mirror of
https://github.com/Xahau/xahau.js.git
synced 2025-11-20 04:05:52 +00:00
4144 lines
119 KiB
JavaScript
4144 lines
119 KiB
JavaScript
/** @fileOverview Javascript cryptography implementation.
|
||
*
|
||
* Crush to remove comments, shorten variable names and
|
||
* generally reduce transmission size.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
"use strict";
|
||
/*jslint indent: 2, bitwise: false, nomen: false, plusplus: false, white: false, regexp: false */
|
||
/*global document, window, escape, unescape */
|
||
|
||
/** @namespace The Stanford Javascript Crypto Library, top-level namespace. */
|
||
var sjcl = {
|
||
/** @namespace Symmetric ciphers. */
|
||
cipher: {},
|
||
|
||
/** @namespace Hash functions. Right now only SHA256 is implemented. */
|
||
hash: {},
|
||
|
||
/** @namespace Key exchange functions. Right now only SRP is implemented. */
|
||
keyexchange: {},
|
||
|
||
/** @namespace Block cipher modes of operation. */
|
||
mode: {},
|
||
|
||
/** @namespace Miscellaneous. HMAC and PBKDF2. */
|
||
misc: {},
|
||
|
||
/**
|
||
* @namespace Bit array encoders and decoders.
|
||
*
|
||
* @description
|
||
* The members of this namespace are functions which translate between
|
||
* SJCL's bitArrays and other objects (usually strings). Because it
|
||
* isn't always clear which direction is encoding and which is decoding,
|
||
* the method names are "fromBits" and "toBits".
|
||
*/
|
||
codec: {},
|
||
|
||
/** @namespace Exceptions. */
|
||
exception: {
|
||
/** @constructor Ciphertext is corrupt. */
|
||
corrupt: function(message) {
|
||
this.toString = function() { return "CORRUPT: "+this.message; };
|
||
this.message = message;
|
||
},
|
||
|
||
/** @constructor Invalid parameter. */
|
||
invalid: function(message) {
|
||
this.toString = function() { return "INVALID: "+this.message; };
|
||
this.message = message;
|
||
},
|
||
|
||
/** @constructor Bug or missing feature in SJCL. @constructor */
|
||
bug: function(message) {
|
||
this.toString = function() { return "BUG: "+this.message; };
|
||
this.message = message;
|
||
},
|
||
|
||
/** @constructor Something isn't ready. */
|
||
notReady: function(message) {
|
||
this.toString = function() { return "NOT READY: "+this.message; };
|
||
this.message = message;
|
||
}
|
||
}
|
||
};
|
||
|
||
if(typeof module != 'undefined' && module.exports){
|
||
module.exports = sjcl;
|
||
}
|
||
|
||
/** @fileOverview Low-level AES implementation.
|
||
*
|
||
* This file contains a low-level implementation of AES, optimized for
|
||
* size and for efficiency on several browsers. It is based on
|
||
* OpenSSL's aes_core.c, a public-domain implementation by Vincent
|
||
* Rijmen, Antoon Bosselaers and Paulo Barreto.
|
||
*
|
||
* An older version of this implementation is available in the public
|
||
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
|
||
* Stanford University 2008-2010 and BSD-licensed for liability
|
||
* reasons.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/**
|
||
* Schedule out an AES key for both encryption and decryption. This
|
||
* is a low-level class. Use a cipher mode to do bulk encryption.
|
||
*
|
||
* @constructor
|
||
* @param {Array} key The key as an array of 4, 6 or 8 words.
|
||
*
|
||
* @class Advanced Encryption Standard (low-level interface)
|
||
*/
|
||
sjcl.cipher.aes = function (key) {
|
||
if (!this._tables[0][0][0]) {
|
||
this._precompute();
|
||
}
|
||
|
||
var i, j, tmp,
|
||
encKey, decKey,
|
||
sbox = this._tables[0][4], decTable = this._tables[1],
|
||
keyLen = key.length, rcon = 1;
|
||
|
||
if (keyLen !== 4 && keyLen !== 6 && keyLen !== 8) {
|
||
throw new sjcl.exception.invalid("invalid aes key size");
|
||
}
|
||
|
||
this._key = [encKey = key.slice(0), decKey = []];
|
||
|
||
// schedule encryption keys
|
||
for (i = keyLen; i < 4 * keyLen + 28; i++) {
|
||
tmp = encKey[i-1];
|
||
|
||
// apply sbox
|
||
if (i%keyLen === 0 || (keyLen === 8 && i%keyLen === 4)) {
|
||
tmp = sbox[tmp>>>24]<<24 ^ sbox[tmp>>16&255]<<16 ^ sbox[tmp>>8&255]<<8 ^ sbox[tmp&255];
|
||
|
||
// shift rows and add rcon
|
||
if (i%keyLen === 0) {
|
||
tmp = tmp<<8 ^ tmp>>>24 ^ rcon<<24;
|
||
rcon = rcon<<1 ^ (rcon>>7)*283;
|
||
}
|
||
}
|
||
|
||
encKey[i] = encKey[i-keyLen] ^ tmp;
|
||
}
|
||
|
||
// schedule decryption keys
|
||
for (j = 0; i; j++, i--) {
|
||
tmp = encKey[j&3 ? i : i - 4];
|
||
if (i<=4 || j<4) {
|
||
decKey[j] = tmp;
|
||
} else {
|
||
decKey[j] = decTable[0][sbox[tmp>>>24 ]] ^
|
||
decTable[1][sbox[tmp>>16 & 255]] ^
|
||
decTable[2][sbox[tmp>>8 & 255]] ^
|
||
decTable[3][sbox[tmp & 255]];
|
||
}
|
||
}
|
||
};
|
||
|
||
sjcl.cipher.aes.prototype = {
|
||
// public
|
||
/* Something like this might appear here eventually
|
||
name: "AES",
|
||
blockSize: 4,
|
||
keySizes: [4,6,8],
|
||
*/
|
||
|
||
/**
|
||
* Encrypt an array of 4 big-endian words.
|
||
* @param {Array} data The plaintext.
|
||
* @return {Array} The ciphertext.
|
||
*/
|
||
encrypt:function (data) { return this._crypt(data,0); },
|
||
|
||
/**
|
||
* Decrypt an array of 4 big-endian words.
|
||
* @param {Array} data The ciphertext.
|
||
* @return {Array} The plaintext.
|
||
*/
|
||
decrypt:function (data) { return this._crypt(data,1); },
|
||
|
||
/**
|
||
* The expanded S-box and inverse S-box tables. These will be computed
|
||
* on the client so that we don't have to send them down the wire.
|
||
*
|
||
* There are two tables, _tables[0] is for encryption and
|
||
* _tables[1] is for decryption.
|
||
*
|
||
* The first 4 sub-tables are the expanded S-box with MixColumns. The
|
||
* last (_tables[01][4]) is the S-box itself.
|
||
*
|
||
* @private
|
||
*/
|
||
_tables: [[[],[],[],[],[]],[[],[],[],[],[]]],
|
||
|
||
/**
|
||
* Expand the S-box tables.
|
||
*
|
||
* @private
|
||
*/
|
||
_precompute: function () {
|
||
var encTable = this._tables[0], decTable = this._tables[1],
|
||
sbox = encTable[4], sboxInv = decTable[4],
|
||
i, x, xInv, d=[], th=[], x2, x4, x8, s, tEnc, tDec;
|
||
|
||
// Compute double and third tables
|
||
for (i = 0; i < 256; i++) {
|
||
th[( d[i] = i<<1 ^ (i>>7)*283 )^i]=i;
|
||
}
|
||
|
||
for (x = xInv = 0; !sbox[x]; x ^= x2 || 1, xInv = th[xInv] || 1) {
|
||
// Compute sbox
|
||
s = xInv ^ xInv<<1 ^ xInv<<2 ^ xInv<<3 ^ xInv<<4;
|
||
s = s>>8 ^ s&255 ^ 99;
|
||
sbox[x] = s;
|
||
sboxInv[s] = x;
|
||
|
||
// Compute MixColumns
|
||
x8 = d[x4 = d[x2 = d[x]]];
|
||
tDec = x8*0x1010101 ^ x4*0x10001 ^ x2*0x101 ^ x*0x1010100;
|
||
tEnc = d[s]*0x101 ^ s*0x1010100;
|
||
|
||
for (i = 0; i < 4; i++) {
|
||
encTable[i][x] = tEnc = tEnc<<24 ^ tEnc>>>8;
|
||
decTable[i][s] = tDec = tDec<<24 ^ tDec>>>8;
|
||
}
|
||
}
|
||
|
||
// Compactify. Considerable speedup on Firefox.
|
||
for (i = 0; i < 5; i++) {
|
||
encTable[i] = encTable[i].slice(0);
|
||
decTable[i] = decTable[i].slice(0);
|
||
}
|
||
},
|
||
|
||
/**
|
||
* Encryption and decryption core.
|
||
* @param {Array} input Four words to be encrypted or decrypted.
|
||
* @param dir The direction, 0 for encrypt and 1 for decrypt.
|
||
* @return {Array} The four encrypted or decrypted words.
|
||
* @private
|
||
*/
|
||
_crypt:function (input, dir) {
|
||
if (input.length !== 4) {
|
||
throw new sjcl.exception.invalid("invalid aes block size");
|
||
}
|
||
|
||
var key = this._key[dir],
|
||
// state variables a,b,c,d are loaded with pre-whitened data
|
||
a = input[0] ^ key[0],
|
||
b = input[dir ? 3 : 1] ^ key[1],
|
||
c = input[2] ^ key[2],
|
||
d = input[dir ? 1 : 3] ^ key[3],
|
||
a2, b2, c2,
|
||
|
||
nInnerRounds = key.length/4 - 2,
|
||
i,
|
||
kIndex = 4,
|
||
out = [0,0,0,0],
|
||
table = this._tables[dir],
|
||
|
||
// load up the tables
|
||
t0 = table[0],
|
||
t1 = table[1],
|
||
t2 = table[2],
|
||
t3 = table[3],
|
||
sbox = table[4];
|
||
|
||
// Inner rounds. Cribbed from OpenSSL.
|
||
for (i = 0; i < nInnerRounds; i++) {
|
||
a2 = t0[a>>>24] ^ t1[b>>16 & 255] ^ t2[c>>8 & 255] ^ t3[d & 255] ^ key[kIndex];
|
||
b2 = t0[b>>>24] ^ t1[c>>16 & 255] ^ t2[d>>8 & 255] ^ t3[a & 255] ^ key[kIndex + 1];
|
||
c2 = t0[c>>>24] ^ t1[d>>16 & 255] ^ t2[a>>8 & 255] ^ t3[b & 255] ^ key[kIndex + 2];
|
||
d = t0[d>>>24] ^ t1[a>>16 & 255] ^ t2[b>>8 & 255] ^ t3[c & 255] ^ key[kIndex + 3];
|
||
kIndex += 4;
|
||
a=a2; b=b2; c=c2;
|
||
}
|
||
|
||
// Last round.
|
||
for (i = 0; i < 4; i++) {
|
||
out[dir ? 3&-i : i] =
|
||
sbox[a>>>24 ]<<24 ^
|
||
sbox[b>>16 & 255]<<16 ^
|
||
sbox[c>>8 & 255]<<8 ^
|
||
sbox[d & 255] ^
|
||
key[kIndex++];
|
||
a2=a; a=b; b=c; c=d; d=a2;
|
||
}
|
||
|
||
return out;
|
||
}
|
||
};
|
||
|
||
|
||
/** @fileOverview Arrays of bits, encoded as arrays of Numbers.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace Arrays of bits, encoded as arrays of Numbers.
|
||
*
|
||
* @description
|
||
* <p>
|
||
* These objects are the currency accepted by SJCL's crypto functions.
|
||
* </p>
|
||
*
|
||
* <p>
|
||
* Most of our crypto primitives operate on arrays of 4-byte words internally,
|
||
* but many of them can take arguments that are not a multiple of 4 bytes.
|
||
* This library encodes arrays of bits (whose size need not be a multiple of 8
|
||
* bits) as arrays of 32-bit words. The bits are packed, big-endian, into an
|
||
* array of words, 32 bits at a time. Since the words are double-precision
|
||
* floating point numbers, they fit some extra data. We use this (in a private,
|
||
* possibly-changing manner) to encode the number of bits actually present
|
||
* in the last word of the array.
|
||
* </p>
|
||
*
|
||
* <p>
|
||
* Because bitwise ops clear this out-of-band data, these arrays can be passed
|
||
* to ciphers like AES which want arrays of words.
|
||
* </p>
|
||
*/
|
||
sjcl.bitArray = {
|
||
/**
|
||
* Array slices in units of bits.
|
||
* @param {bitArray} a The array to slice.
|
||
* @param {Number} bstart The offset to the start of the slice, in bits.
|
||
* @param {Number} bend The offset to the end of the slice, in bits. If this is undefined,
|
||
* slice until the end of the array.
|
||
* @return {bitArray} The requested slice.
|
||
*/
|
||
bitSlice: function (a, bstart, bend) {
|
||
a = sjcl.bitArray._shiftRight(a.slice(bstart/32), 32 - (bstart & 31)).slice(1);
|
||
return (bend === undefined) ? a : sjcl.bitArray.clamp(a, bend-bstart);
|
||
},
|
||
|
||
/**
|
||
* Extract a number packed into a bit array.
|
||
* @param {bitArray} a The array to slice.
|
||
* @param {Number} bstart The offset to the start of the slice, in bits.
|
||
* @param {Number} length The length of the number to extract.
|
||
* @return {Number} The requested slice.
|
||
*/
|
||
extract: function(a, bstart, blength) {
|
||
// FIXME: this Math.floor is not necessary at all, but for some reason
|
||
// seems to suppress a bug in the Chromium JIT.
|
||
var x, sh = Math.floor((-bstart-blength) & 31);
|
||
if ((bstart + blength - 1 ^ bstart) & -32) {
|
||
// it crosses a boundary
|
||
x = (a[bstart/32|0] << (32 - sh)) ^ (a[bstart/32+1|0] >>> sh);
|
||
} else {
|
||
// within a single word
|
||
x = a[bstart/32|0] >>> sh;
|
||
}
|
||
return x & ((1<<blength) - 1);
|
||
},
|
||
|
||
/**
|
||
* Concatenate two bit arrays.
|
||
* @param {bitArray} a1 The first array.
|
||
* @param {bitArray} a2 The second array.
|
||
* @return {bitArray} The concatenation of a1 and a2.
|
||
*/
|
||
concat: function (a1, a2) {
|
||
if (a1.length === 0 || a2.length === 0) {
|
||
return a1.concat(a2);
|
||
}
|
||
|
||
var out, i, last = a1[a1.length-1], shift = sjcl.bitArray.getPartial(last);
|
||
if (shift === 32) {
|
||
return a1.concat(a2);
|
||
} else {
|
||
return sjcl.bitArray._shiftRight(a2, shift, last|0, a1.slice(0,a1.length-1));
|
||
}
|
||
},
|
||
|
||
/**
|
||
* Find the length of an array of bits.
|
||
* @param {bitArray} a The array.
|
||
* @return {Number} The length of a, in bits.
|
||
*/
|
||
bitLength: function (a) {
|
||
var l = a.length, x;
|
||
if (l === 0) { return 0; }
|
||
x = a[l - 1];
|
||
return (l-1) * 32 + sjcl.bitArray.getPartial(x);
|
||
},
|
||
|
||
/**
|
||
* Truncate an array.
|
||
* @param {bitArray} a The array.
|
||
* @param {Number} len The length to truncate to, in bits.
|
||
* @return {bitArray} A new array, truncated to len bits.
|
||
*/
|
||
clamp: function (a, len) {
|
||
if (a.length * 32 < len) { return a; }
|
||
a = a.slice(0, Math.ceil(len / 32));
|
||
var l = a.length;
|
||
len = len & 31;
|
||
if (l > 0 && len) {
|
||
a[l-1] = sjcl.bitArray.partial(len, a[l-1] & 0x80000000 >> (len-1), 1);
|
||
}
|
||
return a;
|
||
},
|
||
|
||
/**
|
||
* Make a partial word for a bit array.
|
||
* @param {Number} len The number of bits in the word.
|
||
* @param {Number} x The bits.
|
||
* @param {Number} [0] _end Pass 1 if x has already been shifted to the high side.
|
||
* @return {Number} The partial word.
|
||
*/
|
||
partial: function (len, x, _end) {
|
||
if (len === 32) { return x; }
|
||
return (_end ? x|0 : x << (32-len)) + len * 0x10000000000;
|
||
},
|
||
|
||
/**
|
||
* Get the number of bits used by a partial word.
|
||
* @param {Number} x The partial word.
|
||
* @return {Number} The number of bits used by the partial word.
|
||
*/
|
||
getPartial: function (x) {
|
||
return Math.round(x/0x10000000000) || 32;
|
||
},
|
||
|
||
/**
|
||
* Compare two arrays for equality in a predictable amount of time.
|
||
* @param {bitArray} a The first array.
|
||
* @param {bitArray} b The second array.
|
||
* @return {boolean} true if a == b; false otherwise.
|
||
*/
|
||
equal: function (a, b) {
|
||
if (sjcl.bitArray.bitLength(a) !== sjcl.bitArray.bitLength(b)) {
|
||
return false;
|
||
}
|
||
var x = 0, i;
|
||
for (i=0; i<a.length; i++) {
|
||
x |= a[i]^b[i];
|
||
}
|
||
return (x === 0);
|
||
},
|
||
|
||
/** Shift an array right.
|
||
* @param {bitArray} a The array to shift.
|
||
* @param {Number} shift The number of bits to shift.
|
||
* @param {Number} [carry=0] A byte to carry in
|
||
* @param {bitArray} [out=[]] An array to prepend to the output.
|
||
* @private
|
||
*/
|
||
_shiftRight: function (a, shift, carry, out) {
|
||
var i, last2=0, shift2;
|
||
if (out === undefined) { out = []; }
|
||
|
||
for (; shift >= 32; shift -= 32) {
|
||
out.push(carry);
|
||
carry = 0;
|
||
}
|
||
if (shift === 0) {
|
||
return out.concat(a);
|
||
}
|
||
|
||
for (i=0; i<a.length; i++) {
|
||
out.push(carry | a[i]>>>shift);
|
||
carry = a[i] << (32-shift);
|
||
}
|
||
last2 = a.length ? a[a.length-1] : 0;
|
||
shift2 = sjcl.bitArray.getPartial(last2);
|
||
out.push(sjcl.bitArray.partial(shift+shift2 & 31, (shift + shift2 > 32) ? carry : out.pop(),1));
|
||
return out;
|
||
},
|
||
|
||
/** xor a block of 4 words together.
|
||
* @private
|
||
*/
|
||
_xor4: function(x,y) {
|
||
return [x[0]^y[0],x[1]^y[1],x[2]^y[2],x[3]^y[3]];
|
||
}
|
||
};
|
||
|
||
/** @fileOverview Bit array codec implementations.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace UTF-8 strings */
|
||
sjcl.codec.utf8String = {
|
||
/** Convert from a bitArray to a UTF-8 string. */
|
||
fromBits: function (arr) {
|
||
var out = "", bl = sjcl.bitArray.bitLength(arr), i, tmp;
|
||
for (i=0; i<bl/8; i++) {
|
||
if ((i&3) === 0) {
|
||
tmp = arr[i/4];
|
||
}
|
||
out += String.fromCharCode(tmp >>> 24);
|
||
tmp <<= 8;
|
||
}
|
||
return decodeURIComponent(escape(out));
|
||
},
|
||
|
||
/** Convert from a UTF-8 string to a bitArray. */
|
||
toBits: function (str) {
|
||
str = unescape(encodeURIComponent(str));
|
||
var out = [], i, tmp=0;
|
||
for (i=0; i<str.length; i++) {
|
||
tmp = tmp << 8 | str.charCodeAt(i);
|
||
if ((i&3) === 3) {
|
||
out.push(tmp);
|
||
tmp = 0;
|
||
}
|
||
}
|
||
if (i&3) {
|
||
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
|
||
}
|
||
return out;
|
||
}
|
||
};
|
||
|
||
/** @fileOverview Bit array codec implementations.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace Hexadecimal */
|
||
sjcl.codec.hex = {
|
||
/** Convert from a bitArray to a hex string. */
|
||
fromBits: function (arr) {
|
||
var out = "", i, x;
|
||
for (i=0; i<arr.length; i++) {
|
||
out += ((arr[i]|0)+0xF00000000000).toString(16).substr(4);
|
||
}
|
||
return out.substr(0, sjcl.bitArray.bitLength(arr)/4);//.replace(/(.{8})/g, "$1 ");
|
||
},
|
||
/** Convert from a hex string to a bitArray. */
|
||
toBits: function (str) {
|
||
var i, out=[], len;
|
||
str = str.replace(/\s|0x/g, "");
|
||
len = str.length;
|
||
str = str + "00000000";
|
||
for (i=0; i<str.length; i+=8) {
|
||
out.push(parseInt(str.substr(i,8),16)^0);
|
||
}
|
||
return sjcl.bitArray.clamp(out, len*4);
|
||
}
|
||
};
|
||
|
||
|
||
/** @fileOverview Bit array codec implementations.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace Base64 encoding/decoding */
|
||
sjcl.codec.base64 = {
|
||
/** The base64 alphabet.
|
||
* @private
|
||
*/
|
||
_chars: "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/",
|
||
|
||
/** Convert from a bitArray to a base64 string. */
|
||
fromBits: function (arr, _noEquals, _url) {
|
||
var out = "", i, bits=0, c = sjcl.codec.base64._chars, ta=0, bl = sjcl.bitArray.bitLength(arr);
|
||
if (_url) c = c.substr(0,62) + '-_';
|
||
for (i=0; out.length * 6 < bl; ) {
|
||
out += c.charAt((ta ^ arr[i]>>>bits) >>> 26);
|
||
if (bits < 6) {
|
||
ta = arr[i] << (6-bits);
|
||
bits += 26;
|
||
i++;
|
||
} else {
|
||
ta <<= 6;
|
||
bits -= 6;
|
||
}
|
||
}
|
||
while ((out.length & 3) && !_noEquals) { out += "="; }
|
||
return out;
|
||
},
|
||
|
||
/** Convert from a base64 string to a bitArray */
|
||
toBits: function(str, _url) {
|
||
str = str.replace(/\s|=/g,'');
|
||
var out = [], i, bits=0, c = sjcl.codec.base64._chars, ta=0, x;
|
||
if (_url) c = c.substr(0,62) + '-_';
|
||
for (i=0; i<str.length; i++) {
|
||
x = c.indexOf(str.charAt(i));
|
||
if (x < 0) {
|
||
throw new sjcl.exception.invalid("this isn't base64!");
|
||
}
|
||
if (bits > 26) {
|
||
bits -= 26;
|
||
out.push(ta ^ x>>>bits);
|
||
ta = x << (32-bits);
|
||
} else {
|
||
bits += 6;
|
||
ta ^= x << (32-bits);
|
||
}
|
||
}
|
||
if (bits&56) {
|
||
out.push(sjcl.bitArray.partial(bits&56, ta, 1));
|
||
}
|
||
return out;
|
||
}
|
||
};
|
||
|
||
sjcl.codec.base64url = {
|
||
fromBits: function (arr) { return sjcl.codec.base64.fromBits(arr,1,1); },
|
||
toBits: function (str) { return sjcl.codec.base64.toBits(str,1); }
|
||
};
|
||
|
||
/** @fileOverview Bit array codec implementations.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace Arrays of bytes */
|
||
sjcl.codec.bytes = {
|
||
/** Convert from a bitArray to an array of bytes. */
|
||
fromBits: function (arr) {
|
||
var out = [], bl = sjcl.bitArray.bitLength(arr), i, tmp;
|
||
for (i=0; i<bl/8; i++) {
|
||
if ((i&3) === 0) {
|
||
tmp = arr[i/4];
|
||
}
|
||
out.push(tmp >>> 24);
|
||
tmp <<= 8;
|
||
}
|
||
return out;
|
||
},
|
||
/** Convert from an array of bytes to a bitArray. */
|
||
toBits: function (bytes) {
|
||
var out = [], i, tmp=0;
|
||
for (i=0; i<bytes.length; i++) {
|
||
tmp = tmp << 8 | bytes[i];
|
||
if ((i&3) === 3) {
|
||
out.push(tmp);
|
||
tmp = 0;
|
||
}
|
||
}
|
||
if (i&3) {
|
||
out.push(sjcl.bitArray.partial(8*(i&3), tmp));
|
||
}
|
||
return out;
|
||
}
|
||
};
|
||
|
||
/** @fileOverview Javascript SHA-256 implementation.
|
||
*
|
||
* An older version of this implementation is available in the public
|
||
* domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
|
||
* Stanford University 2008-2010 and BSD-licensed for liability
|
||
* reasons.
|
||
*
|
||
* Special thanks to Aldo Cortesi for pointing out several bugs in
|
||
* this code.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/**
|
||
* Context for a SHA-256 operation in progress.
|
||
* @constructor
|
||
* @class Secure Hash Algorithm, 256 bits.
|
||
*/
|
||
sjcl.hash.sha256 = function (hash) {
|
||
if (!this._key[0]) { this._precompute(); }
|
||
if (hash) {
|
||
this._h = hash._h.slice(0);
|
||
this._buffer = hash._buffer.slice(0);
|
||
this._length = hash._length;
|
||
} else {
|
||
this.reset();
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Hash a string or an array of words.
|
||
* @static
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return {bitArray} The hash value, an array of 16 big-endian words.
|
||
*/
|
||
sjcl.hash.sha256.hash = function (data) {
|
||
return (new sjcl.hash.sha256()).update(data).finalize();
|
||
};
|
||
|
||
sjcl.hash.sha256.prototype = {
|
||
/**
|
||
* The hash's block size, in bits.
|
||
* @constant
|
||
*/
|
||
blockSize: 512,
|
||
|
||
/**
|
||
* Reset the hash state.
|
||
* @return this
|
||
*/
|
||
reset:function () {
|
||
this._h = this._init.slice(0);
|
||
this._buffer = [];
|
||
this._length = 0;
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Input several words to the hash.
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return this
|
||
*/
|
||
update: function (data) {
|
||
if (typeof data === "string") {
|
||
data = sjcl.codec.utf8String.toBits(data);
|
||
}
|
||
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
|
||
ol = this._length,
|
||
nl = this._length = ol + sjcl.bitArray.bitLength(data);
|
||
for (i = 512+ol & -512; i <= nl; i+= 512) {
|
||
this._block(b.splice(0,16));
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Complete hashing and output the hash value.
|
||
* @return {bitArray} The hash value, an array of 8 big-endian words.
|
||
*/
|
||
finalize:function () {
|
||
var i, b = this._buffer, h = this._h;
|
||
|
||
// Round out and push the buffer
|
||
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
|
||
|
||
// Round out the buffer to a multiple of 16 words, less the 2 length words.
|
||
for (i = b.length + 2; i & 15; i++) {
|
||
b.push(0);
|
||
}
|
||
|
||
// append the length
|
||
b.push(Math.floor(this._length / 0x100000000));
|
||
b.push(this._length | 0);
|
||
|
||
while (b.length) {
|
||
this._block(b.splice(0,16));
|
||
}
|
||
|
||
this.reset();
|
||
return h;
|
||
},
|
||
|
||
/**
|
||
* The SHA-256 initialization vector, to be precomputed.
|
||
* @private
|
||
*/
|
||
_init:[],
|
||
/*
|
||
_init:[0x6a09e667,0xbb67ae85,0x3c6ef372,0xa54ff53a,0x510e527f,0x9b05688c,0x1f83d9ab,0x5be0cd19],
|
||
*/
|
||
|
||
/**
|
||
* The SHA-256 hash key, to be precomputed.
|
||
* @private
|
||
*/
|
||
_key:[],
|
||
/*
|
||
_key:
|
||
[0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
||
0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
||
0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
||
0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
||
0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
||
0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
||
0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
||
0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2],
|
||
*/
|
||
|
||
|
||
/**
|
||
* Function to precompute _init and _key.
|
||
* @private
|
||
*/
|
||
_precompute: function () {
|
||
var i = 0, prime = 2, factor;
|
||
|
||
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
|
||
|
||
outer: for (; i<64; prime++) {
|
||
for (factor=2; factor*factor <= prime; factor++) {
|
||
if (prime % factor === 0) {
|
||
// not a prime
|
||
continue outer;
|
||
}
|
||
}
|
||
|
||
if (i<8) {
|
||
this._init[i] = frac(Math.pow(prime, 1/2));
|
||
}
|
||
this._key[i] = frac(Math.pow(prime, 1/3));
|
||
i++;
|
||
}
|
||
},
|
||
|
||
/**
|
||
* Perform one cycle of SHA-256.
|
||
* @param {bitArray} words one block of words.
|
||
* @private
|
||
*/
|
||
_block:function (words) {
|
||
var i, tmp, a, b,
|
||
w = words.slice(0),
|
||
h = this._h,
|
||
k = this._key,
|
||
h0 = h[0], h1 = h[1], h2 = h[2], h3 = h[3],
|
||
h4 = h[4], h5 = h[5], h6 = h[6], h7 = h[7];
|
||
|
||
/* Rationale for placement of |0 :
|
||
* If a value can overflow is original 32 bits by a factor of more than a few
|
||
* million (2^23 ish), there is a possibility that it might overflow the
|
||
* 53-bit mantissa and lose precision.
|
||
*
|
||
* To avoid this, we clamp back to 32 bits by |'ing with 0 on any value that
|
||
* propagates around the loop, and on the hash state h[]. I don't believe
|
||
* that the clamps on h4 and on h0 are strictly necessary, but it's close
|
||
* (for h4 anyway), and better safe than sorry.
|
||
*
|
||
* The clamps on h[] are necessary for the output to be correct even in the
|
||
* common case and for short inputs.
|
||
*/
|
||
for (i=0; i<64; i++) {
|
||
// load up the input word for this round
|
||
if (i<16) {
|
||
tmp = w[i];
|
||
} else {
|
||
a = w[(i+1 ) & 15];
|
||
b = w[(i+14) & 15];
|
||
tmp = w[i&15] = ((a>>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
|
||
(b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
|
||
w[i&15] + w[(i+9) & 15]) | 0;
|
||
}
|
||
|
||
tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
|
||
|
||
// shift register
|
||
h7 = h6; h6 = h5; h5 = h4;
|
||
h4 = h3 + tmp | 0;
|
||
h3 = h2; h2 = h1; h1 = h0;
|
||
|
||
h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
|
||
}
|
||
|
||
h[0] = h[0]+h0 | 0;
|
||
h[1] = h[1]+h1 | 0;
|
||
h[2] = h[2]+h2 | 0;
|
||
h[3] = h[3]+h3 | 0;
|
||
h[4] = h[4]+h4 | 0;
|
||
h[5] = h[5]+h5 | 0;
|
||
h[6] = h[6]+h6 | 0;
|
||
h[7] = h[7]+h7 | 0;
|
||
}
|
||
};
|
||
|
||
|
||
|
||
/** @fileOverview Javascript SHA-512 implementation.
|
||
*
|
||
* This implementation was written for CryptoJS by Jeff Mott and adapted for
|
||
* SJCL by Stefan Thomas.
|
||
*
|
||
* CryptoJS (c) 2009–2012 by Jeff Mott. All rights reserved.
|
||
* Released with New BSD License
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
* @author Jeff Mott
|
||
* @author Stefan Thomas
|
||
*/
|
||
|
||
/**
|
||
* Context for a SHA-512 operation in progress.
|
||
* @constructor
|
||
* @class Secure Hash Algorithm, 512 bits.
|
||
*/
|
||
sjcl.hash.sha512 = function (hash) {
|
||
if (!this._key[0]) { this._precompute(); }
|
||
if (hash) {
|
||
this._h = hash._h.slice(0);
|
||
this._buffer = hash._buffer.slice(0);
|
||
this._length = hash._length;
|
||
} else {
|
||
this.reset();
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Hash a string or an array of words.
|
||
* @static
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return {bitArray} The hash value, an array of 16 big-endian words.
|
||
*/
|
||
sjcl.hash.sha512.hash = function (data) {
|
||
return (new sjcl.hash.sha512()).update(data).finalize();
|
||
};
|
||
|
||
sjcl.hash.sha512.prototype = {
|
||
/**
|
||
* The hash's block size, in bits.
|
||
* @constant
|
||
*/
|
||
blockSize: 1024,
|
||
|
||
/**
|
||
* Reset the hash state.
|
||
* @return this
|
||
*/
|
||
reset:function () {
|
||
this._h = this._init.slice(0);
|
||
this._buffer = [];
|
||
this._length = 0;
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Input several words to the hash.
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return this
|
||
*/
|
||
update: function (data) {
|
||
if (typeof data === "string") {
|
||
data = sjcl.codec.utf8String.toBits(data);
|
||
}
|
||
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
|
||
ol = this._length,
|
||
nl = this._length = ol + sjcl.bitArray.bitLength(data);
|
||
for (i = 1024+ol & -1024; i <= nl; i+= 1024) {
|
||
this._block(b.splice(0,32));
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Complete hashing and output the hash value.
|
||
* @return {bitArray} The hash value, an array of 16 big-endian words.
|
||
*/
|
||
finalize:function () {
|
||
var i, b = this._buffer, h = this._h;
|
||
|
||
// Round out and push the buffer
|
||
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
|
||
|
||
// Round out the buffer to a multiple of 32 words, less the 4 length words.
|
||
for (i = b.length + 4; i & 31; i++) {
|
||
b.push(0);
|
||
}
|
||
|
||
// append the length
|
||
b.push(0);
|
||
b.push(0);
|
||
b.push(Math.floor(this._length / 0x100000000));
|
||
b.push(this._length | 0);
|
||
|
||
while (b.length) {
|
||
this._block(b.splice(0,32));
|
||
}
|
||
|
||
this.reset();
|
||
return h;
|
||
},
|
||
|
||
/**
|
||
* The SHA-512 initialization vector, to be precomputed.
|
||
* @private
|
||
*/
|
||
_init:[],
|
||
|
||
/**
|
||
* Least significant 24 bits of SHA512 initialization values.
|
||
*
|
||
* Javascript only has 53 bits of precision, so we compute the 40 most
|
||
* significant bits and add the remaining 24 bits as constants.
|
||
*
|
||
* @private
|
||
*/
|
||
_initr: [ 0xbcc908, 0xcaa73b, 0x94f82b, 0x1d36f1, 0xe682d1, 0x3e6c1f, 0x41bd6b, 0x7e2179 ],
|
||
|
||
/*
|
||
_init:
|
||
[0x6a09e667, 0xf3bcc908, 0xbb67ae85, 0x84caa73b, 0x3c6ef372, 0xfe94f82b, 0xa54ff53a, 0x5f1d36f1,
|
||
0x510e527f, 0xade682d1, 0x9b05688c, 0x2b3e6c1f, 0x1f83d9ab, 0xfb41bd6b, 0x5be0cd19, 0x137e2179],
|
||
*/
|
||
|
||
/**
|
||
* The SHA-512 hash key, to be precomputed.
|
||
* @private
|
||
*/
|
||
_key:[],
|
||
|
||
/**
|
||
* Least significant 24 bits of SHA512 key values.
|
||
* @private
|
||
*/
|
||
_keyr:
|
||
[0x28ae22, 0xef65cd, 0x4d3b2f, 0x89dbbc, 0x48b538, 0x05d019, 0x194f9b, 0x6d8118,
|
||
0x030242, 0x706fbe, 0xe4b28c, 0xffb4e2, 0x7b896f, 0x1696b1, 0xc71235, 0x692694,
|
||
0xf14ad2, 0x4f25e3, 0x8cd5b5, 0xac9c65, 0x2b0275, 0xa6e483, 0x41fbd4, 0x1153b5,
|
||
0x66dfab, 0xb43210, 0xfb213f, 0xef0ee4, 0xa88fc2, 0x0aa725, 0x03826f, 0x0e6e70,
|
||
0xd22ffc, 0x26c926, 0xc42aed, 0x95b3df, 0xaf63de, 0x77b2a8, 0xedaee6, 0x82353b,
|
||
0xf10364, 0x423001, 0xf89791, 0x54be30, 0xef5218, 0x65a910, 0x71202a, 0xbbd1b8,
|
||
0xd2d0c8, 0x41ab53, 0x8eeb99, 0x9b48a8, 0xc95a63, 0x418acb, 0x63e373, 0xb2b8a3,
|
||
0xefb2fc, 0x172f60, 0xf0ab72, 0x6439ec, 0x631e28, 0x82bde9, 0xc67915, 0x72532b,
|
||
0x26619c, 0xc0c207, 0xe0eb1e, 0x6ed178, 0x176fba, 0xc898a6, 0xf90dae, 0x1c471b,
|
||
0x047d84, 0xc72493, 0xc9bebc, 0x100d4c, 0x3e42b6, 0x657e2a, 0xd6faec, 0x475817],
|
||
|
||
/*
|
||
_key:
|
||
[0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd, 0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc,
|
||
0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019, 0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118,
|
||
0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe, 0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2,
|
||
0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1, 0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694,
|
||
0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3, 0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65,
|
||
0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483, 0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5,
|
||
0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210, 0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4,
|
||
0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725, 0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70,
|
||
0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926, 0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df,
|
||
0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8, 0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b,
|
||
0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001, 0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30,
|
||
0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910, 0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8,
|
||
0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53, 0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8,
|
||
0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb, 0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3,
|
||
0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60, 0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec,
|
||
0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9, 0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b,
|
||
0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207, 0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178,
|
||
0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6, 0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b,
|
||
0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493, 0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c,
|
||
0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a, 0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817],
|
||
*/
|
||
|
||
/**
|
||
* Function to precompute _init and _key.
|
||
* @private
|
||
*/
|
||
_precompute: function () {
|
||
// XXX: This code is for precomputing the SHA256 constants, change for
|
||
// SHA512 and re-enable.
|
||
var i = 0, prime = 2, factor;
|
||
|
||
function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
|
||
function frac2(x) { return (x-Math.floor(x)) * 0x10000000000 & 0xff; }
|
||
|
||
outer: for (; i<80; prime++) {
|
||
for (factor=2; factor*factor <= prime; factor++) {
|
||
if (prime % factor === 0) {
|
||
// not a prime
|
||
continue outer;
|
||
}
|
||
}
|
||
|
||
if (i<8) {
|
||
this._init[i*2] = frac(Math.pow(prime, 1/2));
|
||
this._init[i*2+1] = (frac2(Math.pow(prime, 1/2)) << 24) | this._initr[i];
|
||
}
|
||
this._key[i*2] = frac(Math.pow(prime, 1/3));
|
||
this._key[i*2+1] = (frac2(Math.pow(prime, 1/3)) << 24) | this._keyr[i];
|
||
i++;
|
||
}
|
||
},
|
||
|
||
/**
|
||
* Perform one cycle of SHA-512.
|
||
* @param {bitArray} words one block of words.
|
||
* @private
|
||
*/
|
||
_block:function (words) {
|
||
var i, wrh, wrl,
|
||
w = words.slice(0),
|
||
h = this._h,
|
||
k = this._key,
|
||
h0h = h[ 0], h0l = h[ 1], h1h = h[ 2], h1l = h[ 3],
|
||
h2h = h[ 4], h2l = h[ 5], h3h = h[ 6], h3l = h[ 7],
|
||
h4h = h[ 8], h4l = h[ 9], h5h = h[10], h5l = h[11],
|
||
h6h = h[12], h6l = h[13], h7h = h[14], h7l = h[15];
|
||
|
||
// Working variables
|
||
var ah = h0h, al = h0l, bh = h1h, bl = h1l,
|
||
ch = h2h, cl = h2l, dh = h3h, dl = h3l,
|
||
eh = h4h, el = h4l, fh = h5h, fl = h5l,
|
||
gh = h6h, gl = h6l, hh = h7h, hl = h7l;
|
||
|
||
for (i=0; i<80; i++) {
|
||
// load up the input word for this round
|
||
if (i<16) {
|
||
wrh = w[i * 2];
|
||
wrl = w[i * 2 + 1];
|
||
} else {
|
||
// Gamma0
|
||
var gamma0xh = w[(i-15) * 2];
|
||
var gamma0xl = w[(i-15) * 2 + 1];
|
||
var gamma0h =
|
||
((gamma0xl << 31) | (gamma0xh >>> 1)) ^
|
||
((gamma0xl << 24) | (gamma0xh >>> 8)) ^
|
||
(gamma0xh >>> 7);
|
||
var gamma0l =
|
||
((gamma0xh << 31) | (gamma0xl >>> 1)) ^
|
||
((gamma0xh << 24) | (gamma0xl >>> 8)) ^
|
||
((gamma0xh << 25) | (gamma0xl >>> 7));
|
||
|
||
// Gamma1
|
||
var gamma1xh = w[(i-2) * 2];
|
||
var gamma1xl = w[(i-2) * 2 + 1];
|
||
var gamma1h =
|
||
((gamma1xl << 13) | (gamma1xh >>> 19)) ^
|
||
((gamma1xh << 3) | (gamma1xl >>> 29)) ^
|
||
(gamma1xh >>> 6);
|
||
var gamma1l =
|
||
((gamma1xh << 13) | (gamma1xl >>> 19)) ^
|
||
((gamma1xl << 3) | (gamma1xh >>> 29)) ^
|
||
((gamma1xh << 26) | (gamma1xl >>> 6));
|
||
|
||
// Shortcuts
|
||
var wr7h = w[(i-7) * 2];
|
||
var wr7l = w[(i-7) * 2 + 1];
|
||
|
||
var wr16h = w[(i-16) * 2];
|
||
var wr16l = w[(i-16) * 2 + 1];
|
||
|
||
// W(round) = gamma0 + W(round - 7) + gamma1 + W(round - 16)
|
||
wrl = gamma0l + wr7l;
|
||
wrh = gamma0h + wr7h + ((wrl >>> 0) < (gamma0l >>> 0) ? 1 : 0);
|
||
wrl += gamma1l;
|
||
wrh += gamma1h + ((wrl >>> 0) < (gamma1l >>> 0) ? 1 : 0);
|
||
wrl += wr16l;
|
||
wrh += wr16h + ((wrl >>> 0) < (wr16l >>> 0) ? 1 : 0);
|
||
}
|
||
|
||
w[i*2] = wrh |= 0;
|
||
w[i*2 + 1] = wrl |= 0;
|
||
|
||
// Ch
|
||
var chh = (eh & fh) ^ (~eh & gh);
|
||
var chl = (el & fl) ^ (~el & gl);
|
||
|
||
// Maj
|
||
var majh = (ah & bh) ^ (ah & ch) ^ (bh & ch);
|
||
var majl = (al & bl) ^ (al & cl) ^ (bl & cl);
|
||
|
||
// Sigma0
|
||
var sigma0h = ((al << 4) | (ah >>> 28)) ^ ((ah << 30) | (al >>> 2)) ^ ((ah << 25) | (al >>> 7));
|
||
var sigma0l = ((ah << 4) | (al >>> 28)) ^ ((al << 30) | (ah >>> 2)) ^ ((al << 25) | (ah >>> 7));
|
||
|
||
// Sigma1
|
||
var sigma1h = ((el << 18) | (eh >>> 14)) ^ ((el << 14) | (eh >>> 18)) ^ ((eh << 23) | (el >>> 9));
|
||
var sigma1l = ((eh << 18) | (el >>> 14)) ^ ((eh << 14) | (el >>> 18)) ^ ((el << 23) | (eh >>> 9));
|
||
|
||
// K(round)
|
||
var krh = k[i*2];
|
||
var krl = k[i*2+1];
|
||
|
||
// t1 = h + sigma1 + ch + K(round) + W(round)
|
||
var t1l = hl + sigma1l;
|
||
var t1h = hh + sigma1h + ((t1l >>> 0) < (hl >>> 0) ? 1 : 0);
|
||
t1l += chl;
|
||
t1h += chh + ((t1l >>> 0) < (chl >>> 0) ? 1 : 0);
|
||
t1l += krl;
|
||
t1h += krh + ((t1l >>> 0) < (krl >>> 0) ? 1 : 0);
|
||
t1l += wrl;
|
||
t1h += wrh + ((t1l >>> 0) < (wrl >>> 0) ? 1 : 0);
|
||
|
||
// t2 = sigma0 + maj
|
||
var t2l = sigma0l + majl;
|
||
var t2h = sigma0h + majh + ((t2l >>> 0) < (sigma0l >>> 0) ? 1 : 0);
|
||
|
||
// Update working variables
|
||
hh = gh;
|
||
hl = gl;
|
||
gh = fh;
|
||
gl = fl;
|
||
fh = eh;
|
||
fl = el;
|
||
el = (dl + t1l) | 0;
|
||
eh = (dh + t1h + ((el >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
|
||
dh = ch;
|
||
dl = cl;
|
||
ch = bh;
|
||
cl = bl;
|
||
bh = ah;
|
||
bl = al;
|
||
al = (t1l + t2l) | 0;
|
||
ah = (t1h + t2h + ((al >>> 0) < (t1l >>> 0) ? 1 : 0)) | 0;
|
||
}
|
||
|
||
// Intermediate hash
|
||
h0l = h[1] = (h0l + al) | 0;
|
||
h[0] = (h0h + ah + ((h0l >>> 0) < (al >>> 0) ? 1 : 0)) | 0;
|
||
h1l = h[3] = (h1l + bl) | 0;
|
||
h[2] = (h1h + bh + ((h1l >>> 0) < (bl >>> 0) ? 1 : 0)) | 0;
|
||
h2l = h[5] = (h2l + cl) | 0;
|
||
h[4] = (h2h + ch + ((h2l >>> 0) < (cl >>> 0) ? 1 : 0)) | 0;
|
||
h3l = h[7] = (h3l + dl) | 0;
|
||
h[6] = (h3h + dh + ((h3l >>> 0) < (dl >>> 0) ? 1 : 0)) | 0;
|
||
h4l = h[9] = (h4l + el) | 0;
|
||
h[8] = (h4h + eh + ((h4l >>> 0) < (el >>> 0) ? 1 : 0)) | 0;
|
||
h5l = h[11] = (h5l + fl) | 0;
|
||
h[10] = (h5h + fh + ((h5l >>> 0) < (fl >>> 0) ? 1 : 0)) | 0;
|
||
h6l = h[13] = (h6l + gl) | 0;
|
||
h[12] = (h6h + gh + ((h6l >>> 0) < (gl >>> 0) ? 1 : 0)) | 0;
|
||
h7l = h[15] = (h7l + hl) | 0;
|
||
h[14] = (h7h + hh + ((h7l >>> 0) < (hl >>> 0) ? 1 : 0)) | 0;
|
||
}
|
||
};
|
||
|
||
|
||
|
||
/** @fileOverview Javascript SHA-1 implementation.
|
||
*
|
||
* Based on the implementation in RFC 3174, method 1, and on the SJCL
|
||
* SHA-256 implementation.
|
||
*
|
||
* @author Quinn Slack
|
||
*/
|
||
|
||
/**
|
||
* Context for a SHA-1 operation in progress.
|
||
* @constructor
|
||
* @class Secure Hash Algorithm, 160 bits.
|
||
*/
|
||
sjcl.hash.sha1 = function (hash) {
|
||
if (hash) {
|
||
this._h = hash._h.slice(0);
|
||
this._buffer = hash._buffer.slice(0);
|
||
this._length = hash._length;
|
||
} else {
|
||
this.reset();
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Hash a string or an array of words.
|
||
* @static
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return {bitArray} The hash value, an array of 5 big-endian words.
|
||
*/
|
||
sjcl.hash.sha1.hash = function (data) {
|
||
return (new sjcl.hash.sha1()).update(data).finalize();
|
||
};
|
||
|
||
sjcl.hash.sha1.prototype = {
|
||
/**
|
||
* The hash's block size, in bits.
|
||
* @constant
|
||
*/
|
||
blockSize: 512,
|
||
|
||
/**
|
||
* Reset the hash state.
|
||
* @return this
|
||
*/
|
||
reset:function () {
|
||
this._h = this._init.slice(0);
|
||
this._buffer = [];
|
||
this._length = 0;
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Input several words to the hash.
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return this
|
||
*/
|
||
update: function (data) {
|
||
if (typeof data === "string") {
|
||
data = sjcl.codec.utf8String.toBits(data);
|
||
}
|
||
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
|
||
ol = this._length,
|
||
nl = this._length = ol + sjcl.bitArray.bitLength(data);
|
||
for (i = this.blockSize+ol & -this.blockSize; i <= nl;
|
||
i+= this.blockSize) {
|
||
this._block(b.splice(0,16));
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Complete hashing and output the hash value.
|
||
* @return {bitArray} The hash value, an array of 5 big-endian words. TODO
|
||
*/
|
||
finalize:function () {
|
||
var i, b = this._buffer, h = this._h;
|
||
|
||
// Round out and push the buffer
|
||
b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
|
||
// Round out the buffer to a multiple of 16 words, less the 2 length words.
|
||
for (i = b.length + 2; i & 15; i++) {
|
||
b.push(0);
|
||
}
|
||
|
||
// append the length
|
||
b.push(Math.floor(this._length / 0x100000000));
|
||
b.push(this._length | 0);
|
||
|
||
while (b.length) {
|
||
this._block(b.splice(0,16));
|
||
}
|
||
|
||
this.reset();
|
||
return h;
|
||
},
|
||
|
||
/**
|
||
* The SHA-1 initialization vector.
|
||
* @private
|
||
*/
|
||
_init:[0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0],
|
||
|
||
/**
|
||
* The SHA-1 hash key.
|
||
* @private
|
||
*/
|
||
_key:[0x5A827999, 0x6ED9EBA1, 0x8F1BBCDC, 0xCA62C1D6],
|
||
|
||
/**
|
||
* The SHA-1 logical functions f(0), f(1), ..., f(79).
|
||
* @private
|
||
*/
|
||
_f:function(t, b, c, d) {
|
||
if (t <= 19) {
|
||
return (b & c) | (~b & d);
|
||
} else if (t <= 39) {
|
||
return b ^ c ^ d;
|
||
} else if (t <= 59) {
|
||
return (b & c) | (b & d) | (c & d);
|
||
} else if (t <= 79) {
|
||
return b ^ c ^ d;
|
||
}
|
||
},
|
||
|
||
/**
|
||
* Circular left-shift operator.
|
||
* @private
|
||
*/
|
||
_S:function(n, x) {
|
||
return (x << n) | (x >>> 32-n);
|
||
},
|
||
|
||
/**
|
||
* Perform one cycle of SHA-1.
|
||
* @param {bitArray} words one block of words.
|
||
* @private
|
||
*/
|
||
_block:function (words) {
|
||
var t, tmp, a, b, c, d, e,
|
||
w = words.slice(0),
|
||
h = this._h,
|
||
k = this._key;
|
||
|
||
a = h[0]; b = h[1]; c = h[2]; d = h[3]; e = h[4];
|
||
|
||
for (t=0; t<=79; t++) {
|
||
if (t >= 16) {
|
||
w[t] = this._S(1, w[t-3] ^ w[t-8] ^ w[t-14] ^ w[t-16]);
|
||
}
|
||
tmp = (this._S(5, a) + this._f(t, b, c, d) + e + w[t] +
|
||
this._key[Math.floor(t/20)]) | 0;
|
||
e = d;
|
||
d = c;
|
||
c = this._S(30, b);
|
||
b = a;
|
||
a = tmp;
|
||
}
|
||
|
||
h[0] = (h[0]+a) |0;
|
||
h[1] = (h[1]+b) |0;
|
||
h[2] = (h[2]+c) |0;
|
||
h[3] = (h[3]+d) |0;
|
||
h[4] = (h[4]+e) |0;
|
||
}
|
||
};
|
||
|
||
/** @fileOverview CCM mode implementation.
|
||
*
|
||
* Special thanks to Roy Nicholson for pointing out a bug in our
|
||
* implementation.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace CTR mode with CBC MAC. */
|
||
sjcl.mode.ccm = {
|
||
/** The name of the mode.
|
||
* @constant
|
||
*/
|
||
name: "ccm",
|
||
|
||
/** Encrypt in CCM mode.
|
||
* @static
|
||
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
|
||
* @param {bitArray} plaintext The plaintext data.
|
||
* @param {bitArray} iv The initialization value.
|
||
* @param {bitArray} [adata=[]] The authenticated data.
|
||
* @param {Number} [tlen=64] the desired tag length, in bits.
|
||
* @return {bitArray} The encrypted data, an array of bytes.
|
||
*/
|
||
encrypt: function(prf, plaintext, iv, adata, tlen) {
|
||
var L, i, out = plaintext.slice(0), tag, w=sjcl.bitArray, ivl = w.bitLength(iv) / 8, ol = w.bitLength(out) / 8;
|
||
tlen = tlen || 64;
|
||
adata = adata || [];
|
||
|
||
if (ivl < 7) {
|
||
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
|
||
}
|
||
|
||
// compute the length of the length
|
||
for (L=2; L<4 && ol >>> 8*L; L++) {}
|
||
if (L < 15 - ivl) { L = 15-ivl; }
|
||
iv = w.clamp(iv,8*(15-L));
|
||
|
||
// compute the tag
|
||
tag = sjcl.mode.ccm._computeTag(prf, plaintext, iv, adata, tlen, L);
|
||
|
||
// encrypt
|
||
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
|
||
|
||
return w.concat(out.data, out.tag);
|
||
},
|
||
|
||
/** Decrypt in CCM mode.
|
||
* @static
|
||
* @param {Object} prf The pseudorandom function. It must have a block size of 16 bytes.
|
||
* @param {bitArray} ciphertext The ciphertext data.
|
||
* @param {bitArray} iv The initialization value.
|
||
* @param {bitArray} [[]] adata The authenticated data.
|
||
* @param {Number} [64] tlen the desired tag length, in bits.
|
||
* @return {bitArray} The decrypted data.
|
||
*/
|
||
decrypt: function(prf, ciphertext, iv, adata, tlen) {
|
||
tlen = tlen || 64;
|
||
adata = adata || [];
|
||
var L, i,
|
||
w=sjcl.bitArray,
|
||
ivl = w.bitLength(iv) / 8,
|
||
ol = w.bitLength(ciphertext),
|
||
out = w.clamp(ciphertext, ol - tlen),
|
||
tag = w.bitSlice(ciphertext, ol - tlen), tag2;
|
||
|
||
|
||
ol = (ol - tlen) / 8;
|
||
|
||
if (ivl < 7) {
|
||
throw new sjcl.exception.invalid("ccm: iv must be at least 7 bytes");
|
||
}
|
||
|
||
// compute the length of the length
|
||
for (L=2; L<4 && ol >>> 8*L; L++) {}
|
||
if (L < 15 - ivl) { L = 15-ivl; }
|
||
iv = w.clamp(iv,8*(15-L));
|
||
|
||
// decrypt
|
||
out = sjcl.mode.ccm._ctrMode(prf, out, iv, tag, tlen, L);
|
||
|
||
// check the tag
|
||
tag2 = sjcl.mode.ccm._computeTag(prf, out.data, iv, adata, tlen, L);
|
||
if (!w.equal(out.tag, tag2)) {
|
||
throw new sjcl.exception.corrupt("ccm: tag doesn't match");
|
||
}
|
||
|
||
return out.data;
|
||
},
|
||
|
||
/* Compute the (unencrypted) authentication tag, according to the CCM specification
|
||
* @param {Object} prf The pseudorandom function.
|
||
* @param {bitArray} plaintext The plaintext data.
|
||
* @param {bitArray} iv The initialization value.
|
||
* @param {bitArray} adata The authenticated data.
|
||
* @param {Number} tlen the desired tag length, in bits.
|
||
* @return {bitArray} The tag, but not yet encrypted.
|
||
* @private
|
||
*/
|
||
_computeTag: function(prf, plaintext, iv, adata, tlen, L) {
|
||
// compute B[0]
|
||
var q, mac, field = 0, offset = 24, tmp, i, macData = [], w=sjcl.bitArray, xor = w._xor4;
|
||
|
||
tlen /= 8;
|
||
|
||
// check tag length and message length
|
||
if (tlen % 2 || tlen < 4 || tlen > 16) {
|
||
throw new sjcl.exception.invalid("ccm: invalid tag length");
|
||
}
|
||
|
||
if (adata.length > 0xFFFFFFFF || plaintext.length > 0xFFFFFFFF) {
|
||
// I don't want to deal with extracting high words from doubles.
|
||
throw new sjcl.exception.bug("ccm: can't deal with 4GiB or more data");
|
||
}
|
||
|
||
// mac the flags
|
||
mac = [w.partial(8, (adata.length ? 1<<6 : 0) | (tlen-2) << 2 | L-1)];
|
||
|
||
// mac the iv and length
|
||
mac = w.concat(mac, iv);
|
||
mac[3] |= w.bitLength(plaintext)/8;
|
||
mac = prf.encrypt(mac);
|
||
|
||
|
||
if (adata.length) {
|
||
// mac the associated data. start with its length...
|
||
tmp = w.bitLength(adata)/8;
|
||
if (tmp <= 0xFEFF) {
|
||
macData = [w.partial(16, tmp)];
|
||
} else if (tmp <= 0xFFFFFFFF) {
|
||
macData = w.concat([w.partial(16,0xFFFE)], [tmp]);
|
||
} // else ...
|
||
|
||
// mac the data itself
|
||
macData = w.concat(macData, adata);
|
||
for (i=0; i<macData.length; i += 4) {
|
||
mac = prf.encrypt(xor(mac, macData.slice(i,i+4).concat([0,0,0])));
|
||
}
|
||
}
|
||
|
||
// mac the plaintext
|
||
for (i=0; i<plaintext.length; i+=4) {
|
||
mac = prf.encrypt(xor(mac, plaintext.slice(i,i+4).concat([0,0,0])));
|
||
}
|
||
|
||
return w.clamp(mac, tlen * 8);
|
||
},
|
||
|
||
/** CCM CTR mode.
|
||
* Encrypt or decrypt data and tag with the prf in CCM-style CTR mode.
|
||
* May mutate its arguments.
|
||
* @param {Object} prf The PRF.
|
||
* @param {bitArray} data The data to be encrypted or decrypted.
|
||
* @param {bitArray} iv The initialization vector.
|
||
* @param {bitArray} tag The authentication tag.
|
||
* @param {Number} tlen The length of th etag, in bits.
|
||
* @param {Number} L The CCM L value.
|
||
* @return {Object} An object with data and tag, the en/decryption of data and tag values.
|
||
* @private
|
||
*/
|
||
_ctrMode: function(prf, data, iv, tag, tlen, L) {
|
||
var enc, i, w=sjcl.bitArray, xor = w._xor4, ctr, b, l = data.length, bl=w.bitLength(data);
|
||
|
||
// start the ctr
|
||
ctr = w.concat([w.partial(8,L-1)],iv).concat([0,0,0]).slice(0,4);
|
||
|
||
// en/decrypt the tag
|
||
tag = w.bitSlice(xor(tag,prf.encrypt(ctr)), 0, tlen);
|
||
|
||
// en/decrypt the data
|
||
if (!l) { return {tag:tag, data:[]}; }
|
||
|
||
for (i=0; i<l; i+=4) {
|
||
ctr[3]++;
|
||
enc = prf.encrypt(ctr);
|
||
data[i] ^= enc[0];
|
||
data[i+1] ^= enc[1];
|
||
data[i+2] ^= enc[2];
|
||
data[i+3] ^= enc[3];
|
||
}
|
||
return { tag:tag, data:w.clamp(data,bl) };
|
||
}
|
||
};
|
||
|
||
/** @fileOverview HMAC implementation.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** HMAC with the specified hash function.
|
||
* @constructor
|
||
* @param {bitArray} key the key for HMAC.
|
||
* @param {Object} [hash=sjcl.hash.sha256] The hash function to use.
|
||
*/
|
||
sjcl.misc.hmac = function (key, Hash) {
|
||
this._hash = Hash = Hash || sjcl.hash.sha256;
|
||
var exKey = [[],[]], i,
|
||
bs = Hash.prototype.blockSize / 32;
|
||
this._baseHash = [new Hash(), new Hash()];
|
||
|
||
if (key.length > bs) {
|
||
key = Hash.hash(key);
|
||
}
|
||
|
||
for (i=0; i<bs; i++) {
|
||
exKey[0][i] = key[i]^0x36363636;
|
||
exKey[1][i] = key[i]^0x5C5C5C5C;
|
||
}
|
||
|
||
this._baseHash[0].update(exKey[0]);
|
||
this._baseHash[1].update(exKey[1]);
|
||
};
|
||
|
||
/** HMAC with the specified hash function. Also called encrypt since it's a prf.
|
||
* @param {bitArray|String} data The data to mac.
|
||
*/
|
||
sjcl.misc.hmac.prototype.encrypt = sjcl.misc.hmac.prototype.mac = function (data) {
|
||
var w = new (this._hash)(this._baseHash[0]).update(data).finalize();
|
||
return new (this._hash)(this._baseHash[1]).update(w).finalize();
|
||
};
|
||
|
||
|
||
/** @fileOverview Password-based key-derivation function, version 2.0.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** Password-Based Key-Derivation Function, version 2.0.
|
||
*
|
||
* Generate keys from passwords using PBKDF2-HMAC-SHA256.
|
||
*
|
||
* This is the method specified by RSA's PKCS #5 standard.
|
||
*
|
||
* @param {bitArray|String} password The password.
|
||
* @param {bitArray} salt The salt. Should have lots of entropy.
|
||
* @param {Number} [count=1000] The number of iterations. Higher numbers make the function slower but more secure.
|
||
* @param {Number} [length] The length of the derived key. Defaults to the
|
||
output size of the hash function.
|
||
* @param {Object} [Prff=sjcl.misc.hmac] The pseudorandom function family.
|
||
* @return {bitArray} the derived key.
|
||
*/
|
||
sjcl.misc.pbkdf2 = function (password, salt, count, length, Prff) {
|
||
count = count || 1000;
|
||
|
||
if (length < 0 || count < 0) {
|
||
throw sjcl.exception.invalid("invalid params to pbkdf2");
|
||
}
|
||
|
||
if (typeof password === "string") {
|
||
password = sjcl.codec.utf8String.toBits(password);
|
||
}
|
||
|
||
Prff = Prff || sjcl.misc.hmac;
|
||
|
||
var prf = new Prff(password),
|
||
u, ui, i, j, k, out = [], b = sjcl.bitArray;
|
||
|
||
for (k = 1; 32 * out.length < (length || 1); k++) {
|
||
u = ui = prf.encrypt(b.concat(salt,[k]));
|
||
|
||
for (i=1; i<count; i++) {
|
||
ui = prf.encrypt(ui);
|
||
for (j=0; j<ui.length; j++) {
|
||
u[j] ^= ui[j];
|
||
}
|
||
}
|
||
|
||
out = out.concat(u);
|
||
}
|
||
|
||
if (length) { out = b.clamp(out, length); }
|
||
|
||
return out;
|
||
};
|
||
|
||
/** @fileOverview Random number generator.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @constructor
|
||
* @class Random number generator
|
||
*
|
||
* @description
|
||
* <p>
|
||
* This random number generator is a derivative of Ferguson and Schneier's
|
||
* generator Fortuna. It collects entropy from various events into several
|
||
* pools, implemented by streaming SHA-256 instances. It differs from
|
||
* ordinary Fortuna in a few ways, though.
|
||
* </p>
|
||
*
|
||
* <p>
|
||
* Most importantly, it has an entropy estimator. This is present because
|
||
* there is a strong conflict here between making the generator available
|
||
* as soon as possible, and making sure that it doesn't "run on empty".
|
||
* In Fortuna, there is a saved state file, and the system is likely to have
|
||
* time to warm up.
|
||
* </p>
|
||
*
|
||
* <p>
|
||
* Second, because users are unlikely to stay on the page for very long,
|
||
* and to speed startup time, the number of pools increases logarithmically:
|
||
* a new pool is created when the previous one is actually used for a reseed.
|
||
* This gives the same asymptotic guarantees as Fortuna, but gives more
|
||
* entropy to early reseeds.
|
||
* </p>
|
||
*
|
||
* <p>
|
||
* The entire mechanism here feels pretty klunky. Furthermore, there are
|
||
* several improvements that should be made, including support for
|
||
* dedicated cryptographic functions that may be present in some browsers;
|
||
* state files in local storage; cookies containing randomness; etc. So
|
||
* look for improvements in future versions.
|
||
* </p>
|
||
*/
|
||
sjcl.prng = function(defaultParanoia) {
|
||
|
||
/* private */
|
||
this._pools = [new sjcl.hash.sha256()];
|
||
this._poolEntropy = [0];
|
||
this._reseedCount = 0;
|
||
this._robins = {};
|
||
this._eventId = 0;
|
||
|
||
this._collectorIds = {};
|
||
this._collectorIdNext = 0;
|
||
|
||
this._strength = 0;
|
||
this._poolStrength = 0;
|
||
this._nextReseed = 0;
|
||
this._key = [0,0,0,0,0,0,0,0];
|
||
this._counter = [0,0,0,0];
|
||
this._cipher = undefined;
|
||
this._defaultParanoia = defaultParanoia;
|
||
|
||
/* event listener stuff */
|
||
this._collectorsStarted = false;
|
||
this._callbacks = {progress: {}, seeded: {}};
|
||
this._callbackI = 0;
|
||
|
||
/* constants */
|
||
this._NOT_READY = 0;
|
||
this._READY = 1;
|
||
this._REQUIRES_RESEED = 2;
|
||
|
||
this._MAX_WORDS_PER_BURST = 65536;
|
||
this._PARANOIA_LEVELS = [0,48,64,96,128,192,256,384,512,768,1024];
|
||
this._MILLISECONDS_PER_RESEED = 30000;
|
||
this._BITS_PER_RESEED = 80;
|
||
}
|
||
|
||
sjcl.prng.prototype = {
|
||
/** Generate several random words, and return them in an array
|
||
* @param {Number} nwords The number of words to generate.
|
||
*/
|
||
randomWords: function (nwords, paranoia) {
|
||
var out = [], i, readiness = this.isReady(paranoia), g;
|
||
|
||
if (readiness === this._NOT_READY) {
|
||
throw new sjcl.exception.notReady("generator isn't seeded");
|
||
} else if (readiness & this._REQUIRES_RESEED) {
|
||
this._reseedFromPools(!(readiness & this._READY));
|
||
}
|
||
|
||
for (i=0; i<nwords; i+= 4) {
|
||
if ((i+1) % this._MAX_WORDS_PER_BURST === 0) {
|
||
this._gate();
|
||
}
|
||
|
||
g = this._gen4words();
|
||
out.push(g[0],g[1],g[2],g[3]);
|
||
}
|
||
this._gate();
|
||
|
||
return out.slice(0,nwords);
|
||
},
|
||
|
||
setDefaultParanoia: function (paranoia) {
|
||
this._defaultParanoia = paranoia;
|
||
},
|
||
|
||
/**
|
||
* Add entropy to the pools.
|
||
* @param data The entropic value. Should be a 32-bit integer, array of 32-bit integers, or string
|
||
* @param {Number} estimatedEntropy The estimated entropy of data, in bits
|
||
* @param {String} source The source of the entropy, eg "mouse"
|
||
*/
|
||
addEntropy: function (data, estimatedEntropy, source) {
|
||
source = source || "user";
|
||
|
||
var id,
|
||
i, tmp,
|
||
t = (new Date()).valueOf(),
|
||
robin = this._robins[source],
|
||
oldReady = this.isReady(), err = 0;
|
||
|
||
id = this._collectorIds[source];
|
||
if (id === undefined) { id = this._collectorIds[source] = this._collectorIdNext ++; }
|
||
|
||
if (robin === undefined) { robin = this._robins[source] = 0; }
|
||
this._robins[source] = ( this._robins[source] + 1 ) % this._pools.length;
|
||
|
||
switch(typeof(data)) {
|
||
|
||
case "number":
|
||
if (estimatedEntropy === undefined) {
|
||
estimatedEntropy = 1;
|
||
}
|
||
this._pools[robin].update([id,this._eventId++,1,estimatedEntropy,t,1,data|0]);
|
||
break;
|
||
|
||
case "object":
|
||
var objName = Object.prototype.toString.call(data);
|
||
if (objName === "[object Uint32Array]") {
|
||
tmp = [];
|
||
for (i = 0; i < data.length; i++) {
|
||
tmp.push(data[i]);
|
||
}
|
||
data = tmp;
|
||
} else {
|
||
if (objName !== "[object Array]") {
|
||
err = 1;
|
||
}
|
||
for (i=0; i<data.length && !err; i++) {
|
||
if (typeof(data[i]) != "number") {
|
||
err = 1;
|
||
}
|
||
}
|
||
}
|
||
if (!err) {
|
||
if (estimatedEntropy === undefined) {
|
||
/* horrible entropy estimator */
|
||
estimatedEntropy = 0;
|
||
for (i=0; i<data.length; i++) {
|
||
tmp= data[i];
|
||
while (tmp>0) {
|
||
estimatedEntropy++;
|
||
tmp = tmp >>> 1;
|
||
}
|
||
}
|
||
}
|
||
this._pools[robin].update([id,this._eventId++,2,estimatedEntropy,t,data.length].concat(data));
|
||
}
|
||
break;
|
||
|
||
case "string":
|
||
if (estimatedEntropy === undefined) {
|
||
/* English text has just over 1 bit per character of entropy.
|
||
* But this might be HTML or something, and have far less
|
||
* entropy than English... Oh well, let's just say one bit.
|
||
*/
|
||
estimatedEntropy = data.length;
|
||
}
|
||
this._pools[robin].update([id,this._eventId++,3,estimatedEntropy,t,data.length]);
|
||
this._pools[robin].update(data);
|
||
break;
|
||
|
||
default:
|
||
err=1;
|
||
}
|
||
if (err) {
|
||
throw new sjcl.exception.bug("random: addEntropy only supports number, array of numbers or string");
|
||
}
|
||
|
||
/* record the new strength */
|
||
this._poolEntropy[robin] += estimatedEntropy;
|
||
this._poolStrength += estimatedEntropy;
|
||
|
||
/* fire off events */
|
||
if (oldReady === this._NOT_READY) {
|
||
if (this.isReady() !== this._NOT_READY) {
|
||
this._fireEvent("seeded", Math.max(this._strength, this._poolStrength));
|
||
}
|
||
this._fireEvent("progress", this.getProgress());
|
||
}
|
||
},
|
||
|
||
/** Is the generator ready? */
|
||
isReady: function (paranoia) {
|
||
var entropyRequired = this._PARANOIA_LEVELS[ (paranoia !== undefined) ? paranoia : this._defaultParanoia ];
|
||
|
||
if (this._strength && this._strength >= entropyRequired) {
|
||
return (this._poolEntropy[0] > this._BITS_PER_RESEED && (new Date()).valueOf() > this._nextReseed) ?
|
||
this._REQUIRES_RESEED | this._READY :
|
||
this._READY;
|
||
} else {
|
||
return (this._poolStrength >= entropyRequired) ?
|
||
this._REQUIRES_RESEED | this._NOT_READY :
|
||
this._NOT_READY;
|
||
}
|
||
},
|
||
|
||
/** Get the generator's progress toward readiness, as a fraction */
|
||
getProgress: function (paranoia) {
|
||
var entropyRequired = this._PARANOIA_LEVELS[ paranoia ? paranoia : this._defaultParanoia ];
|
||
|
||
if (this._strength >= entropyRequired) {
|
||
return 1.0;
|
||
} else {
|
||
return (this._poolStrength > entropyRequired) ?
|
||
1.0 :
|
||
this._poolStrength / entropyRequired;
|
||
}
|
||
},
|
||
|
||
/** start the built-in entropy collectors */
|
||
startCollectors: function () {
|
||
if (this._collectorsStarted) { return; }
|
||
|
||
if (window.addEventListener) {
|
||
window.addEventListener("load", this._loadTimeCollector, false);
|
||
window.addEventListener("mousemove", this._mouseCollector, false);
|
||
} else if (document.attachEvent) {
|
||
document.attachEvent("onload", this._loadTimeCollector);
|
||
document.attachEvent("onmousemove", this._mouseCollector);
|
||
}
|
||
else {
|
||
throw new sjcl.exception.bug("can't attach event");
|
||
}
|
||
|
||
this._collectorsStarted = true;
|
||
},
|
||
|
||
/** stop the built-in entropy collectors */
|
||
stopCollectors: function () {
|
||
if (!this._collectorsStarted) { return; }
|
||
|
||
if (window.removeEventListener) {
|
||
window.removeEventListener("load", this._loadTimeCollector, false);
|
||
window.removeEventListener("mousemove", this._mouseCollector, false);
|
||
} else if (window.detachEvent) {
|
||
window.detachEvent("onload", this._loadTimeCollector);
|
||
window.detachEvent("onmousemove", this._mouseCollector);
|
||
}
|
||
this._collectorsStarted = false;
|
||
},
|
||
|
||
/* use a cookie to store entropy.
|
||
useCookie: function (all_cookies) {
|
||
throw new sjcl.exception.bug("random: useCookie is unimplemented");
|
||
},*/
|
||
|
||
/** add an event listener for progress or seeded-ness. */
|
||
addEventListener: function (name, callback) {
|
||
this._callbacks[name][this._callbackI++] = callback;
|
||
},
|
||
|
||
/** remove an event listener for progress or seeded-ness */
|
||
removeEventListener: function (name, cb) {
|
||
var i, j, cbs=this._callbacks[name], jsTemp=[];
|
||
|
||
/* I'm not sure if this is necessary; in C++, iterating over a
|
||
* collection and modifying it at the same time is a no-no.
|
||
*/
|
||
|
||
for (j in cbs) {
|
||
if (cbs.hasOwnProperty(j) && cbs[j] === cb) {
|
||
jsTemp.push(j);
|
||
}
|
||
}
|
||
|
||
for (i=0; i<jsTemp.length; i++) {
|
||
j = jsTemp[i];
|
||
delete cbs[j];
|
||
}
|
||
},
|
||
|
||
/** Generate 4 random words, no reseed, no gate.
|
||
* @private
|
||
*/
|
||
_gen4words: function () {
|
||
for (var i=0; i<4; i++) {
|
||
this._counter[i] = this._counter[i]+1 | 0;
|
||
if (this._counter[i]) { break; }
|
||
}
|
||
return this._cipher.encrypt(this._counter);
|
||
},
|
||
|
||
/* Rekey the AES instance with itself after a request, or every _MAX_WORDS_PER_BURST words.
|
||
* @private
|
||
*/
|
||
_gate: function () {
|
||
this._key = this._gen4words().concat(this._gen4words());
|
||
this._cipher = new sjcl.cipher.aes(this._key);
|
||
},
|
||
|
||
/** Reseed the generator with the given words
|
||
* @private
|
||
*/
|
||
_reseed: function (seedWords) {
|
||
this._key = sjcl.hash.sha256.hash(this._key.concat(seedWords));
|
||
this._cipher = new sjcl.cipher.aes(this._key);
|
||
for (var i=0; i<4; i++) {
|
||
this._counter[i] = this._counter[i]+1 | 0;
|
||
if (this._counter[i]) { break; }
|
||
}
|
||
},
|
||
|
||
/** reseed the data from the entropy pools
|
||
* @param full If set, use all the entropy pools in the reseed.
|
||
*/
|
||
_reseedFromPools: function (full) {
|
||
var reseedData = [], strength = 0, i;
|
||
|
||
this._nextReseed = reseedData[0] =
|
||
(new Date()).valueOf() + this._MILLISECONDS_PER_RESEED;
|
||
|
||
for (i=0; i<16; i++) {
|
||
/* On some browsers, this is cryptographically random. So we might
|
||
* as well toss it in the pot and stir...
|
||
*/
|
||
reseedData.push(Math.random()*0x100000000|0);
|
||
}
|
||
|
||
for (i=0; i<this._pools.length; i++) {
|
||
reseedData = reseedData.concat(this._pools[i].finalize());
|
||
strength += this._poolEntropy[i];
|
||
this._poolEntropy[i] = 0;
|
||
|
||
if (!full && (this._reseedCount & (1<<i))) { break; }
|
||
}
|
||
|
||
/* if we used the last pool, push a new one onto the stack */
|
||
if (this._reseedCount >= 1 << this._pools.length) {
|
||
this._pools.push(new sjcl.hash.sha256());
|
||
this._poolEntropy.push(0);
|
||
}
|
||
|
||
/* how strong was this reseed? */
|
||
this._poolStrength -= strength;
|
||
if (strength > this._strength) {
|
||
this._strength = strength;
|
||
}
|
||
|
||
this._reseedCount ++;
|
||
this._reseed(reseedData);
|
||
},
|
||
|
||
_mouseCollector: function (ev) {
|
||
var x = ev.x || ev.clientX || ev.offsetX || 0, y = ev.y || ev.clientY || ev.offsetY || 0;
|
||
sjcl.random.addEntropy([x,y], 2, "mouse");
|
||
},
|
||
|
||
_loadTimeCollector: function (ev) {
|
||
sjcl.random.addEntropy((new Date()).valueOf(), 2, "loadtime");
|
||
},
|
||
|
||
_fireEvent: function (name, arg) {
|
||
var j, cbs=sjcl.random._callbacks[name], cbsTemp=[];
|
||
/* TODO: there is a race condition between removing collectors and firing them */
|
||
|
||
/* I'm not sure if this is necessary; in C++, iterating over a
|
||
* collection and modifying it at the same time is a no-no.
|
||
*/
|
||
|
||
for (j in cbs) {
|
||
if (cbs.hasOwnProperty(j)) {
|
||
cbsTemp.push(cbs[j]);
|
||
}
|
||
}
|
||
|
||
for (j=0; j<cbsTemp.length; j++) {
|
||
cbsTemp[j](arg);
|
||
}
|
||
}
|
||
};
|
||
|
||
sjcl.random = new sjcl.prng(6);
|
||
|
||
(function(){
|
||
try {
|
||
// get cryptographically strong entropy in Webkit
|
||
var ab = new Uint32Array(32);
|
||
crypto.getRandomValues(ab);
|
||
sjcl.random.addEntropy(ab, 1024, "crypto.getRandomValues");
|
||
} catch (e) {
|
||
// no getRandomValues :-(
|
||
}
|
||
})();
|
||
|
||
/** @fileOverview Convenince functions centered around JSON encapsulation.
|
||
*
|
||
* @author Emily Stark
|
||
* @author Mike Hamburg
|
||
* @author Dan Boneh
|
||
*/
|
||
|
||
/** @namespace JSON encapsulation */
|
||
sjcl.json = {
|
||
/** Default values for encryption */
|
||
defaults: { v:1, iter:1000, ks:128, ts:64, mode:"ccm", adata:"", cipher:"aes" },
|
||
|
||
/** Simple encryption function.
|
||
* @param {String|bitArray} password The password or key.
|
||
* @param {String} plaintext The data to encrypt.
|
||
* @param {Object} [params] The parameters including tag, iv and salt.
|
||
* @param {Object} [rp] A returned version with filled-in parameters.
|
||
* @return {String} The ciphertext.
|
||
* @throws {sjcl.exception.invalid} if a parameter is invalid.
|
||
*/
|
||
encrypt: function (password, plaintext, params, rp) {
|
||
params = params || {};
|
||
rp = rp || {};
|
||
|
||
var j = sjcl.json, p = j._add({ iv: sjcl.random.randomWords(4,0) },
|
||
j.defaults), tmp, prp, adata;
|
||
j._add(p, params);
|
||
adata = p.adata;
|
||
if (typeof p.salt === "string") {
|
||
p.salt = sjcl.codec.base64.toBits(p.salt);
|
||
}
|
||
if (typeof p.iv === "string") {
|
||
p.iv = sjcl.codec.base64.toBits(p.iv);
|
||
}
|
||
|
||
if (!sjcl.mode[p.mode] ||
|
||
!sjcl.cipher[p.cipher] ||
|
||
(typeof password === "string" && p.iter <= 100) ||
|
||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
|
||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
|
||
(p.iv.length < 2 || p.iv.length > 4)) {
|
||
throw new sjcl.exception.invalid("json encrypt: invalid parameters");
|
||
}
|
||
|
||
if (typeof password === "string") {
|
||
tmp = sjcl.misc.cachedPbkdf2(password, p);
|
||
password = tmp.key.slice(0,p.ks/32);
|
||
p.salt = tmp.salt;
|
||
} else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.publicKey) {
|
||
tmp = password.kem();
|
||
p.kemtag = tmp.tag;
|
||
password = tmp.key.slice(0,p.ks/32);
|
||
}
|
||
if (typeof plaintext === "string") {
|
||
plaintext = sjcl.codec.utf8String.toBits(plaintext);
|
||
}
|
||
if (typeof adata === "string") {
|
||
adata = sjcl.codec.utf8String.toBits(adata);
|
||
}
|
||
prp = new sjcl.cipher[p.cipher](password);
|
||
|
||
/* return the json data */
|
||
j._add(rp, p);
|
||
rp.key = password;
|
||
|
||
/* do the encryption */
|
||
p.ct = sjcl.mode[p.mode].encrypt(prp, plaintext, p.iv, adata, p.ts);
|
||
|
||
//return j.encode(j._subtract(p, j.defaults));
|
||
return j.encode(p);
|
||
},
|
||
|
||
/** Simple decryption function.
|
||
* @param {String|bitArray} password The password or key.
|
||
* @param {String} ciphertext The ciphertext to decrypt.
|
||
* @param {Object} [params] Additional non-default parameters.
|
||
* @param {Object} [rp] A returned object with filled parameters.
|
||
* @return {String} The plaintext.
|
||
* @throws {sjcl.exception.invalid} if a parameter is invalid.
|
||
* @throws {sjcl.exception.corrupt} if the ciphertext is corrupt.
|
||
*/
|
||
decrypt: function (password, ciphertext, params, rp) {
|
||
params = params || {};
|
||
rp = rp || {};
|
||
|
||
var j = sjcl.json, p = j._add(j._add(j._add({},j.defaults),j.decode(ciphertext)), params, true), ct, tmp, prp, adata=p.adata;
|
||
if (typeof p.salt === "string") {
|
||
p.salt = sjcl.codec.base64.toBits(p.salt);
|
||
}
|
||
if (typeof p.iv === "string") {
|
||
p.iv = sjcl.codec.base64.toBits(p.iv);
|
||
}
|
||
|
||
if (!sjcl.mode[p.mode] ||
|
||
!sjcl.cipher[p.cipher] ||
|
||
(typeof password === "string" && p.iter <= 100) ||
|
||
(p.ts !== 64 && p.ts !== 96 && p.ts !== 128) ||
|
||
(p.ks !== 128 && p.ks !== 192 && p.ks !== 256) ||
|
||
(!p.iv) ||
|
||
(p.iv.length < 2 || p.iv.length > 4)) {
|
||
throw new sjcl.exception.invalid("json decrypt: invalid parameters");
|
||
}
|
||
|
||
if (typeof password === "string") {
|
||
tmp = sjcl.misc.cachedPbkdf2(password, p);
|
||
password = tmp.key.slice(0,p.ks/32);
|
||
p.salt = tmp.salt;
|
||
} else if (sjcl.ecc && password instanceof sjcl.ecc.elGamal.secretKey) {
|
||
password = password.unkem(sjcl.codec.base64.toBits(p.kemtag)).slice(0,p.ks/32);
|
||
}
|
||
if (typeof adata === "string") {
|
||
adata = sjcl.codec.utf8String.toBits(adata);
|
||
}
|
||
prp = new sjcl.cipher[p.cipher](password);
|
||
|
||
/* do the decryption */
|
||
ct = sjcl.mode[p.mode].decrypt(prp, p.ct, p.iv, adata, p.ts);
|
||
|
||
/* return the json data */
|
||
j._add(rp, p);
|
||
rp.key = password;
|
||
|
||
return sjcl.codec.utf8String.fromBits(ct);
|
||
},
|
||
|
||
/** Encode a flat structure into a JSON string.
|
||
* @param {Object} obj The structure to encode.
|
||
* @return {String} A JSON string.
|
||
* @throws {sjcl.exception.invalid} if obj has a non-alphanumeric property.
|
||
* @throws {sjcl.exception.bug} if a parameter has an unsupported type.
|
||
*/
|
||
encode: function (obj) {
|
||
var i, out='{', comma='';
|
||
for (i in obj) {
|
||
if (obj.hasOwnProperty(i)) {
|
||
if (!i.match(/^[a-z0-9]+$/i)) {
|
||
throw new sjcl.exception.invalid("json encode: invalid property name");
|
||
}
|
||
out += comma + '"' + i + '":';
|
||
comma = ',';
|
||
|
||
switch (typeof obj[i]) {
|
||
case 'number':
|
||
case 'boolean':
|
||
out += obj[i];
|
||
break;
|
||
|
||
case 'string':
|
||
out += '"' + escape(obj[i]) + '"';
|
||
break;
|
||
|
||
case 'object':
|
||
out += '"' + sjcl.codec.base64.fromBits(obj[i],0) + '"';
|
||
break;
|
||
|
||
default:
|
||
throw new sjcl.exception.bug("json encode: unsupported type");
|
||
}
|
||
}
|
||
}
|
||
return out+'}';
|
||
},
|
||
|
||
/** Decode a simple (flat) JSON string into a structure. The ciphertext,
|
||
* adata, salt and iv will be base64-decoded.
|
||
* @param {String} str The string.
|
||
* @return {Object} The decoded structure.
|
||
* @throws {sjcl.exception.invalid} if str isn't (simple) JSON.
|
||
*/
|
||
decode: function (str) {
|
||
str = str.replace(/\s/g,'');
|
||
if (!str.match(/^\{.*\}$/)) {
|
||
throw new sjcl.exception.invalid("json decode: this isn't json!");
|
||
}
|
||
var a = str.replace(/^\{|\}$/g, '').split(/,/), out={}, i, m;
|
||
for (i=0; i<a.length; i++) {
|
||
if (!(m=a[i].match(/^(?:(["']?)([a-z][a-z0-9]*)\1):(?:(\d+)|"([a-z0-9+\/%*_.@=\-]*)")$/i))) {
|
||
throw new sjcl.exception.invalid("json decode: this isn't json!");
|
||
}
|
||
if (m[3]) {
|
||
out[m[2]] = parseInt(m[3],10);
|
||
} else {
|
||
out[m[2]] = m[2].match(/^(ct|salt|iv)$/) ? sjcl.codec.base64.toBits(m[4]) : unescape(m[4]);
|
||
}
|
||
}
|
||
return out;
|
||
},
|
||
|
||
/** Insert all elements of src into target, modifying and returning target.
|
||
* @param {Object} target The object to be modified.
|
||
* @param {Object} src The object to pull data from.
|
||
* @param {boolean} [requireSame=false] If true, throw an exception if any field of target differs from corresponding field of src.
|
||
* @return {Object} target.
|
||
* @private
|
||
*/
|
||
_add: function (target, src, requireSame) {
|
||
if (target === undefined) { target = {}; }
|
||
if (src === undefined) { return target; }
|
||
var i;
|
||
for (i in src) {
|
||
if (src.hasOwnProperty(i)) {
|
||
if (requireSame && target[i] !== undefined && target[i] !== src[i]) {
|
||
throw new sjcl.exception.invalid("required parameter overridden");
|
||
}
|
||
target[i] = src[i];
|
||
}
|
||
}
|
||
return target;
|
||
},
|
||
|
||
/** Remove all elements of minus from plus. Does not modify plus.
|
||
* @private
|
||
*/
|
||
_subtract: function (plus, minus) {
|
||
var out = {}, i;
|
||
|
||
for (i in plus) {
|
||
if (plus.hasOwnProperty(i) && plus[i] !== minus[i]) {
|
||
out[i] = plus[i];
|
||
}
|
||
}
|
||
|
||
return out;
|
||
},
|
||
|
||
/** Return only the specified elements of src.
|
||
* @private
|
||
*/
|
||
_filter: function (src, filter) {
|
||
var out = {}, i;
|
||
for (i=0; i<filter.length; i++) {
|
||
if (src[filter[i]] !== undefined) {
|
||
out[filter[i]] = src[filter[i]];
|
||
}
|
||
}
|
||
return out;
|
||
}
|
||
};
|
||
|
||
/** Simple encryption function; convenient shorthand for sjcl.json.encrypt.
|
||
* @param {String|bitArray} password The password or key.
|
||
* @param {String} plaintext The data to encrypt.
|
||
* @param {Object} [params] The parameters including tag, iv and salt.
|
||
* @param {Object} [rp] A returned version with filled-in parameters.
|
||
* @return {String} The ciphertext.
|
||
*/
|
||
sjcl.encrypt = sjcl.json.encrypt;
|
||
|
||
/** Simple decryption function; convenient shorthand for sjcl.json.decrypt.
|
||
* @param {String|bitArray} password The password or key.
|
||
* @param {String} ciphertext The ciphertext to decrypt.
|
||
* @param {Object} [params] Additional non-default parameters.
|
||
* @param {Object} [rp] A returned object with filled parameters.
|
||
* @return {String} The plaintext.
|
||
*/
|
||
sjcl.decrypt = sjcl.json.decrypt;
|
||
|
||
/** The cache for cachedPbkdf2.
|
||
* @private
|
||
*/
|
||
sjcl.misc._pbkdf2Cache = {};
|
||
|
||
/** Cached PBKDF2 key derivation.
|
||
* @param {String} password The password.
|
||
* @param {Object} [params] The derivation params (iteration count and optional salt).
|
||
* @return {Object} The derived data in key, the salt in salt.
|
||
*/
|
||
sjcl.misc.cachedPbkdf2 = function (password, obj) {
|
||
var cache = sjcl.misc._pbkdf2Cache, c, cp, str, salt, iter;
|
||
|
||
obj = obj || {};
|
||
iter = obj.iter || 1000;
|
||
|
||
/* open the cache for this password and iteration count */
|
||
cp = cache[password] = cache[password] || {};
|
||
c = cp[iter] = cp[iter] || { firstSalt: (obj.salt && obj.salt.length) ?
|
||
obj.salt.slice(0) : sjcl.random.randomWords(2,0) };
|
||
|
||
salt = (obj.salt === undefined) ? c.firstSalt : obj.salt;
|
||
|
||
c[salt] = c[salt] || sjcl.misc.pbkdf2(password, salt, obj.iter);
|
||
return { key: c[salt].slice(0), salt:salt.slice(0) };
|
||
};
|
||
|
||
|
||
|
||
/**
|
||
* @constructor
|
||
* Constructs a new bignum from another bignum, a number or a hex string.
|
||
*/
|
||
sjcl.bn = function(it) {
|
||
this.initWith(it);
|
||
};
|
||
|
||
sjcl.bn.prototype = {
|
||
radix: 24,
|
||
maxMul: 8,
|
||
_class: sjcl.bn,
|
||
|
||
copy: function() {
|
||
return new this._class(this);
|
||
},
|
||
|
||
/**
|
||
* Initializes this with it, either as a bn, a number, or a hex string.
|
||
*/
|
||
initWith: function(it) {
|
||
var i=0, k, n, l;
|
||
switch(typeof it) {
|
||
case "object":
|
||
this.limbs = it.limbs.slice(0);
|
||
break;
|
||
|
||
case "number":
|
||
this.limbs = [it];
|
||
this.normalize();
|
||
break;
|
||
|
||
case "string":
|
||
it = it.replace(/^0x/, '');
|
||
this.limbs = [];
|
||
// hack
|
||
k = this.radix / 4;
|
||
for (i=0; i < it.length; i+=k) {
|
||
this.limbs.push(parseInt(it.substring(Math.max(it.length - i - k, 0), it.length - i),16));
|
||
}
|
||
break;
|
||
|
||
default:
|
||
this.limbs = [0];
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Returns true if "this" and "that" are equal. Calls fullReduce().
|
||
* Equality test is in constant time.
|
||
*/
|
||
equals: function(that) {
|
||
if (typeof that === "number") { that = new this._class(that); }
|
||
var difference = 0, i;
|
||
this.fullReduce();
|
||
that.fullReduce();
|
||
for (i = 0; i < this.limbs.length || i < that.limbs.length; i++) {
|
||
difference |= this.getLimb(i) ^ that.getLimb(i);
|
||
}
|
||
return (difference === 0);
|
||
},
|
||
|
||
/**
|
||
* Get the i'th limb of this, zero if i is too large.
|
||
*/
|
||
getLimb: function(i) {
|
||
return (i >= this.limbs.length) ? 0 : this.limbs[i];
|
||
},
|
||
|
||
/**
|
||
* Constant time comparison function.
|
||
* Returns 1 if this >= that, or zero otherwise.
|
||
*/
|
||
greaterEquals: function(that) {
|
||
if (typeof that === "number") { that = new this._class(that); }
|
||
var less = 0, greater = 0, i, a, b;
|
||
i = Math.max(this.limbs.length, that.limbs.length) - 1;
|
||
for (; i>= 0; i--) {
|
||
a = this.getLimb(i);
|
||
b = that.getLimb(i);
|
||
greater |= (b - a) & ~less;
|
||
less |= (a - b) & ~greater;
|
||
}
|
||
return (greater | ~less) >>> 31;
|
||
},
|
||
|
||
/**
|
||
* Convert to a hex string.
|
||
*/
|
||
toString: function() {
|
||
this.fullReduce();
|
||
var out="", i, s, l = this.limbs;
|
||
for (i=0; i < this.limbs.length; i++) {
|
||
s = l[i].toString(16);
|
||
while (i < this.limbs.length - 1 && s.length < 6) {
|
||
s = "0" + s;
|
||
}
|
||
out = s + out;
|
||
}
|
||
return "0x"+out;
|
||
},
|
||
|
||
/** this += that. Does not normalize. */
|
||
addM: function(that) {
|
||
if (typeof(that) !== "object") { that = new this._class(that); }
|
||
var i, l=this.limbs, ll=that.limbs;
|
||
for (i=l.length; i<ll.length; i++) {
|
||
l[i] = 0;
|
||
}
|
||
for (i=0; i<ll.length; i++) {
|
||
l[i] += ll[i];
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/** this *= 2. Requires normalized; ends up normalized. */
|
||
doubleM: function() {
|
||
var i, carry=0, tmp, r=this.radix, m=this.radixMask, l=this.limbs;
|
||
for (i=0; i<l.length; i++) {
|
||
tmp = l[i];
|
||
tmp = tmp+tmp+carry;
|
||
l[i] = tmp & m;
|
||
carry = tmp >> r;
|
||
}
|
||
if (carry) {
|
||
l.push(carry);
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/** this /= 2, rounded down. Requires normalized; ends up normalized. */
|
||
halveM: function() {
|
||
var i, carry=0, tmp, r=this.radix, l=this.limbs;
|
||
for (i=l.length-1; i>=0; i--) {
|
||
tmp = l[i];
|
||
l[i] = (tmp+carry)>>1;
|
||
carry = (tmp&1) << r;
|
||
}
|
||
if (!l[l.length-1]) {
|
||
l.pop();
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/** this -= that. Does not normalize. */
|
||
subM: function(that) {
|
||
if (typeof(that) !== "object") { that = new this._class(that); }
|
||
var i, l=this.limbs, ll=that.limbs;
|
||
for (i=l.length; i<ll.length; i++) {
|
||
l[i] = 0;
|
||
}
|
||
for (i=0; i<ll.length; i++) {
|
||
l[i] -= ll[i];
|
||
}
|
||
return this;
|
||
},
|
||
|
||
mod: function(that) {
|
||
var neg = !this.greaterEquals(new sjcl.bn(0));
|
||
|
||
that = new sjcl.bn(that).normalize(); // copy before we begin
|
||
var out = new sjcl.bn(this).normalize(), ci=0;
|
||
|
||
if (neg) out = (new sjcl.bn(0)).subM(out).normalize();
|
||
|
||
for (; out.greaterEquals(that); ci++) {
|
||
that.doubleM();
|
||
}
|
||
|
||
if (neg) out = that.sub(out).normalize();
|
||
|
||
for (; ci > 0; ci--) {
|
||
that.halveM();
|
||
if (out.greaterEquals(that)) {
|
||
out.subM(that).normalize();
|
||
}
|
||
}
|
||
return out.trim();
|
||
},
|
||
|
||
/** return inverse mod prime p. p must be odd. Binary extended Euclidean algorithm mod p. */
|
||
inverseMod: function(p) {
|
||
var a = new sjcl.bn(1), b = new sjcl.bn(0), x = new sjcl.bn(this), y = new sjcl.bn(p), tmp, i, nz=1;
|
||
|
||
if (!(p.limbs[0] & 1)) {
|
||
throw (new sjcl.exception.invalid("inverseMod: p must be odd"));
|
||
}
|
||
|
||
// invariant: y is odd
|
||
do {
|
||
if (x.limbs[0] & 1) {
|
||
if (!x.greaterEquals(y)) {
|
||
// x < y; swap everything
|
||
tmp = x; x = y; y = tmp;
|
||
tmp = a; a = b; b = tmp;
|
||
}
|
||
x.subM(y);
|
||
x.normalize();
|
||
|
||
if (!a.greaterEquals(b)) {
|
||
a.addM(p);
|
||
}
|
||
a.subM(b);
|
||
}
|
||
|
||
// cut everything in half
|
||
x.halveM();
|
||
if (a.limbs[0] & 1) {
|
||
a.addM(p);
|
||
}
|
||
a.normalize();
|
||
a.halveM();
|
||
|
||
// check for termination: x ?= 0
|
||
for (i=nz=0; i<x.limbs.length; i++) {
|
||
nz |= x.limbs[i];
|
||
}
|
||
} while(nz);
|
||
|
||
if (!y.equals(1)) {
|
||
throw (new sjcl.exception.invalid("inverseMod: p and x must be relatively prime"));
|
||
}
|
||
|
||
return b;
|
||
},
|
||
|
||
/** this + that. Does not normalize. */
|
||
add: function(that) {
|
||
return this.copy().addM(that);
|
||
},
|
||
|
||
/** this - that. Does not normalize. */
|
||
sub: function(that) {
|
||
return this.copy().subM(that);
|
||
},
|
||
|
||
/** this * that. Normalizes and reduces. */
|
||
mul: function(that) {
|
||
if (typeof(that) === "number") { that = new this._class(that); }
|
||
var i, j, a = this.limbs, b = that.limbs, al = a.length, bl = b.length, out = new this._class(), c = out.limbs, ai, ii=this.maxMul;
|
||
|
||
for (i=0; i < this.limbs.length + that.limbs.length + 1; i++) {
|
||
c[i] = 0;
|
||
}
|
||
for (i=0; i<al; i++) {
|
||
ai = a[i];
|
||
for (j=0; j<bl; j++) {
|
||
c[i+j] += ai * b[j];
|
||
}
|
||
|
||
if (!--ii) {
|
||
ii = this.maxMul;
|
||
out.cnormalize();
|
||
}
|
||
}
|
||
return out.cnormalize().reduce();
|
||
},
|
||
|
||
/** this ^ 2. Normalizes and reduces. */
|
||
square: function() {
|
||
return this.mul(this);
|
||
},
|
||
|
||
/** this ^ n. Uses square-and-multiply. Normalizes and reduces. */
|
||
power: function(l) {
|
||
if (typeof(l) === "number") {
|
||
l = [l];
|
||
} else if (l.limbs !== undefined) {
|
||
l = l.normalize().limbs;
|
||
}
|
||
var i, j, out = new this._class(1), pow = this;
|
||
|
||
for (i=0; i<l.length; i++) {
|
||
for (j=0; j<this.radix; j++) {
|
||
if (l[i] & (1<<j)) {
|
||
out = out.mul(pow);
|
||
}
|
||
pow = pow.square();
|
||
}
|
||
}
|
||
|
||
return out;
|
||
},
|
||
|
||
/** this * that mod N */
|
||
mulmod: function(that, N) {
|
||
return this.mod(N).mul(that.mod(N)).mod(N);
|
||
},
|
||
|
||
/** this ^ x mod N */
|
||
powermod: function(x, N) {
|
||
var result = new sjcl.bn(1), a = new sjcl.bn(this), k = new sjcl.bn(x);
|
||
while (true) {
|
||
if (k.limbs[0] & 1) { result = result.mulmod(a, N); }
|
||
k.halveM();
|
||
if (k.equals(0)) { break; }
|
||
a = a.mulmod(a, N);
|
||
}
|
||
return result.normalize().reduce();
|
||
},
|
||
|
||
trim: function() {
|
||
var l = this.limbs, p;
|
||
do {
|
||
p = l.pop();
|
||
} while (l.length && p === 0);
|
||
l.push(p);
|
||
return this;
|
||
},
|
||
|
||
/** Reduce mod a modulus. Stubbed for subclassing. */
|
||
reduce: function() {
|
||
return this;
|
||
},
|
||
|
||
/** Reduce and normalize. */
|
||
fullReduce: function() {
|
||
return this.normalize();
|
||
},
|
||
|
||
/** Propagate carries. */
|
||
normalize: function() {
|
||
var carry=0, i, pv = this.placeVal, ipv = this.ipv, l, m, limbs = this.limbs, ll = limbs.length, mask = this.radixMask;
|
||
for (i=0; i < ll || (carry !== 0 && carry !== -1); i++) {
|
||
l = (limbs[i]||0) + carry;
|
||
m = limbs[i] = l & mask;
|
||
carry = (l-m)*ipv;
|
||
}
|
||
if (carry === -1) {
|
||
limbs[i-1] -= this.placeVal;
|
||
}
|
||
return this;
|
||
},
|
||
|
||
/** Constant-time normalize. Does not allocate additional space. */
|
||
cnormalize: function() {
|
||
var carry=0, i, ipv = this.ipv, l, m, limbs = this.limbs, ll = limbs.length, mask = this.radixMask;
|
||
for (i=0; i < ll-1; i++) {
|
||
l = limbs[i] + carry;
|
||
m = limbs[i] = l & mask;
|
||
carry = (l-m)*ipv;
|
||
}
|
||
limbs[i] += carry;
|
||
return this;
|
||
},
|
||
|
||
/** Serialize to a bit array */
|
||
toBits: function(len) {
|
||
this.fullReduce();
|
||
len = len || this.exponent || this.bitLength();
|
||
var i = Math.floor((len-1)/24), w=sjcl.bitArray, e = (len + 7 & -8) % this.radix || this.radix,
|
||
out = [w.partial(e, this.getLimb(i))];
|
||
for (i--; i >= 0; i--) {
|
||
out = w.concat(out, [w.partial(Math.min(this.radix,len), this.getLimb(i))]);
|
||
len -= this.radix;
|
||
}
|
||
return out;
|
||
},
|
||
|
||
/** Return the length in bits, rounded up to the nearest byte. */
|
||
bitLength: function() {
|
||
this.fullReduce();
|
||
var out = this.radix * (this.limbs.length - 1),
|
||
b = this.limbs[this.limbs.length - 1];
|
||
for (; b; b >>>= 1) {
|
||
out ++;
|
||
}
|
||
return out+7 & -8;
|
||
}
|
||
};
|
||
|
||
/** @this { sjcl.bn } */
|
||
sjcl.bn.fromBits = function(bits) {
|
||
var Class = this, out = new Class(), words=[], w=sjcl.bitArray, t = this.prototype,
|
||
l = Math.min(this.bitLength || 0x100000000, w.bitLength(bits)), e = l % t.radix || t.radix;
|
||
|
||
words[0] = w.extract(bits, 0, e);
|
||
for (; e < l; e += t.radix) {
|
||
words.unshift(w.extract(bits, e, t.radix));
|
||
}
|
||
|
||
out.limbs = words;
|
||
return out;
|
||
};
|
||
|
||
|
||
|
||
sjcl.bn.prototype.ipv = 1 / (sjcl.bn.prototype.placeVal = Math.pow(2,sjcl.bn.prototype.radix));
|
||
sjcl.bn.prototype.radixMask = (1 << sjcl.bn.prototype.radix) - 1;
|
||
|
||
/**
|
||
* Creates a new subclass of bn, based on reduction modulo a pseudo-Mersenne prime,
|
||
* i.e. a prime of the form 2^e + sum(a * 2^b),where the sum is negative and sparse.
|
||
*/
|
||
sjcl.bn.pseudoMersennePrime = function(exponent, coeff) {
|
||
/** @constructor */
|
||
function p(it) {
|
||
this.initWith(it);
|
||
/*if (this.limbs[this.modOffset]) {
|
||
this.reduce();
|
||
}*/
|
||
}
|
||
|
||
var ppr = p.prototype = new sjcl.bn(), i, tmp, mo;
|
||
mo = ppr.modOffset = Math.ceil(tmp = exponent / ppr.radix);
|
||
ppr.exponent = exponent;
|
||
ppr.offset = [];
|
||
ppr.factor = [];
|
||
ppr.minOffset = mo;
|
||
ppr.fullMask = 0;
|
||
ppr.fullOffset = [];
|
||
ppr.fullFactor = [];
|
||
ppr.modulus = p.modulus = new sjcl.bn(Math.pow(2,exponent));
|
||
|
||
ppr.fullMask = 0|-Math.pow(2, exponent % ppr.radix);
|
||
|
||
for (i=0; i<coeff.length; i++) {
|
||
ppr.offset[i] = Math.floor(coeff[i][0] / ppr.radix - tmp);
|
||
ppr.fullOffset[i] = Math.ceil(coeff[i][0] / ppr.radix - tmp);
|
||
ppr.factor[i] = coeff[i][1] * Math.pow(1/2, exponent - coeff[i][0] + ppr.offset[i] * ppr.radix);
|
||
ppr.fullFactor[i] = coeff[i][1] * Math.pow(1/2, exponent - coeff[i][0] + ppr.fullOffset[i] * ppr.radix);
|
||
ppr.modulus.addM(new sjcl.bn(Math.pow(2,coeff[i][0])*coeff[i][1]));
|
||
ppr.minOffset = Math.min(ppr.minOffset, -ppr.offset[i]); // conservative
|
||
}
|
||
ppr._class = p;
|
||
ppr.modulus.cnormalize();
|
||
|
||
/** Approximate reduction mod p. May leave a number which is negative or slightly larger than p.
|
||
* @this {sjcl.bn}
|
||
*/
|
||
ppr.reduce = function() {
|
||
var i, k, l, mo = this.modOffset, limbs = this.limbs, aff, off = this.offset, ol = this.offset.length, fac = this.factor, ll;
|
||
|
||
i = this.minOffset;
|
||
while (limbs.length > mo) {
|
||
l = limbs.pop();
|
||
ll = limbs.length;
|
||
for (k=0; k<ol; k++) {
|
||
limbs[ll+off[k]] -= fac[k] * l;
|
||
}
|
||
|
||
i--;
|
||
if (!i) {
|
||
limbs.push(0);
|
||
this.cnormalize();
|
||
i = this.minOffset;
|
||
}
|
||
}
|
||
this.cnormalize();
|
||
|
||
return this;
|
||
};
|
||
|
||
/** @this {sjcl.bn} */
|
||
ppr._strongReduce = (ppr.fullMask === -1) ? ppr.reduce : function() {
|
||
var limbs = this.limbs, i = limbs.length - 1, k, l;
|
||
this.reduce();
|
||
if (i === this.modOffset - 1) {
|
||
l = limbs[i] & this.fullMask;
|
||
limbs[i] -= l;
|
||
for (k=0; k<this.fullOffset.length; k++) {
|
||
limbs[i+this.fullOffset[k]] -= this.fullFactor[k] * l;
|
||
}
|
||
this.normalize();
|
||
}
|
||
};
|
||
|
||
/** mostly constant-time, very expensive full reduction.
|
||
* @this {sjcl.bn}
|
||
*/
|
||
ppr.fullReduce = function() {
|
||
var greater, i;
|
||
// massively above the modulus, may be negative
|
||
|
||
this._strongReduce();
|
||
// less than twice the modulus, may be negative
|
||
|
||
this.addM(this.modulus);
|
||
this.addM(this.modulus);
|
||
this.normalize();
|
||
// probably 2-3x the modulus
|
||
|
||
this._strongReduce();
|
||
// less than the power of 2. still may be more than
|
||
// the modulus
|
||
|
||
// HACK: pad out to this length
|
||
for (i=this.limbs.length; i<this.modOffset; i++) {
|
||
this.limbs[i] = 0;
|
||
}
|
||
|
||
// constant-time subtract modulus
|
||
greater = this.greaterEquals(this.modulus);
|
||
for (i=0; i<this.limbs.length; i++) {
|
||
this.limbs[i] -= this.modulus.limbs[i] * greater;
|
||
}
|
||
this.cnormalize();
|
||
|
||
return this;
|
||
};
|
||
|
||
|
||
/** @this {sjcl.bn} */
|
||
ppr.inverse = function() {
|
||
return (this.power(this.modulus.sub(2)));
|
||
};
|
||
|
||
p.fromBits = sjcl.bn.fromBits;
|
||
|
||
return p;
|
||
};
|
||
|
||
// a small Mersenne prime
|
||
sjcl.bn.prime = {
|
||
p127: sjcl.bn.pseudoMersennePrime(127, [[0,-1]]),
|
||
|
||
// Bernstein's prime for Curve25519
|
||
p25519: sjcl.bn.pseudoMersennePrime(255, [[0,-19]]),
|
||
|
||
// NIST primes
|
||
p192: sjcl.bn.pseudoMersennePrime(192, [[0,-1],[64,-1]]),
|
||
p224: sjcl.bn.pseudoMersennePrime(224, [[0,1],[96,-1]]),
|
||
p256: sjcl.bn.pseudoMersennePrime(256, [[0,-1],[96,1],[192,1],[224,-1]]),
|
||
p384: sjcl.bn.pseudoMersennePrime(384, [[0,-1],[32,1],[96,-1],[128,-1]]),
|
||
p521: sjcl.bn.pseudoMersennePrime(521, [[0,-1]])
|
||
};
|
||
|
||
sjcl.bn.random = function(modulus, paranoia) {
|
||
if (typeof modulus !== "object") { modulus = new sjcl.bn(modulus); }
|
||
var words, i, l = modulus.limbs.length, m = modulus.limbs[l-1]+1, out = new sjcl.bn();
|
||
while (true) {
|
||
// get a sequence whose first digits make sense
|
||
do {
|
||
words = sjcl.random.randomWords(l, paranoia);
|
||
if (words[l-1] < 0) { words[l-1] += 0x100000000; }
|
||
} while (Math.floor(words[l-1] / m) === Math.floor(0x100000000 / m));
|
||
words[l-1] %= m;
|
||
|
||
// mask off all the limbs
|
||
for (i=0; i<l-1; i++) {
|
||
words[i] &= modulus.radixMask;
|
||
}
|
||
|
||
// check the rest of the digitssj
|
||
out.limbs = words;
|
||
if (!out.greaterEquals(modulus)) {
|
||
return out;
|
||
}
|
||
}
|
||
};
|
||
|
||
|
||
sjcl.ecc = {};
|
||
|
||
/**
|
||
* Represents a point on a curve in affine coordinates.
|
||
* @constructor
|
||
* @param {sjcl.ecc.curve} curve The curve that this point lies on.
|
||
* @param {bigInt} x The x coordinate.
|
||
* @param {bigInt} y The y coordinate.
|
||
*/
|
||
sjcl.ecc.point = function(curve,x,y) {
|
||
if (x === undefined) {
|
||
this.isIdentity = true;
|
||
} else {
|
||
this.x = x;
|
||
this.y = y;
|
||
this.isIdentity = false;
|
||
}
|
||
this.curve = curve;
|
||
};
|
||
|
||
|
||
|
||
sjcl.ecc.point.prototype = {
|
||
toJac: function() {
|
||
return new sjcl.ecc.pointJac(this.curve, this.x, this.y, new this.curve.field(1));
|
||
},
|
||
|
||
mult: function(k) {
|
||
return this.toJac().mult(k, this).toAffine();
|
||
},
|
||
|
||
/**
|
||
* Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates.
|
||
* @param {bigInt} k The coefficient to multiply this by.
|
||
* @param {bigInt} k2 The coefficient to multiply affine2 this by.
|
||
* @param {sjcl.ecc.point} affine The other point in affine coordinates.
|
||
* @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates.
|
||
*/
|
||
mult2: function(k, k2, affine2) {
|
||
return this.toJac().mult2(k, this, k2, affine2).toAffine();
|
||
},
|
||
|
||
multiples: function() {
|
||
var m, i, j;
|
||
if (this._multiples === undefined) {
|
||
j = this.toJac().doubl();
|
||
m = this._multiples = [new sjcl.ecc.point(this.curve), this, j.toAffine()];
|
||
for (i=3; i<16; i++) {
|
||
j = j.add(this);
|
||
m.push(j.toAffine());
|
||
}
|
||
}
|
||
return this._multiples;
|
||
},
|
||
|
||
isValid: function() {
|
||
return this.y.square().equals(this.curve.b.add(this.x.mul(this.curve.a.add(this.x.square()))));
|
||
},
|
||
|
||
toBits: function() {
|
||
return sjcl.bitArray.concat(this.x.toBits(), this.y.toBits());
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Represents a point on a curve in Jacobian coordinates. Coordinates can be specified as bigInts or strings (which
|
||
* will be converted to bigInts).
|
||
*
|
||
* @constructor
|
||
* @param {bigInt/string} x The x coordinate.
|
||
* @param {bigInt/string} y The y coordinate.
|
||
* @param {bigInt/string} z The z coordinate.
|
||
* @param {sjcl.ecc.curve} curve The curve that this point lies on.
|
||
*/
|
||
sjcl.ecc.pointJac = function(curve, x, y, z) {
|
||
if (x === undefined) {
|
||
this.isIdentity = true;
|
||
} else {
|
||
this.x = x;
|
||
this.y = y;
|
||
this.z = z;
|
||
this.isIdentity = false;
|
||
}
|
||
this.curve = curve;
|
||
};
|
||
|
||
sjcl.ecc.pointJac.prototype = {
|
||
/**
|
||
* Adds S and T and returns the result in Jacobian coordinates. Note that S must be in Jacobian coordinates and T must be in affine coordinates.
|
||
* @param {sjcl.ecc.pointJac} S One of the points to add, in Jacobian coordinates.
|
||
* @param {sjcl.ecc.point} T The other point to add, in affine coordinates.
|
||
* @return {sjcl.ecc.pointJac} The sum of the two points, in Jacobian coordinates.
|
||
*/
|
||
add: function(T) {
|
||
var S = this, sz2, c, d, c2, x1, x2, x, y1, y2, y, z;
|
||
if (S.curve !== T.curve) {
|
||
throw("sjcl.ecc.add(): Points must be on the same curve to add them!");
|
||
}
|
||
|
||
if (S.isIdentity) {
|
||
return T.toJac();
|
||
} else if (T.isIdentity) {
|
||
return S;
|
||
}
|
||
|
||
sz2 = S.z.square();
|
||
c = T.x.mul(sz2).subM(S.x);
|
||
|
||
if (c.equals(0)) {
|
||
if (S.y.equals(T.y.mul(sz2.mul(S.z)))) {
|
||
// same point
|
||
return S.doubl();
|
||
} else {
|
||
// inverses
|
||
return new sjcl.ecc.pointJac(S.curve);
|
||
}
|
||
}
|
||
|
||
d = T.y.mul(sz2.mul(S.z)).subM(S.y);
|
||
c2 = c.square();
|
||
|
||
x1 = d.square();
|
||
x2 = c.square().mul(c).addM( S.x.add(S.x).mul(c2) );
|
||
x = x1.subM(x2);
|
||
|
||
y1 = S.x.mul(c2).subM(x).mul(d);
|
||
y2 = S.y.mul(c.square().mul(c));
|
||
y = y1.subM(y2);
|
||
|
||
z = S.z.mul(c);
|
||
|
||
return new sjcl.ecc.pointJac(this.curve,x,y,z);
|
||
},
|
||
|
||
/**
|
||
* doubles this point.
|
||
* @return {sjcl.ecc.pointJac} The doubled point.
|
||
*/
|
||
doubl: function() {
|
||
if (this.isIdentity) { return this; }
|
||
|
||
var
|
||
y2 = this.y.square(),
|
||
a = y2.mul(this.x.mul(4)),
|
||
b = y2.square().mul(8),
|
||
z2 = this.z.square(),
|
||
c = this.x.sub(z2).mul(3).mul(this.x.add(z2)),
|
||
x = c.square().subM(a).subM(a),
|
||
y = a.sub(x).mul(c).subM(b),
|
||
z = this.y.add(this.y).mul(this.z);
|
||
return new sjcl.ecc.pointJac(this.curve, x, y, z);
|
||
},
|
||
|
||
/**
|
||
* Returns a copy of this point converted to affine coordinates.
|
||
* @return {sjcl.ecc.point} The converted point.
|
||
*/
|
||
toAffine: function() {
|
||
if (this.isIdentity || this.z.equals(0)) {
|
||
return new sjcl.ecc.point(this.curve);
|
||
}
|
||
var zi = this.z.inverse(), zi2 = zi.square();
|
||
return new sjcl.ecc.point(this.curve, this.x.mul(zi2).fullReduce(), this.y.mul(zi2.mul(zi)).fullReduce());
|
||
},
|
||
|
||
/**
|
||
* Multiply this point by k and return the answer in Jacobian coordinates.
|
||
* @param {bigInt} k The coefficient to multiply by.
|
||
* @param {sjcl.ecc.point} affine This point in affine coordinates.
|
||
* @return {sjcl.ecc.pointJac} The result of the multiplication, in Jacobian coordinates.
|
||
*/
|
||
mult: function(k, affine) {
|
||
if (typeof(k) === "number") {
|
||
k = [k];
|
||
} else if (k.limbs !== undefined) {
|
||
k = k.normalize().limbs;
|
||
}
|
||
|
||
var i, j, out = new sjcl.ecc.point(this.curve).toJac(), multiples = affine.multiples();
|
||
|
||
for (i=k.length-1; i>=0; i--) {
|
||
for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
|
||
out = out.doubl().doubl().doubl().doubl().add(multiples[k[i]>>j & 0xF]);
|
||
}
|
||
}
|
||
|
||
return out;
|
||
},
|
||
|
||
/**
|
||
* Multiply this point by k, added to affine2*k2, and return the answer in Jacobian coordinates.
|
||
* @param {bigInt} k The coefficient to multiply this by.
|
||
* @param {sjcl.ecc.point} affine This point in affine coordinates.
|
||
* @param {bigInt} k2 The coefficient to multiply affine2 this by.
|
||
* @param {sjcl.ecc.point} affine The other point in affine coordinates.
|
||
* @return {sjcl.ecc.pointJac} The result of the multiplication and addition, in Jacobian coordinates.
|
||
*/
|
||
mult2: function(k1, affine, k2, affine2) {
|
||
if (typeof(k1) === "number") {
|
||
k1 = [k1];
|
||
} else if (k1.limbs !== undefined) {
|
||
k1 = k1.normalize().limbs;
|
||
}
|
||
|
||
if (typeof(k2) === "number") {
|
||
k2 = [k2];
|
||
} else if (k2.limbs !== undefined) {
|
||
k2 = k2.normalize().limbs;
|
||
}
|
||
|
||
var i, j, out = new sjcl.ecc.point(this.curve).toJac(), m1 = affine.multiples(),
|
||
m2 = affine2.multiples(), l1, l2;
|
||
|
||
for (i=Math.max(k1.length,k2.length)-1; i>=0; i--) {
|
||
l1 = k1[i] | 0;
|
||
l2 = k2[i] | 0;
|
||
for (j=sjcl.bn.prototype.radix-4; j>=0; j-=4) {
|
||
out = out.doubl().doubl().doubl().doubl().add(m1[l1>>j & 0xF]).add(m2[l2>>j & 0xF]);
|
||
}
|
||
}
|
||
|
||
return out;
|
||
},
|
||
|
||
isValid: function() {
|
||
var z2 = this.z.square(), z4 = z2.square(), z6 = z4.mul(z2);
|
||
return this.y.square().equals(
|
||
this.curve.b.mul(z6).add(this.x.mul(
|
||
this.curve.a.mul(z4).add(this.x.square()))));
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Construct an elliptic curve. Most users will not use this and instead start with one of the NIST curves defined below.
|
||
*
|
||
* @constructor
|
||
* @param {bigInt} p The prime modulus.
|
||
* @param {bigInt} r The prime order of the curve.
|
||
* @param {bigInt} a The constant a in the equation of the curve y^2 = x^3 + ax + b (for NIST curves, a is always -3).
|
||
* @param {bigInt} x The x coordinate of a base point of the curve.
|
||
* @param {bigInt} y The y coordinate of a base point of the curve.
|
||
*/
|
||
sjcl.ecc.curve = function(Field, r, a, b, x, y) {
|
||
this.field = Field;
|
||
this.r = Field.prototype.modulus.sub(r);
|
||
this.a = new Field(a);
|
||
this.b = new Field(b);
|
||
this.G = new sjcl.ecc.point(this, new Field(x), new Field(y));
|
||
};
|
||
|
||
sjcl.ecc.curve.prototype.fromBits = function (bits) {
|
||
var w = sjcl.bitArray, l = this.field.prototype.exponent + 7 & -8,
|
||
p = new sjcl.ecc.point(this, this.field.fromBits(w.bitSlice(bits, 0, l)),
|
||
this.field.fromBits(w.bitSlice(bits, l, 2*l)));
|
||
if (!p.isValid()) {
|
||
throw new sjcl.exception.corrupt("not on the curve!");
|
||
}
|
||
return p;
|
||
};
|
||
|
||
sjcl.ecc.curves = {
|
||
c192: new sjcl.ecc.curve(
|
||
sjcl.bn.prime.p192,
|
||
"0x662107c8eb94364e4b2dd7ce",
|
||
-3,
|
||
"0x64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1",
|
||
"0x188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012",
|
||
"0x07192b95ffc8da78631011ed6b24cdd573f977a11e794811"),
|
||
|
||
c224: new sjcl.ecc.curve(
|
||
sjcl.bn.prime.p224,
|
||
"0xe95c1f470fc1ec22d6baa3a3d5c4",
|
||
-3,
|
||
"0xb4050a850c04b3abf54132565044b0b7d7bfd8ba270b39432355ffb4",
|
||
"0xb70e0cbd6bb4bf7f321390b94a03c1d356c21122343280d6115c1d21",
|
||
"0xbd376388b5f723fb4c22dfe6cd4375a05a07476444d5819985007e34"),
|
||
|
||
c256: new sjcl.ecc.curve(
|
||
sjcl.bn.prime.p256,
|
||
"0x4319055358e8617b0c46353d039cdaae",
|
||
-3,
|
||
"0x5ac635d8aa3a93e7b3ebbd55769886bc651d06b0cc53b0f63bce3c3e27d2604b",
|
||
"0x6b17d1f2e12c4247f8bce6e563a440f277037d812deb33a0f4a13945d898c296",
|
||
"0x4fe342e2fe1a7f9b8ee7eb4a7c0f9e162bce33576b315ececbb6406837bf51f5"),
|
||
|
||
c384: new sjcl.ecc.curve(
|
||
sjcl.bn.prime.p384,
|
||
"0x389cb27e0bc8d21fa7e5f24cb74f58851313e696333ad68c",
|
||
-3,
|
||
"0xb3312fa7e23ee7e4988e056be3f82d19181d9c6efe8141120314088f5013875ac656398d8a2ed19d2a85c8edd3ec2aef",
|
||
"0xaa87ca22be8b05378eb1c71ef320ad746e1d3b628ba79b9859f741e082542a385502f25dbf55296c3a545e3872760ab7",
|
||
"0x3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f")
|
||
};
|
||
|
||
|
||
/* Diffie-Hellman-like public-key system */
|
||
sjcl.ecc._dh = function(cn) {
|
||
sjcl.ecc[cn] = {
|
||
/** @constructor */
|
||
publicKey: function(curve, point) {
|
||
this._curve = curve;
|
||
this._curveBitLength = curve.r.bitLength();
|
||
if (point instanceof Array) {
|
||
this._point = curve.fromBits(point);
|
||
} else {
|
||
this._point = point;
|
||
}
|
||
|
||
this.get = function() {
|
||
var pointbits = this._point.toBits();
|
||
var len = sjcl.bitArray.bitLength(pointbits);
|
||
var x = sjcl.bitArray.bitSlice(pointbits, 0, len/2);
|
||
var y = sjcl.bitArray.bitSlice(pointbits, len/2);
|
||
return { x: x, y: y };
|
||
}
|
||
},
|
||
|
||
/** @constructor */
|
||
secretKey: function(curve, exponent) {
|
||
this._curve = curve;
|
||
this._curveBitLength = curve.r.bitLength();
|
||
this._exponent = exponent;
|
||
|
||
this.get = function() {
|
||
return this._exponent.toBits();
|
||
}
|
||
},
|
||
|
||
/** @constructor */
|
||
generateKeys: function(curve, paranoia, sec) {
|
||
if (curve === undefined) {
|
||
curve = 256;
|
||
}
|
||
if (typeof curve === "number") {
|
||
curve = sjcl.ecc.curves['c'+curve];
|
||
if (curve === undefined) {
|
||
throw new sjcl.exception.invalid("no such curve");
|
||
}
|
||
}
|
||
if (sec === undefined) {
|
||
var sec = sjcl.bn.random(curve.r, paranoia);
|
||
}
|
||
var pub = curve.G.mult(sec);
|
||
return { pub: new sjcl.ecc[cn].publicKey(curve, pub),
|
||
sec: new sjcl.ecc[cn].secretKey(curve, sec) };
|
||
}
|
||
};
|
||
};
|
||
|
||
sjcl.ecc._dh("elGamal");
|
||
|
||
sjcl.ecc.elGamal.publicKey.prototype = {
|
||
kem: function(paranoia) {
|
||
var sec = sjcl.bn.random(this._curve.r, paranoia),
|
||
tag = this._curve.G.mult(sec).toBits(),
|
||
key = sjcl.hash.sha256.hash(this._point.mult(sec).toBits());
|
||
return { key: key, tag: tag };
|
||
}
|
||
};
|
||
|
||
sjcl.ecc.elGamal.secretKey.prototype = {
|
||
unkem: function(tag) {
|
||
return sjcl.hash.sha256.hash(this._curve.fromBits(tag).mult(this._exponent).toBits());
|
||
},
|
||
|
||
dh: function(pk) {
|
||
return sjcl.hash.sha256.hash(pk._point.mult(this._exponent).toBits());
|
||
}
|
||
};
|
||
|
||
sjcl.ecc._dh("ecdsa");
|
||
|
||
sjcl.ecc.ecdsa.secretKey.prototype = {
|
||
sign: function(hash, paranoia, fakeLegacyVersion, fixedKForTesting) {
|
||
if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
|
||
hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
|
||
}
|
||
var R = this._curve.r,
|
||
l = R.bitLength(),
|
||
k = fixedKForTesting || sjcl.bn.random(R.sub(1), paranoia).add(1),
|
||
r = this._curve.G.mult(k).x.mod(R),
|
||
ss = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)),
|
||
s = fakeLegacyVersion ? ss.inverseMod(R).mul(k).mod(R)
|
||
: ss.mul(k.inverseMod(R)).mod(R);
|
||
return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
|
||
}
|
||
};
|
||
|
||
sjcl.ecc.ecdsa.publicKey.prototype = {
|
||
verify: function(hash, rs, fakeLegacyVersion) {
|
||
if (sjcl.bitArray.bitLength(hash) > this._curveBitLength) {
|
||
hash = sjcl.bitArray.clamp(hash, this._curveBitLength);
|
||
}
|
||
var w = sjcl.bitArray,
|
||
R = this._curve.r,
|
||
l = this._curveBitLength,
|
||
r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
|
||
ss = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
|
||
s = fakeLegacyVersion ? ss : ss.inverseMod(R),
|
||
hG = sjcl.bn.fromBits(hash).mul(s).mod(R),
|
||
hA = r.mul(s).mod(R),
|
||
r2 = this._curve.G.mult2(hG, hA, this._point).x;
|
||
if (r.equals(0) || ss.equals(0) || r.greaterEquals(R) || ss.greaterEquals(R) || !r2.equals(r)) {
|
||
if (fakeLegacyVersion === undefined) {
|
||
return this.verify(hash, rs, true);
|
||
} else {
|
||
throw (new sjcl.exception.corrupt("signature didn't check out"));
|
||
}
|
||
}
|
||
return true;
|
||
}
|
||
};
|
||
|
||
/** @fileOverview Javascript SRP implementation.
|
||
*
|
||
* This file contains a partial implementation of the SRP (Secure Remote
|
||
* Password) password-authenticated key exchange protocol. Given a user
|
||
* identity, salt, and SRP group, it generates the SRP verifier that may
|
||
* be sent to a remote server to establish and SRP account.
|
||
*
|
||
* For more information, see http://srp.stanford.edu/.
|
||
*
|
||
* @author Quinn Slack
|
||
*/
|
||
|
||
/**
|
||
* Compute the SRP verifier from the username, password, salt, and group.
|
||
* @class SRP
|
||
*/
|
||
sjcl.keyexchange.srp = {
|
||
/**
|
||
* Calculates SRP v, the verifier.
|
||
* v = g^x mod N [RFC 5054]
|
||
* @param {String} I The username.
|
||
* @param {String} P The password.
|
||
* @param {Object} s A bitArray of the salt.
|
||
* @param {Object} group The SRP group. Use sjcl.keyexchange.srp.knownGroup
|
||
to obtain this object.
|
||
* @return {Object} A bitArray of SRP v.
|
||
*/
|
||
makeVerifier: function(I, P, s, group) {
|
||
var x;
|
||
x = sjcl.keyexchange.srp.makeX(I, P, s);
|
||
x = sjcl.bn.fromBits(x);
|
||
return group.g.powermod(x, group.N);
|
||
},
|
||
|
||
/**
|
||
* Calculates SRP x.
|
||
* x = SHA1(<salt> | SHA(<username> | ":" | <raw password>)) [RFC 2945]
|
||
* @param {String} I The username.
|
||
* @param {String} P The password.
|
||
* @param {Object} s A bitArray of the salt.
|
||
* @return {Object} A bitArray of SRP x.
|
||
*/
|
||
makeX: function(I, P, s) {
|
||
var inner = sjcl.hash.sha1.hash(I + ':' + P);
|
||
return sjcl.hash.sha1.hash(sjcl.bitArray.concat(s, inner));
|
||
},
|
||
|
||
/**
|
||
* Returns the known SRP group with the given size (in bits).
|
||
* @param {String} i The size of the known SRP group.
|
||
* @return {Object} An object with "N" and "g" properties.
|
||
*/
|
||
knownGroup:function(i) {
|
||
if (typeof i !== "string") { i = i.toString(); }
|
||
if (!sjcl.keyexchange.srp._didInitKnownGroups) { sjcl.keyexchange.srp._initKnownGroups(); }
|
||
return sjcl.keyexchange.srp._knownGroups[i];
|
||
},
|
||
|
||
/**
|
||
* Initializes bignum objects for known group parameters.
|
||
* @private
|
||
*/
|
||
_didInitKnownGroups: false,
|
||
_initKnownGroups:function() {
|
||
var i, size, group;
|
||
for (i=0; i < sjcl.keyexchange.srp._knownGroupSizes.length; i++) {
|
||
size = sjcl.keyexchange.srp._knownGroupSizes[i].toString();
|
||
group = sjcl.keyexchange.srp._knownGroups[size];
|
||
group.N = new sjcl.bn(group.N);
|
||
group.g = new sjcl.bn(group.g);
|
||
}
|
||
sjcl.keyexchange.srp._didInitKnownGroups = true;
|
||
},
|
||
|
||
_knownGroupSizes: [1024, 1536, 2048],
|
||
_knownGroups: {
|
||
1024: {
|
||
N: "EEAF0AB9ADB38DD69C33F80AFA8FC5E86072618775FF3C0B9EA2314C" +
|
||
"9C256576D674DF7496EA81D3383B4813D692C6E0E0D5D8E250B98BE4" +
|
||
"8E495C1D6089DAD15DC7D7B46154D6B6CE8EF4AD69B15D4982559B29" +
|
||
"7BCF1885C529F566660E57EC68EDBC3C05726CC02FD4CBF4976EAA9A" +
|
||
"FD5138FE8376435B9FC61D2FC0EB06E3",
|
||
g:2
|
||
},
|
||
|
||
1536: {
|
||
N: "9DEF3CAFB939277AB1F12A8617A47BBBDBA51DF499AC4C80BEEEA961" +
|
||
"4B19CC4D5F4F5F556E27CBDE51C6A94BE4607A291558903BA0D0F843" +
|
||
"80B655BB9A22E8DCDF028A7CEC67F0D08134B1C8B97989149B609E0B" +
|
||
"E3BAB63D47548381DBC5B1FC764E3F4B53DD9DA1158BFD3E2B9C8CF5" +
|
||
"6EDF019539349627DB2FD53D24B7C48665772E437D6C7F8CE442734A" +
|
||
"F7CCB7AE837C264AE3A9BEB87F8A2FE9B8B5292E5A021FFF5E91479E" +
|
||
"8CE7A28C2442C6F315180F93499A234DCF76E3FED135F9BB",
|
||
g: 2
|
||
},
|
||
|
||
2048: {
|
||
N: "AC6BDB41324A9A9BF166DE5E1389582FAF72B6651987EE07FC319294" +
|
||
"3DB56050A37329CBB4A099ED8193E0757767A13DD52312AB4B03310D" +
|
||
"CD7F48A9DA04FD50E8083969EDB767B0CF6095179A163AB3661A05FB" +
|
||
"D5FAAAE82918A9962F0B93B855F97993EC975EEAA80D740ADBF4FF74" +
|
||
"7359D041D5C33EA71D281E446B14773BCA97B43A23FB801676BD207A" +
|
||
"436C6481F1D2B9078717461A5B9D32E688F87748544523B524B0D57D" +
|
||
"5EA77A2775D2ECFA032CFBDBF52FB3786160279004E57AE6AF874E73" +
|
||
"03CE53299CCC041C7BC308D82A5698F3A8D0C38271AE35F8E9DBFBB6" +
|
||
"94B5C803D89F7AE435DE236D525F54759B65E372FCD68EF20FA7111F" +
|
||
"9E4AFF73",
|
||
g: 2
|
||
}
|
||
}
|
||
|
||
};
|
||
|
||
|
||
// ----- for secp256k1 ------
|
||
|
||
// Overwrite NIST-P256 with secp256k1
|
||
sjcl.ecc.curves.c256 = new sjcl.ecc.curve(
|
||
sjcl.bn.pseudoMersennePrime(256, [[0,-1],[4,-1],[6,-1],[7,-1],[8,-1],[9,-1],[32,-1]]),
|
||
"0x14551231950b75fc4402da1722fc9baee",
|
||
0,
|
||
7,
|
||
"0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
|
||
"0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8"
|
||
);
|
||
|
||
// Replace point addition and doubling algorithms
|
||
// NIST-P256 is a=-3, we need algorithms for a=0
|
||
sjcl.ecc.pointJac.prototype.add = function(T) {
|
||
var S = this;
|
||
if (S.curve !== T.curve) {
|
||
throw("sjcl.ecc.add(): Points must be on the same curve to add them!");
|
||
}
|
||
|
||
if (S.isIdentity) {
|
||
return T.toJac();
|
||
} else if (T.isIdentity) {
|
||
return S;
|
||
}
|
||
|
||
var z1z1 = S.z.square();
|
||
var h = T.x.mul(z1z1).subM(S.x);
|
||
var s2 = T.y.mul(S.z).mul(z1z1);
|
||
|
||
if (h.equals(0)) {
|
||
if (S.y.equals(T.y.mul(z1z1.mul(S.z)))) {
|
||
// same point
|
||
return S.doubl();
|
||
} else {
|
||
// inverses
|
||
return new sjcl.ecc.pointJac(S.curve);
|
||
}
|
||
}
|
||
|
||
var hh = h.square();
|
||
var i = hh.copy().doubleM().doubleM();
|
||
var j = h.mul(i);
|
||
var r = s2.sub(S.y).doubleM();
|
||
var v = S.x.mul(i);
|
||
|
||
var x = r.square().subM(j).subM(v.copy().doubleM());
|
||
var y = r.mul(v.sub(x)).subM(S.y.mul(j).doubleM());
|
||
var z = S.z.add(h).square().subM(z1z1).subM(hh);
|
||
|
||
return new sjcl.ecc.pointJac(this.curve,x,y,z);
|
||
};
|
||
|
||
sjcl.ecc.pointJac.prototype.doubl = function () {
|
||
if (this.isIdentity) { return this; }
|
||
|
||
var a = this.x.square();
|
||
var b = this.y.square();
|
||
var c = b.square();
|
||
var d = this.x.add(b).square().subM(a).subM(c).doubleM();
|
||
var e = a.mul(3);
|
||
var f = e.square();
|
||
var x = f.sub(d.copy().doubleM());
|
||
var y = e.mul(d.sub(x)).subM(c.doubleM().doubleM().doubleM());
|
||
var z = this.y.mul(this.z).doubleM();
|
||
return new sjcl.ecc.pointJac(this.curve, x, y, z);
|
||
};
|
||
|
||
sjcl.ecc.point.prototype.toBytesCompressed = function () {
|
||
var header = this.y.mod(2).toString() == "0x0" ? 0x02 : 0x03;
|
||
return [header].concat(sjcl.codec.bytes.fromBits(this.x.toBits()))
|
||
};
|
||
|
||
/** @fileOverview Javascript RIPEMD-160 implementation.
|
||
*
|
||
* @author Artem S Vybornov <vybornov@gmail.com>
|
||
*/
|
||
(function() {
|
||
|
||
/**
|
||
* Context for a RIPEMD-160 operation in progress.
|
||
* @constructor
|
||
* @class RIPEMD, 160 bits.
|
||
*/
|
||
sjcl.hash.ripemd160 = function (hash) {
|
||
if (hash) {
|
||
this._h = hash._h.slice(0);
|
||
this._buffer = hash._buffer.slice(0);
|
||
this._length = hash._length;
|
||
} else {
|
||
this.reset();
|
||
}
|
||
};
|
||
|
||
/**
|
||
* Hash a string or an array of words.
|
||
* @static
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return {bitArray} The hash value, an array of 5 big-endian words.
|
||
*/
|
||
sjcl.hash.ripemd160.hash = function (data) {
|
||
return (new sjcl.hash.ripemd160()).update(data).finalize();
|
||
};
|
||
|
||
sjcl.hash.ripemd160.prototype = {
|
||
/**
|
||
* Reset the hash state.
|
||
* @return this
|
||
*/
|
||
reset: function () {
|
||
this._h = _h0.slice(0);
|
||
this._buffer = [];
|
||
this._length = 0;
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Reset the hash state.
|
||
* @param {bitArray|String} data the data to hash.
|
||
* @return this
|
||
*/
|
||
update: function (data) {
|
||
if ( typeof data === "string" )
|
||
data = sjcl.codec.utf8String.toBits(data);
|
||
|
||
var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
|
||
ol = this._length,
|
||
nl = this._length = ol + sjcl.bitArray.bitLength(data);
|
||
for (i = 512+ol & -512; i <= nl; i+= 512) {
|
||
var words = b.splice(0,16);
|
||
for ( var w = 0; w < 16; ++w )
|
||
words[w] = _cvt(words[w]);
|
||
|
||
_block.call( this, words );
|
||
}
|
||
|
||
return this;
|
||
},
|
||
|
||
/**
|
||
* Complete hashing and output the hash value.
|
||
* @return {bitArray} The hash value, an array of 5 big-endian words.
|
||
*/
|
||
finalize: function () {
|
||
var b = sjcl.bitArray.concat( this._buffer, [ sjcl.bitArray.partial(1,1) ] ),
|
||
l = ( this._length + 1 ) % 512,
|
||
z = ( l > 448 ? 512 : 448 ) - l % 448,
|
||
zp = z % 32;
|
||
|
||
if ( zp > 0 )
|
||
b = sjcl.bitArray.concat( b, [ sjcl.bitArray.partial(zp,0) ] )
|
||
for ( ; z >= 32; z -= 32 )
|
||
b.push(0);
|
||
|
||
b.push( _cvt( this._length | 0 ) );
|
||
b.push( _cvt( Math.floor(this._length / 0x100000000) ) );
|
||
|
||
while ( b.length ) {
|
||
var words = b.splice(0,16);
|
||
for ( var w = 0; w < 16; ++w )
|
||
words[w] = _cvt(words[w]);
|
||
|
||
_block.call( this, words );
|
||
}
|
||
|
||
var h = this._h;
|
||
this.reset();
|
||
|
||
for ( var w = 0; w < 5; ++w )
|
||
h[w] = _cvt(h[w]);
|
||
|
||
return h;
|
||
}
|
||
};
|
||
|
||
var _h0 = [ 0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0 ];
|
||
|
||
var _k1 = [ 0x00000000, 0x5a827999, 0x6ed9eba1, 0x8f1bbcdc, 0xa953fd4e ];
|
||
var _k2 = [ 0x50a28be6, 0x5c4dd124, 0x6d703ef3, 0x7a6d76e9, 0x00000000 ];
|
||
for ( var i = 4; i >= 0; --i ) {
|
||
for ( var j = 1; j < 16; ++j ) {
|
||
_k1.splice(i,0,_k1[i]);
|
||
_k2.splice(i,0,_k2[i]);
|
||
}
|
||
}
|
||
|
||
var _r1 = [ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
|
||
7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8,
|
||
3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12,
|
||
1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2,
|
||
4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 ];
|
||
var _r2 = [ 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12,
|
||
6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2,
|
||
15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13,
|
||
8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14,
|
||
12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 ];
|
||
|
||
var _s1 = [ 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8,
|
||
7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12,
|
||
11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5,
|
||
11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12,
|
||
9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 ];
|
||
var _s2 = [ 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6,
|
||
9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11,
|
||
9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5,
|
||
15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8,
|
||
8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 ];
|
||
|
||
function _f0(x,y,z) {
|
||
return x ^ y ^ z;
|
||
};
|
||
|
||
function _f1(x,y,z) {
|
||
return (x & y) | (~x & z);
|
||
};
|
||
|
||
function _f2(x,y,z) {
|
||
return (x | ~y) ^ z;
|
||
};
|
||
|
||
function _f3(x,y,z) {
|
||
return (x & z) | (y & ~z);
|
||
};
|
||
|
||
function _f4(x,y,z) {
|
||
return x ^ (y | ~z);
|
||
};
|
||
|
||
function _rol(n,l) {
|
||
return (n << l) | (n >>> (32-l));
|
||
}
|
||
|
||
function _cvt(n) {
|
||
return ( (n & 0xff << 0) << 24 )
|
||
| ( (n & 0xff << 8) << 8 )
|
||
| ( (n & 0xff << 16) >>> 8 )
|
||
| ( (n & 0xff << 24) >>> 24 );
|
||
}
|
||
|
||
function _block(X) {
|
||
var A1 = this._h[0], B1 = this._h[1], C1 = this._h[2], D1 = this._h[3], E1 = this._h[4],
|
||
A2 = this._h[0], B2 = this._h[1], C2 = this._h[2], D2 = this._h[3], E2 = this._h[4];
|
||
|
||
var j = 0, T;
|
||
|
||
for ( ; j < 16; ++j ) {
|
||
T = _rol( A1 + _f0(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
|
||
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
|
||
T = _rol( A2 + _f4(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
|
||
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
|
||
for ( ; j < 32; ++j ) {
|
||
T = _rol( A1 + _f1(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
|
||
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
|
||
T = _rol( A2 + _f3(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
|
||
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
|
||
for ( ; j < 48; ++j ) {
|
||
T = _rol( A1 + _f2(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
|
||
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
|
||
T = _rol( A2 + _f2(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
|
||
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
|
||
for ( ; j < 64; ++j ) {
|
||
T = _rol( A1 + _f3(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
|
||
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
|
||
T = _rol( A2 + _f1(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
|
||
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
|
||
for ( ; j < 80; ++j ) {
|
||
T = _rol( A1 + _f4(B1,C1,D1) + X[_r1[j]] + _k1[j], _s1[j] ) + E1;
|
||
A1 = E1; E1 = D1; D1 = _rol(C1,10); C1 = B1; B1 = T;
|
||
T = _rol( A2 + _f0(B2,C2,D2) + X[_r2[j]] + _k2[j], _s2[j] ) + E2;
|
||
A2 = E2; E2 = D2; D2 = _rol(C2,10); C2 = B2; B2 = T; }
|
||
|
||
T = this._h[1] + C1 + D2;
|
||
this._h[1] = this._h[2] + D1 + E2;
|
||
this._h[2] = this._h[3] + E1 + A2;
|
||
this._h[3] = this._h[4] + A1 + B2;
|
||
this._h[4] = this._h[0] + B1 + C2;
|
||
this._h[0] = T;
|
||
}
|
||
|
||
})();
|
||
|
||
sjcl.bn.ZERO = new sjcl.bn(0);
|
||
|
||
/** [ this / that , this % that ] */
|
||
sjcl.bn.prototype.divRem = function (that) {
|
||
if (typeof(that) !== "object") { that = new this._class(that); }
|
||
var thisa = this.abs(), thata = that.abs(), quot = new this._class(0),
|
||
ci = 0;
|
||
if (!thisa.greaterEquals(thata)) {
|
||
return [new sjcl.bn(0), this.copy()];
|
||
} else if (thisa.equals(thata)) {
|
||
return [new sjcl.bn(1), new sjcl.bn(0)];
|
||
}
|
||
|
||
for (; thisa.greaterEquals(thata); ci++) {
|
||
thata.doubleM();
|
||
}
|
||
for (; ci > 0; ci--) {
|
||
quot.doubleM();
|
||
thata.halveM();
|
||
if (thisa.greaterEquals(thata)) {
|
||
quot.addM(1);
|
||
thisa.subM(that).normalize();
|
||
}
|
||
}
|
||
return [quot, thisa];
|
||
};
|
||
|
||
/** this /= that (rounded to nearest int) */
|
||
sjcl.bn.prototype.divRound = function (that) {
|
||
var dr = this.divRem(that), quot = dr[0], rem = dr[1];
|
||
|
||
if (rem.doubleM().greaterEquals(that)) {
|
||
quot.addM(1);
|
||
}
|
||
|
||
return quot;
|
||
};
|
||
|
||
/** this /= that (rounded down) */
|
||
sjcl.bn.prototype.div = function (that) {
|
||
var dr = this.divRem(that);
|
||
return dr[0];
|
||
};
|
||
|
||
sjcl.bn.prototype.sign = function () {
|
||
return this.greaterEquals(sjcl.bn.ZERO) ? 1 : -1;
|
||
};
|
||
|
||
/** -this */
|
||
sjcl.bn.prototype.neg = function () {
|
||
return sjcl.bn.ZERO.sub(this);
|
||
};
|
||
|
||
/** |this| */
|
||
sjcl.bn.prototype.abs = function () {
|
||
if (this.sign() === -1) {
|
||
return this.neg();
|
||
} else return this;
|
||
};
|
||
|
||
/** this >> that */
|
||
sjcl.bn.prototype.shiftRight = function (that) {
|
||
if ("number" !== typeof that) {
|
||
throw new Error("shiftRight expects a number");
|
||
}
|
||
|
||
that = +that;
|
||
|
||
if (that < 0) {
|
||
return this.shiftLeft(that);
|
||
}
|
||
|
||
var a = new sjcl.bn(this);
|
||
|
||
while (that >= this.radix) {
|
||
a.limbs.shift();
|
||
that -= this.radix;
|
||
}
|
||
|
||
while (that--) {
|
||
a.halveM();
|
||
}
|
||
|
||
return a;
|
||
};
|
||
|
||
/** this >> that */
|
||
sjcl.bn.prototype.shiftLeft = function (that) {
|
||
if ("number" !== typeof that) {
|
||
throw new Error("shiftLeft expects a number");
|
||
}
|
||
|
||
that = +that;
|
||
|
||
if (that < 0) {
|
||
return this.shiftRight(that);
|
||
}
|
||
|
||
var a = new sjcl.bn(this);
|
||
|
||
while (that >= this.radix) {
|
||
a.limbs.unshift(0);
|
||
that -= this.radix;
|
||
}
|
||
|
||
while (that--) {
|
||
a.doubleM();
|
||
}
|
||
|
||
return a;
|
||
};
|
||
|
||
/** (int)this */
|
||
// NOTE Truncates to 32-bit integer
|
||
sjcl.bn.prototype.toNumber = function () {
|
||
return this.limbs[0] | 0;
|
||
};
|
||
|
||
/** find n-th bit, 0 = LSB */
|
||
sjcl.bn.prototype.testBit = function (bitIndex) {
|
||
var limbIndex = Math.floor(bitIndex / this.radix);
|
||
var bitIndexInLimb = bitIndex % this.radix;
|
||
|
||
if (limbIndex >= this.limbs.length) return 0;
|
||
|
||
return (this.limbs[limbIndex] >>> bitIndexInLimb) & 1;
|
||
};
|
||
|
||
/** set n-th bit, 0 = LSB */
|
||
sjcl.bn.prototype.setBitM = function (bitIndex) {
|
||
var limbIndex = Math.floor(bitIndex / this.radix);
|
||
var bitIndexInLimb = bitIndex % this.radix;
|
||
|
||
while (limbIndex >= this.limbs.length) this.limbs.push(0);
|
||
|
||
this.limbs[limbIndex] |= 1 << bitIndexInLimb;
|
||
|
||
this.cnormalize();
|
||
|
||
return this;
|
||
};
|
||
|
||
sjcl.bn.prototype.modInt = function (n) {
|
||
return this.toNumber() % n;
|
||
};
|
||
|
||
sjcl.bn.prototype.invDigit = function ()
|
||
{
|
||
var radixMod = 1 + this.radixMask;
|
||
|
||
if (this.limbs.length < 1) return 0;
|
||
var x = this.limbs[0];
|
||
if ((x&1) == 0) return 0;
|
||
var y = x&3; // y == 1/x mod 2^2
|
||
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
|
||
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
|
||
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
|
||
// last step - calculate inverse mod DV directly;
|
||
// assumes 16 < radixMod <= 32 and assumes ability to handle 48-bit ints
|
||
y = (y*(2-x*y%radixMod))%radixMod; // y == 1/x mod 2^dbits
|
||
// we really want the negative inverse, and -DV < y < DV
|
||
return (y>0)?radixMod-y:-y;
|
||
};
|
||
|
||
// returns bit length of the integer x
|
||
function nbits(x) {
|
||
var r = 1, t;
|
||
if((t=x>>>16) != 0) { x = t; r += 16; }
|
||
if((t=x>>8) != 0) { x = t; r += 8; }
|
||
if((t=x>>4) != 0) { x = t; r += 4; }
|
||
if((t=x>>2) != 0) { x = t; r += 2; }
|
||
if((t=x>>1) != 0) { x = t; r += 1; }
|
||
return r;
|
||
}
|
||
|
||
// JSBN-style add and multiply for SJCL w/ 24 bit radix
|
||
sjcl.bn.prototype.am = function (i,x,w,j,c,n) {
|
||
var xl = x&0xfff, xh = x>>12;
|
||
while (--n >= 0) {
|
||
var l = this.limbs[i]&0xfff;
|
||
var h = this.limbs[i++]>>12;
|
||
var m = xh*l+h*xl;
|
||
l = xl*l+((m&0xfff)<<12)+w.limbs[j]+c;
|
||
c = (l>>24)+(m>>12)+xh*h;
|
||
w.limbs[j++] = l&0xffffff;
|
||
}
|
||
return c;
|
||
}
|
||
|
||
var Montgomery = function (m)
|
||
{
|
||
this.m = m;
|
||
this.mt = m.limbs.length;
|
||
this.mt2 = this.mt * 2;
|
||
this.mp = m.invDigit();
|
||
this.mpl = this.mp&0x7fff;
|
||
this.mph = this.mp>>15;
|
||
this.um = (1<<(m.radix-15))-1;
|
||
};
|
||
|
||
Montgomery.prototype.reduce = function (x)
|
||
{
|
||
var radixMod = x.radixMask + 1;
|
||
while (x.limbs.length <= this.mt2) // pad x so am has enough room later
|
||
x.limbs[x.limbs.length] = 0;
|
||
for (var i = 0; i < this.mt; ++i) {
|
||
// faster way of calculating u0 = x[i]*mp mod 2^radix
|
||
var j = x.limbs[i]&0x7fff;
|
||
var u0 = (j*this.mpl+(((j*this.mph+(x.limbs[i]>>15)*this.mpl)&this.um)<<15))&x.radixMask;
|
||
// use am to combine the multiply-shift-add into one call
|
||
j = i+this.mt;
|
||
x.limbs[j] += this.m.am(0,u0,x,i,0,this.mt);
|
||
// propagate carry
|
||
while (x.limbs[j] >= radixMod) { x.limbs[j] -= radixMod; x.limbs[++j]++; }
|
||
}
|
||
x.trim();
|
||
x = x.shiftRight(this.mt * this.m.radix);
|
||
if (x.greaterEquals(this.m)) x = x.sub(this.m);
|
||
return x.trim().normalize().reduce();
|
||
};
|
||
|
||
Montgomery.prototype.square = function (x)
|
||
{
|
||
return this.reduce(x.square());
|
||
};
|
||
|
||
Montgomery.prototype.multiply = function (x, y)
|
||
{
|
||
return this.reduce(x.mul(y));
|
||
};
|
||
|
||
Montgomery.prototype.convert = function (x)
|
||
{
|
||
return x.abs().shiftLeft(this.mt * this.m.radix).mod(this.m);
|
||
};
|
||
|
||
Montgomery.prototype.revert = function (x)
|
||
{
|
||
return this.reduce(x.copy());
|
||
};
|
||
|
||
sjcl.bn.prototype.powermodMontgomery = function (e, m)
|
||
{
|
||
var i = e.bitLength(), k, r = new this._class(1);
|
||
|
||
if (i <= 0) return r;
|
||
else if (i < 18) k = 1;
|
||
else if (i < 48) k = 3;
|
||
else if (i < 144) k = 4;
|
||
else if (i < 768) k = 5;
|
||
else k = 6;
|
||
|
||
if (i < 8 || !m.testBit(0)) {
|
||
// For small exponents and even moduli, use a simple square-and-multiply
|
||
// algorithm.
|
||
return this.powermod(e, m);
|
||
}
|
||
|
||
var z = new Montgomery(m);
|
||
|
||
e.trim().normalize();
|
||
|
||
// precomputation
|
||
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
|
||
g[1] = z.convert(this);
|
||
if (k > 1) {
|
||
var g2 = z.square(g[1]);
|
||
|
||
while (n <= km) {
|
||
g[n] = z.multiply(g2, g[n-2]);
|
||
n += 2;
|
||
}
|
||
}
|
||
|
||
var j = e.limbs.length-1, w, is1 = true, r2 = new this._class(), t;
|
||
i = nbits(e.limbs[j])-1;
|
||
while (j >= 0) {
|
||
if (i >= k1) w = (e.limbs[j]>>(i-k1))&km;
|
||
else {
|
||
w = (e.limbs[j]&((1<<(i+1))-1))<<(k1-i);
|
||
if (j > 0) w |= e.limbs[j-1]>>(this.radix+i-k1);
|
||
}
|
||
|
||
n = k;
|
||
while ((w&1) == 0) { w >>= 1; --n; }
|
||
if ((i -= n) < 0) { i += this.radix; --j; }
|
||
if (is1) { // ret == 1, don't bother squaring or multiplying it
|
||
r = g[w].copy();
|
||
is1 = false;
|
||
} else {
|
||
while (n > 1) { r2 = z.square(r); r = z.square(r2); n -= 2; }
|
||
if (n > 0) r2 = z.square(r); else { t = r; r = r2; r2 = t; }
|
||
r = z.multiply(r2,g[w]);
|
||
}
|
||
|
||
while (j >= 0 && (e.limbs[j]&(1<<i)) == 0) {
|
||
r2 = z.square(r); t = r; r = r2; r2 = t;
|
||
if (--i < 0) { i = this.radix-1; --j; }
|
||
}
|
||
}
|
||
return z.revert(r);
|
||
}
|
||
|
||
sjcl.ecc.ecdsa.secretKey.prototype = {
|
||
sign: function(hash, paranoia) {
|
||
var R = this._curve.r,
|
||
l = R.bitLength(),
|
||
k = sjcl.bn.random(R.sub(1), paranoia).add(1),
|
||
r = this._curve.G.mult(k).x.mod(R),
|
||
s = sjcl.bn.fromBits(hash).add(r.mul(this._exponent)).mul(k.inverseMod(R)).mod(R);
|
||
|
||
return sjcl.bitArray.concat(r.toBits(l), s.toBits(l));
|
||
}
|
||
};
|
||
|
||
sjcl.ecc.ecdsa.publicKey.prototype = {
|
||
verify: function(hash, rs) {
|
||
var w = sjcl.bitArray,
|
||
R = this._curve.r,
|
||
l = R.bitLength(),
|
||
r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
|
||
s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l)),
|
||
sInv = s.inverseMod(R),
|
||
hG = sjcl.bn.fromBits(hash).mul(sInv).mod(R),
|
||
hA = r.mul(sInv).mod(R),
|
||
r2 = this._curve.G.mult2(hG, hA, this._point).x;
|
||
|
||
if (r.equals(0) || s.equals(0) || r.greaterEquals(R) || s.greaterEquals(R) || !r2.equals(r)) {
|
||
throw (new sjcl.exception.corrupt("signature didn't check out"));
|
||
}
|
||
return true;
|
||
}
|
||
};
|
||
|
||
sjcl.ecc.ecdsa.secretKey.prototype.canonicalizeSignature = function(rs) {
|
||
var w = sjcl.bitArray,
|
||
R = this._curve.r,
|
||
l = R.bitLength();
|
||
|
||
var r = sjcl.bn.fromBits(w.bitSlice(rs,0,l)),
|
||
s = sjcl.bn.fromBits(w.bitSlice(rs,l,2*l));
|
||
|
||
// For a canonical signature we want the lower of two possible values for s
|
||
// 0 < s <= n/2
|
||
if (!R.copy().halveM().greaterEquals(s)) {
|
||
s = R.sub(s);
|
||
}
|
||
|
||
return w.concat(r.toBits(l), s.toBits(l));
|
||
};
|
||
|
||
|
||
sjcl.ecc.ecdsa.secretKey.prototype.signDER = function(hash, paranoia) {
|
||
return this.encodeDER(this.sign(hash, paranoia));
|
||
};
|
||
|
||
sjcl.ecc.ecdsa.secretKey.prototype.encodeDER = function(rs) {
|
||
var w = sjcl.bitArray,
|
||
R = this._curve.r,
|
||
l = R.bitLength();
|
||
|
||
var rb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,0,l)),
|
||
sb = sjcl.codec.bytes.fromBits(w.bitSlice(rs,l,2*l));
|
||
|
||
// Drop empty leading bytes
|
||
while (!rb[0] && rb.length) rb.shift();
|
||
while (!sb[0] && sb.length) sb.shift();
|
||
|
||
// If high bit is set, prepend an extra zero byte (DER signed integer)
|
||
if (rb[0] & 0x80) rb.unshift(0);
|
||
if (sb[0] & 0x80) sb.unshift(0);
|
||
|
||
var buffer = [].concat(
|
||
0x30,
|
||
4 + rb.length + sb.length,
|
||
0x02,
|
||
rb.length,
|
||
rb,
|
||
0x02,
|
||
sb.length,
|
||
sb
|
||
);
|
||
|
||
return sjcl.codec.bytes.toBits(buffer);
|
||
};
|
||
|
||
|
||
sjcl.bn.prototype.jacobi = function (that) {
|
||
var a = this;
|
||
that = new sjcl.bn(that);
|
||
|
||
if (that.sign() === -1) return;
|
||
|
||
// 1. If a = 0 then return(0).
|
||
if (a.equals(0)) { return 0; }
|
||
|
||
// 2. If a = 1 then return(1).
|
||
if (a.equals(1)) { return 1; }
|
||
|
||
var s = 0;
|
||
|
||
// 3. Write a = 2^e * a1, where a1 is odd.
|
||
var e = 0;
|
||
while (!a.testBit(e)) e++;
|
||
var a1 = a.shiftRight(e);
|
||
|
||
// 4. If e is even then set s ← 1.
|
||
if ((e & 1) === 0) {
|
||
s = 1;
|
||
} else {
|
||
var residue = that.modInt(8);
|
||
|
||
if (residue === 1 || residue === 7) {
|
||
// Otherwise set s ← 1 if n ≡ 1 or 7 (mod 8)
|
||
s = 1;
|
||
} else if (residue === 3 || residue === 5) {
|
||
// Or set s ← −1 if n ≡ 3 or 5 (mod 8).
|
||
s = -1;
|
||
}
|
||
}
|
||
|
||
// 5. If n ≡ 3 (mod 4) and a1 ≡ 3 (mod 4) then set s ← −s.
|
||
if (that.modInt(4) === 3 && a1.modInt(4) === 3) {
|
||
s = -s;
|
||
}
|
||
|
||
if (a1.equals(1)) {
|
||
return s;
|
||
} else {
|
||
return s * that.mod(a1).jacobi(a1);
|
||
}
|
||
};
|