will be done.
|
||||
|
||||
@param newObject the new object to add to the array
|
||||
*/
|
||||
void addIfNotAlreadyThere (ObjectClass* const newObject) noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
if (! contains (newObject))
|
||||
add (newObject);
|
||||
}
|
||||
|
||||
/** Replaces an object in the array with a different one.
|
||||
|
||||
If the index is less than zero, this method does nothing.
|
||||
If the index is beyond the end of the array, the new object is added to the end of the array.
|
||||
|
||||
The object being added has its reference count increased, and if it's replacing
|
||||
another object, then that one has its reference count decreased, and may be deleted.
|
||||
|
||||
@param indexToChange the index whose value you want to change
|
||||
@param newObject the new value to set for this index.
|
||||
@see add, insert, remove
|
||||
*/
|
||||
void set (const int indexToChange,
|
||||
ObjectClass* const newObject)
|
||||
{
|
||||
if (indexToChange >= 0)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (newObject != nullptr)
|
||||
newObject->incReferenceCount();
|
||||
|
||||
if (indexToChange < numUsed)
|
||||
{
|
||||
if (ObjectClass* o = data.elements [indexToChange])
|
||||
o->decReferenceCount();
|
||||
|
||||
data.elements [indexToChange] = newObject;
|
||||
}
|
||||
else
|
||||
{
|
||||
data.ensureAllocatedSize (numUsed + 1);
|
||||
data.elements [numUsed++] = newObject;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Adds elements from another array to the end of this array.
|
||||
|
||||
@param arrayToAddFrom the array from which to copy the elements
|
||||
@param startIndex the first element of the other array to start copying from
|
||||
@param numElementsToAdd how many elements to add from the other array. If this
|
||||
value is negative or greater than the number of available elements,
|
||||
all available elements will be copied.
|
||||
@see add
|
||||
*/
|
||||
void addArray (const ReferenceCountedArray<ObjectClass, TypeOfCriticalSectionToUse>& arrayToAddFrom,
|
||||
int startIndex = 0,
|
||||
int numElementsToAdd = -1) noexcept
|
||||
{
|
||||
const ScopedLockType lock1 (arrayToAddFrom.getLock());
|
||||
|
||||
{
|
||||
const ScopedLockType lock2 (getLock());
|
||||
|
||||
if (startIndex < 0)
|
||||
{
|
||||
jassertfalse;
|
||||
startIndex = 0;
|
||||
}
|
||||
|
||||
if (numElementsToAdd < 0 || startIndex + numElementsToAdd > arrayToAddFrom.size())
|
||||
numElementsToAdd = arrayToAddFrom.size() - startIndex;
|
||||
|
||||
if (numElementsToAdd > 0)
|
||||
{
|
||||
data.ensureAllocatedSize (numUsed + numElementsToAdd);
|
||||
|
||||
while (--numElementsToAdd >= 0)
|
||||
add (arrayToAddFrom.getUnchecked (startIndex++));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/** Inserts a new object into the array assuming that the array is sorted.
|
||||
|
||||
This will use a comparator to find the position at which the new object
|
||||
should go. If the array isn't sorted, the behaviour of this
|
||||
method will be unpredictable.
|
||||
|
||||
@param comparator the comparator object to use to compare the elements - see the
|
||||
sort() method for details about this object's form
|
||||
@param newObject the new object to insert to the array
|
||||
@returns the index at which the new object was added
|
||||
@see add, sort
|
||||
*/
|
||||
template <class ElementComparator>
|
||||
int addSorted (ElementComparator& comparator, ObjectClass* newObject) noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newObject, 0, numUsed);
|
||||
insert (index, newObject);
|
||||
return index;
|
||||
}
|
||||
|
||||
/** Inserts or replaces an object in the array, assuming it is sorted.
|
||||
|
||||
This is similar to addSorted, but if a matching element already exists, then it will be
|
||||
replaced by the new one, rather than the new one being added as well.
|
||||
*/
|
||||
template <class ElementComparator>
|
||||
void addOrReplaceSorted (ElementComparator& comparator,
|
||||
ObjectClass* newObject) noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
const int index = findInsertIndexInSortedArray (comparator, data.elements.getData(), newObject, 0, numUsed);
|
||||
|
||||
if (index > 0 && comparator.compareElements (newObject, data.elements [index - 1]) == 0)
|
||||
set (index - 1, newObject); // replace an existing object that matches
|
||||
else
|
||||
insert (index, newObject); // no match, so insert the new one
|
||||
}
|
||||
|
||||
/** Finds the index of an object in the array, assuming that the array is sorted.
|
||||
|
||||
This will use a comparator to do a binary-chop to find the index of the given
|
||||
element, if it exists. If the array isn't sorted, the behaviour of this
|
||||
method will be unpredictable.
|
||||
|
||||
@param comparator the comparator to use to compare the elements - see the sort()
|
||||
method for details about the form this object should take
|
||||
@param objectToLookFor the object to search for
|
||||
@returns the index of the element, or -1 if it's not found
|
||||
@see addSorted, sort
|
||||
*/
|
||||
template <class ElementComparator>
|
||||
int indexOfSorted (ElementComparator& comparator,
|
||||
const ObjectClass* const objectToLookFor) const noexcept
|
||||
{
|
||||
(void) comparator;
|
||||
const ScopedLockType lock (getLock());
|
||||
int s = 0, e = numUsed;
|
||||
|
||||
while (s < e)
|
||||
{
|
||||
if (comparator.compareElements (objectToLookFor, data.elements [s]) == 0)
|
||||
return s;
|
||||
|
||||
const int halfway = (s + e) / 2;
|
||||
if (halfway == s)
|
||||
break;
|
||||
|
||||
if (comparator.compareElements (objectToLookFor, data.elements [halfway]) >= 0)
|
||||
s = halfway;
|
||||
else
|
||||
e = halfway;
|
||||
}
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Removes an object from the array.
|
||||
|
||||
This will remove the object at a given index and move back all the
|
||||
subsequent objects to close the gap.
|
||||
|
||||
If the index passed in is out-of-range, nothing will happen.
|
||||
|
||||
The object that is removed will have its reference count decreased,
|
||||
and may be deleted if not referenced from elsewhere.
|
||||
|
||||
@param indexToRemove the index of the element to remove
|
||||
@see removeObject, removeRange
|
||||
*/
|
||||
void remove (const int indexToRemove)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (isPositiveAndBelow (indexToRemove, numUsed))
|
||||
{
|
||||
ObjectClass** const e = data.elements + indexToRemove;
|
||||
|
||||
if (ObjectClass* o = *e)
|
||||
o->decReferenceCount();
|
||||
|
||||
--numUsed;
|
||||
const int numberToShift = numUsed - indexToRemove;
|
||||
|
||||
if (numberToShift > 0)
|
||||
memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numberToShift);
|
||||
|
||||
if ((numUsed << 1) < data.numAllocated)
|
||||
minimiseStorageOverheads();
|
||||
}
|
||||
}
|
||||
|
||||
/** Removes and returns an object from the array.
|
||||
|
||||
This will remove the object at a given index and return it, moving back all
|
||||
the subsequent objects to close the gap. If the index passed in is out-of-range,
|
||||
nothing will happen and a null pointer will be returned.
|
||||
|
||||
@param indexToRemove the index of the element to remove
|
||||
@see remove, removeObject, removeRange
|
||||
*/
|
||||
ObjectClassPtr removeAndReturn (const int indexToRemove)
|
||||
{
|
||||
ObjectClassPtr removedItem;
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (isPositiveAndBelow (indexToRemove, numUsed))
|
||||
{
|
||||
ObjectClass** const e = data.elements + indexToRemove;
|
||||
|
||||
if (ObjectClass* o = *e)
|
||||
{
|
||||
removedItem = o;
|
||||
o->decReferenceCount();
|
||||
}
|
||||
|
||||
--numUsed;
|
||||
const int numberToShift = numUsed - indexToRemove;
|
||||
|
||||
if (numberToShift > 0)
|
||||
memmove (e, e + 1, sizeof (ObjectClass*) * (size_t) numberToShift);
|
||||
|
||||
if ((numUsed << 1) < data.numAllocated)
|
||||
minimiseStorageOverheads();
|
||||
}
|
||||
|
||||
return removedItem;
|
||||
}
|
||||
|
||||
/** Removes the first occurrence of a specified object from the array.
|
||||
|
||||
If the item isn't found, no action is taken. If it is found, it is
|
||||
removed and has its reference count decreased.
|
||||
|
||||
@param objectToRemove the object to try to remove
|
||||
@see remove, removeRange
|
||||
*/
|
||||
void removeObject (ObjectClass* const objectToRemove)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
remove (indexOf (objectToRemove));
|
||||
}
|
||||
|
||||
/** Removes a range of objects from the array.
|
||||
|
||||
This will remove a set of objects, starting from the given index,
|
||||
and move any subsequent elements down to close the gap.
|
||||
|
||||
If the range extends beyond the bounds of the array, it will
|
||||
be safely clipped to the size of the array.
|
||||
|
||||
The objects that are removed will have their reference counts decreased,
|
||||
and may be deleted if not referenced from elsewhere.
|
||||
|
||||
@param startIndex the index of the first object to remove
|
||||
@param numberToRemove how many objects should be removed
|
||||
@see remove, removeObject
|
||||
*/
|
||||
void removeRange (const int startIndex,
|
||||
const int numberToRemove)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
const int start = blimit (0, numUsed, startIndex);
|
||||
const int endIndex = blimit (0, numUsed, startIndex + numberToRemove);
|
||||
|
||||
if (endIndex > start)
|
||||
{
|
||||
int i;
|
||||
for (i = start; i < endIndex; ++i)
|
||||
{
|
||||
if (ObjectClass* o = data.elements[i])
|
||||
{
|
||||
o->decReferenceCount();
|
||||
data.elements[i] = nullptr; // (in case one of the destructors accesses this array and hits a dangling pointer)
|
||||
}
|
||||
}
|
||||
|
||||
const int rangeSize = endIndex - start;
|
||||
ObjectClass** e = data.elements + start;
|
||||
i = numUsed - endIndex;
|
||||
numUsed -= rangeSize;
|
||||
|
||||
while (--i >= 0)
|
||||
{
|
||||
*e = e [rangeSize];
|
||||
++e;
|
||||
}
|
||||
|
||||
if ((numUsed << 1) < data.numAllocated)
|
||||
minimiseStorageOverheads();
|
||||
}
|
||||
}
|
||||
|
||||
/** Removes the last n objects from the array.
|
||||
|
||||
The objects that are removed will have their reference counts decreased,
|
||||
and may be deleted if not referenced from elsewhere.
|
||||
|
||||
@param howManyToRemove how many objects to remove from the end of the array
|
||||
@see remove, removeObject, removeRange
|
||||
*/
|
||||
void removeLast (int howManyToRemove = 1)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (howManyToRemove > numUsed)
|
||||
howManyToRemove = numUsed;
|
||||
|
||||
while (--howManyToRemove >= 0)
|
||||
remove (numUsed - 1);
|
||||
}
|
||||
|
||||
/** Swaps a pair of objects in the array.
|
||||
|
||||
If either of the indexes passed in is out-of-range, nothing will happen,
|
||||
otherwise the two objects at these positions will be exchanged.
|
||||
*/
|
||||
void swap (const int index1,
|
||||
const int index2) noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (isPositiveAndBelow (index1, numUsed)
|
||||
&& isPositiveAndBelow (index2, numUsed))
|
||||
{
|
||||
std::swap (data.elements [index1],
|
||||
data.elements [index2]);
|
||||
}
|
||||
}
|
||||
|
||||
/** Moves one of the objects to a different position.
|
||||
|
||||
This will move the object to a specified index, shuffling along
|
||||
any intervening elements as required.
|
||||
|
||||
So for example, if you have the array { 0, 1, 2, 3, 4, 5 } then calling
|
||||
move (2, 4) would result in { 0, 1, 3, 4, 2, 5 }.
|
||||
|
||||
@param currentIndex the index of the object to be moved. If this isn't a
|
||||
valid index, then nothing will be done
|
||||
@param newIndex the index at which you'd like this object to end up. If this
|
||||
is less than zero, it will be moved to the end of the array
|
||||
*/
|
||||
void move (const int currentIndex,
|
||||
int newIndex) noexcept
|
||||
{
|
||||
if (currentIndex != newIndex)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
|
||||
if (isPositiveAndBelow (currentIndex, numUsed))
|
||||
{
|
||||
if (! isPositiveAndBelow (newIndex, numUsed))
|
||||
newIndex = numUsed - 1;
|
||||
|
||||
ObjectClass* const value = data.elements [currentIndex];
|
||||
|
||||
if (newIndex > currentIndex)
|
||||
{
|
||||
memmove (data.elements + currentIndex,
|
||||
data.elements + currentIndex + 1,
|
||||
sizeof (ObjectClass*) * (size_t) (newIndex - currentIndex));
|
||||
}
|
||||
else
|
||||
{
|
||||
memmove (data.elements + newIndex + 1,
|
||||
data.elements + newIndex,
|
||||
sizeof (ObjectClass*) * (size_t) (currentIndex - newIndex));
|
||||
}
|
||||
|
||||
data.elements [newIndex] = value;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** This swaps the contents of this array with those of another array.
|
||||
|
||||
If you need to exchange two arrays, this is vastly quicker than using copy-by-value
|
||||
because it just swaps their internal pointers.
|
||||
*/
|
||||
void swapWithArray (ReferenceCountedArray& otherArray) noexcept
|
||||
{
|
||||
const ScopedLockType lock1 (getLock());
|
||||
const ScopedLockType lock2 (otherArray.getLock());
|
||||
|
||||
data.swapWith (otherArray.data);
|
||||
std::swap (numUsed, otherArray.numUsed);
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Compares this array to another one.
|
||||
|
||||
@returns true only if the other array contains the same objects in the same order
|
||||
*/
|
||||
bool operator== (const ReferenceCountedArray& other) const noexcept
|
||||
{
|
||||
const ScopedLockType lock2 (other.getLock());
|
||||
const ScopedLockType lock1 (getLock());
|
||||
|
||||
if (numUsed != other.numUsed)
|
||||
return false;
|
||||
|
||||
for (int i = numUsed; --i >= 0;)
|
||||
if (data.elements [i] != other.data.elements [i])
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/** Compares this array to another one.
|
||||
|
||||
@see operator==
|
||||
*/
|
||||
bool operator!= (const ReferenceCountedArray<ObjectClass, TypeOfCriticalSectionToUse>& other) const noexcept
|
||||
{
|
||||
return ! operator== (other);
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Sorts the elements in the array.
|
||||
|
||||
This will use a comparator object to sort the elements into order. The object
|
||||
passed must have a method of the form:
|
||||
@code
|
||||
int compareElements (ElementType first, ElementType second);
|
||||
@endcode
|
||||
|
||||
..and this method must return:
|
||||
- a value of < 0 if the first comes before the second
|
||||
- a value of 0 if the two objects are equivalent
|
||||
- a value of > 0 if the second comes before the first
|
||||
|
||||
To improve performance, the compareElements() method can be declared as static or const.
|
||||
|
||||
@param comparator the comparator to use for comparing elements.
|
||||
@param retainOrderOfEquivalentItems if this is true, then items
|
||||
which the comparator says are equivalent will be
|
||||
kept in the order in which they currently appear
|
||||
in the array. This is slower to perform, but may
|
||||
be important in some cases. If it's false, a faster
|
||||
algorithm is used, but equivalent elements may be
|
||||
rearranged.
|
||||
|
||||
@see sortArray
|
||||
*/
|
||||
template <class ElementComparator>
|
||||
void sort (ElementComparator& comparator,
|
||||
const bool retainOrderOfEquivalentItems = false) const noexcept
|
||||
{
|
||||
(void) comparator; // if you pass in an object with a static compareElements() method, this
|
||||
// avoids getting warning messages about the parameter being unused
|
||||
|
||||
const ScopedLockType lock (getLock());
|
||||
sortArray (comparator, data.elements.getData(), 0, size() - 1, retainOrderOfEquivalentItems);
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Reduces the amount of storage being used by the array.
|
||||
|
||||
Arrays typically allocate slightly more storage than they need, and after
|
||||
removing elements, they may have quite a lot of unused space allocated.
|
||||
This method will reduce the amount of allocated storage to a minimum.
|
||||
*/
|
||||
void minimiseStorageOverheads() noexcept
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
data.shrinkToNoMoreThan (numUsed);
|
||||
}
|
||||
|
||||
/** Increases the array's internal storage to hold a minimum number of elements.
|
||||
|
||||
Calling this before adding a large known number of elements means that
|
||||
the array won't have to keep dynamically resizing itself as the elements
|
||||
are added, and it'll therefore be more efficient.
|
||||
*/
|
||||
void ensureStorageAllocated (const int minNumElements)
|
||||
{
|
||||
const ScopedLockType lock (getLock());
|
||||
data.ensureAllocatedSize (minNumElements);
|
||||
}
|
||||
|
||||
//==============================================================================
|
||||
/** Returns the CriticalSection that locks this array.
|
||||
To lock, you can call getLock().enter() and getLock().exit(), or preferably use
|
||||
an object of ScopedLockType as an RAII lock for it.
|
||||
*/
|
||||
inline const TypeOfCriticalSectionToUse& getLock() const noexcept { return data; }
|
||||
|
||||
/** Returns the type of scoped lock to use for locking this array */
|
||||
typedef typename TypeOfCriticalSectionToUse::ScopedLockType ScopedLockType;
|
||||
|
||||
|
||||
private:
|
||||
//==============================================================================
|
||||
ArrayAllocationBase <ObjectClass*, TypeOfCriticalSectionToUse> data;
|
||||
int numUsed;
|
||||
};
|
||||
|
||||
|
||||
#endif // BEAST_REFERENCECOUNTEDARRAY_BEASTHEADER
|
||||
Reference in New Issue
Block a user