mirror of
https://github.com/Xahau/xahaud.git
synced 2025-12-06 17:27:52 +00:00
Finalize code. Add unit test.
This commit is contained in:
106
src/ECIES.cpp
106
src/ECIES.cpp
@@ -13,9 +13,12 @@
|
||||
|
||||
#define ECIES_KEY_HASH SHA256
|
||||
#define ECIES_KEY_LENGTH (256/8)
|
||||
#define ECIES_KEY_TYPE uint256
|
||||
#define ECIES_ENC_ALGO EVP_aes_256_cbc()
|
||||
#define ECIES_ENC_SIZE (256/8)
|
||||
#define ECIES_ENC_TYPE uint256
|
||||
#define ECIES_ENC_KEY_SIZE (256/8)
|
||||
#define ECIES_ENC_BLK_SIZE (128/8)
|
||||
#define ECIES_ENC_KEY_TYPE uint256
|
||||
#define ECIES_ENC_IV_TYPE uint128
|
||||
#define ECIES_HMAC_ALGO EVP_sha256()
|
||||
#define ECIES_HMAC_SIZE (256/8)
|
||||
#define ECIES_HMAC_TYPE uint256
|
||||
@@ -23,12 +26,15 @@
|
||||
static void* ecies_key_derivation(const void *input, size_t ilen, void *output, size_t *olen)
|
||||
{ // This function must not be changed as it must be what ECDH_compute_key expects
|
||||
if (*olen < ECIES_KEY_LENGTH)
|
||||
{
|
||||
assert(false);
|
||||
return NULL;
|
||||
}
|
||||
*olen = ECIES_KEY_LENGTH;
|
||||
return ECIES_KEY_HASH(static_cast<const unsigned char *>(input), ilen, static_cast<unsigned char *>(output));
|
||||
}
|
||||
|
||||
std::vector<unsigned char> CKey::getECIESSecret(CKey& otherKey)
|
||||
ECIES_KEY_TYPE CKey::getECIESSecret(CKey& otherKey)
|
||||
{ // Retrieve a secret generated from an EC key pair. At least one private key must be known.
|
||||
if(!pkey || !otherKey.pkey)
|
||||
throw std::runtime_error("missing key");
|
||||
@@ -46,11 +52,11 @@ std::vector<unsigned char> CKey::getECIESSecret(CKey& otherKey)
|
||||
}
|
||||
else throw std::runtime_error("no private key");
|
||||
|
||||
std::vector<unsigned char> ret(ECIES_KEY_LENGTH);
|
||||
if (ECDH_compute_key(&(ret.front()), ECIES_KEY_LENGTH, EC_KEY_get0_public_key(pubkey),
|
||||
ECIES_KEY_TYPE key;
|
||||
if (ECDH_compute_key(key.begin(), ECIES_KEY_LENGTH, EC_KEY_get0_public_key(pubkey),
|
||||
privkey, ecies_key_derivation) != ECIES_KEY_LENGTH)
|
||||
throw std::runtime_error("ecdh key failed");
|
||||
return ret;
|
||||
return key;
|
||||
}
|
||||
|
||||
// Our ciphertext is all encrypted except the IV. The encrypted data decodes as follows:
|
||||
@@ -59,12 +65,12 @@ std::vector<unsigned char> CKey::getECIESSecret(CKey& otherKey)
|
||||
// 3) Encrypted: Original plaintext
|
||||
// 4) Encrypted: Rest of block/padding
|
||||
|
||||
static ECIES_HMAC_TYPE makeHMAC(const std::vector<unsigned char>& secret, const std::vector<unsigned char> data)
|
||||
static ECIES_HMAC_TYPE makeHMAC(ECIES_KEY_TYPE secret, const std::vector<unsigned char> data)
|
||||
{
|
||||
HMAC_CTX ctx;
|
||||
HMAC_CTX_init(&ctx);
|
||||
|
||||
if(HMAC_Init_ex(&ctx, &(secret.front()), secret.size(), ECIES_HMAC_ALGO, NULL) != 1)
|
||||
if(HMAC_Init_ex(&ctx, secret.begin(), ECIES_KEY_LENGTH, ECIES_HMAC_ALGO, NULL) != 1)
|
||||
{
|
||||
HMAC_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("init hmac");
|
||||
@@ -78,7 +84,7 @@ static ECIES_HMAC_TYPE makeHMAC(const std::vector<unsigned char>& secret, const
|
||||
|
||||
unsigned int ml=EVP_MAX_MD_SIZE;
|
||||
std::vector<unsigned char> hmac(ml);
|
||||
if(!HMAC_Final(&ctx, &(hmac.front()), &ml) != 1)
|
||||
if(HMAC_Final(&ctx, &(hmac.front()), &ml) != 1)
|
||||
{
|
||||
HMAC_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("finalize hmac");
|
||||
@@ -92,35 +98,33 @@ static ECIES_HMAC_TYPE makeHMAC(const std::vector<unsigned char>& secret, const
|
||||
|
||||
std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<unsigned char>& plaintext)
|
||||
{
|
||||
std::vector<unsigned char> secret=getECIESSecret(otherKey);
|
||||
|
||||
ECIES_KEY_TYPE secret=getECIESSecret(otherKey);
|
||||
ECIES_HMAC_TYPE hmac=makeHMAC(secret, plaintext);
|
||||
|
||||
uint128 iv;
|
||||
if(RAND_bytes(static_cast<unsigned char *>(iv.begin()), ECIES_ENC_SIZE) != 1)
|
||||
ECIES_ENC_IV_TYPE iv;
|
||||
if(RAND_bytes(static_cast<unsigned char *>(iv.begin()), ECIES_ENC_BLK_SIZE) != 1)
|
||||
throw std::runtime_error("insufficient entropy");
|
||||
|
||||
EVP_CIPHER_CTX ctx;
|
||||
EVP_CIPHER_CTX_init(&ctx);
|
||||
|
||||
if (EVP_EncryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL,
|
||||
&(secret.front()), static_cast<unsigned char *>(iv.begin())) != 1)
|
||||
if (EVP_EncryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("init cipher ctx");
|
||||
}
|
||||
|
||||
std::vector<unsigned char> out(plaintext.size() + ECIES_HMAC_SIZE + (ECIES_ENC_SIZE*2), 0);
|
||||
std::vector<unsigned char> out(plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_KEY_SIZE + ECIES_ENC_BLK_SIZE, 0);
|
||||
int len=0, bytesWritten;
|
||||
|
||||
// output IV
|
||||
memcpy(&(out.front()), iv.begin(), ECIES_ENC_SIZE);
|
||||
len=ECIES_ENC_SIZE;
|
||||
memcpy(&(out.front()), iv.begin(), ECIES_ENC_BLK_SIZE);
|
||||
len=ECIES_ENC_BLK_SIZE;
|
||||
|
||||
// Encrypt/output HMAC
|
||||
bytesWritten=out.capacity()-len;
|
||||
assert(bytesWritten>0);
|
||||
if(EVP_EncryptUpdate(&ctx, &(out.front())+len, &bytesWritten, hmac.begin(), ECIES_HMAC_SIZE) < 0)
|
||||
if(EVP_EncryptUpdate(&ctx, &(out.front()) + len, &bytesWritten, hmac.begin(), ECIES_HMAC_SIZE) < 0)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("");
|
||||
@@ -130,7 +134,7 @@ std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<
|
||||
// encrypt/output plaintext
|
||||
bytesWritten=out.capacity()-len;
|
||||
assert(bytesWritten>0);
|
||||
if(EVP_EncryptUpdate(&ctx, &(out.front())+len, &bytesWritten, &(plaintext.front()), plaintext.size()) < 0)
|
||||
if(EVP_EncryptUpdate(&ctx, &(out.front()) + len, &bytesWritten, &(plaintext.front()), plaintext.size()) < 0)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("");
|
||||
@@ -139,13 +143,16 @@ std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<
|
||||
|
||||
// finalize
|
||||
bytesWritten=out.capacity()-len;
|
||||
if(EVP_EncryptFinal_ex(&ctx, &(out.front())+len, &bytesWritten) < 0)
|
||||
if(EVP_EncryptFinal_ex(&ctx, &(out.front()) + len, &bytesWritten) < 0)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("");
|
||||
}
|
||||
len+=bytesWritten;
|
||||
|
||||
// Output contains: IV, encrypted HMAC, encrypted data, encrypted padding
|
||||
assert(len <= (plaintext.size() + ECIES_HMAC_SIZE + (2 * ECIES_ENC_BLK_SIZE)));
|
||||
assert(len >= (plaintext.size() + ECIES_HMAC_SIZE + ECIES_ENC_BLK_SIZE)); // IV, HMAC, data
|
||||
out.resize(len);
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
return out;
|
||||
@@ -153,21 +160,21 @@ std::vector<unsigned char> CKey::encryptECIES(CKey& otherKey, const std::vector<
|
||||
|
||||
std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<unsigned char>& ciphertext)
|
||||
{
|
||||
std::vector<unsigned char> secret=getECIESSecret(otherKey);
|
||||
ECIES_KEY_TYPE secret=getECIESSecret(otherKey);
|
||||
|
||||
// minimum ciphertext = IV + HMAC + 1 block
|
||||
if(ciphertext.size() < ((2*ECIES_ENC_SIZE)+ECIES_HMAC_SIZE) )
|
||||
if(ciphertext.size() < ((2*ECIES_ENC_BLK_SIZE) + ECIES_HMAC_SIZE) )
|
||||
throw std::runtime_error("ciphertext too short");
|
||||
|
||||
// extract IV
|
||||
ECIES_ENC_TYPE iv;
|
||||
memcpy(iv.begin(), &(ciphertext.front()), ECIES_ENC_SIZE);
|
||||
ECIES_ENC_IV_TYPE iv;
|
||||
memcpy(iv.begin(), &(ciphertext.front()), ECIES_ENC_BLK_SIZE);
|
||||
|
||||
// begin decrypting
|
||||
EVP_CIPHER_CTX ctx;
|
||||
EVP_CIPHER_CTX_init(&ctx);
|
||||
|
||||
if(EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, &(secret.front()), iv.begin()) != 1)
|
||||
if(EVP_DecryptInit_ex(&ctx, ECIES_ENC_ALGO, NULL, secret.begin(), iv.begin()) != 1)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("unable to init cipher");
|
||||
@@ -176,30 +183,31 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
|
||||
// decrypt mac
|
||||
ECIES_HMAC_TYPE hmac;
|
||||
int outlen=ECIES_HMAC_SIZE;
|
||||
if( (EVP_DecryptUpdate(&ctx, hmac.begin(), &outlen, &(ciphertext.front()), ECIES_HMAC_SIZE) != 1) ||
|
||||
(outlen != ECIES_HMAC_SIZE) )
|
||||
if( (EVP_DecryptUpdate(&ctx, hmac.begin(), &outlen,
|
||||
&(ciphertext.front()) + ECIES_ENC_BLK_SIZE, ECIES_HMAC_SIZE+1) != 1) || (outlen != ECIES_HMAC_SIZE) )
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("unable to extract hmac");
|
||||
}
|
||||
|
||||
// decrypt plaintext
|
||||
std::vector<unsigned char> plaintext(ciphertext.size() - ECIES_HMAC_SIZE - ECIES_ENC_SIZE);
|
||||
// decrypt plaintext (after IV and encrypted mac)
|
||||
std::vector<unsigned char> plaintext(ciphertext.size() - ECIES_HMAC_SIZE - ECIES_ENC_BLK_SIZE);
|
||||
outlen=plaintext.size();
|
||||
if(EVP_DecryptUpdate(&ctx, &(plaintext.front()), &outlen,
|
||||
&(ciphertext.front())+ECIES_HMAC_SIZE, ciphertext.size()-ECIES_HMAC_SIZE) != 1)
|
||||
&(ciphertext.front())+ECIES_ENC_BLK_SIZE+ECIES_HMAC_SIZE+1,
|
||||
ciphertext.size()-ECIES_ENC_BLK_SIZE-ECIES_HMAC_SIZE-1) != 1)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("unable to extract plaintext");
|
||||
}
|
||||
|
||||
int flen=0;
|
||||
int flen = 0;
|
||||
if(EVP_DecryptFinal(&ctx, &(plaintext.front()) + outlen, &flen) != 1)
|
||||
{
|
||||
EVP_CIPHER_CTX_cleanup(&ctx);
|
||||
throw std::runtime_error("plaintext had bad padding");
|
||||
}
|
||||
plaintext.resize(flen+outlen);
|
||||
plaintext.resize(flen + outlen);
|
||||
|
||||
if(hmac != makeHMAC(secret, plaintext))
|
||||
{
|
||||
@@ -211,4 +219,36 @@ std::vector<unsigned char> CKey::decryptECIES(CKey& otherKey, const std::vector<
|
||||
return plaintext;
|
||||
}
|
||||
|
||||
bool checkECIES(void)
|
||||
{
|
||||
CKey senderPriv, recipientPriv, senderPub, recipientPub;
|
||||
senderPriv.MakeNewKey();
|
||||
recipientPriv.MakeNewKey();
|
||||
|
||||
if(!senderPub.SetPubKey(senderPriv.GetPubKey()))
|
||||
throw std::runtime_error("key error");
|
||||
if(!recipientPub.SetPubKey(recipientPriv.GetPubKey()))
|
||||
throw std::runtime_error("key error");
|
||||
|
||||
for(int i=0; i<30000; i++)
|
||||
{
|
||||
// generate message
|
||||
std::vector<unsigned char> message(4096);
|
||||
int msglen=i%3000;
|
||||
if(RAND_bytes(static_cast<unsigned char *>(&message.front()), msglen) != 1)
|
||||
throw std::runtime_error("insufficient entropy");
|
||||
message.resize(msglen);
|
||||
|
||||
// encrypt message with sender's private key and recipient's public key
|
||||
std::vector<unsigned char> ciphertext=senderPriv.encryptECIES(recipientPub, message);
|
||||
|
||||
// decrypt message with recipient's private key and sender's public key
|
||||
std::vector<unsigned char> decrypt=recipientPriv.decryptECIES(senderPub, ciphertext);
|
||||
|
||||
if(decrypt != message) return false;
|
||||
// std::cerr << "Msg(" << msglen << ") ok " << ciphertext.size() << std::endl;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// vim:ts=4
|
||||
|
||||
@@ -276,8 +276,8 @@ public:
|
||||
|
||||
// ECIES functions. These throw on failure
|
||||
|
||||
// returns a 64-byte secret unique to these two keys. At least one private key must be known.
|
||||
std::vector<unsigned char> getECIESSecret(CKey& otherKey);
|
||||
// returns a 32-byte secret unique to these two keys. At least one private key must be known.
|
||||
uint256 getECIESSecret(CKey& otherKey);
|
||||
|
||||
// encrypt/decrypt functions with integrity checking.
|
||||
// Note that the other side must somehow know what keys to use
|
||||
|
||||
Reference in New Issue
Block a user