Files
xahau.js/src/js/sjcl-custom/sjcl-montgomery.js

157 lines
4.1 KiB
JavaScript

sjcl.bn.prototype.invDigit = function ()
{
var radixMod = 1 + this.radixMask;
if (this.limbs.length < 1) return 0;
var x = this.limbs[0];
if ((x&1) == 0) return 0;
var y = x&3; // y == 1/x mod 2^2
y = (y*(2-(x&0xf)*y))&0xf; // y == 1/x mod 2^4
y = (y*(2-(x&0xff)*y))&0xff; // y == 1/x mod 2^8
y = (y*(2-(((x&0xffff)*y)&0xffff)))&0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < radixMod <= 32 and assumes ability to handle 48-bit ints
y = (y*(2-x*y%radixMod))%radixMod; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y>0)?radixMod-y:-y;
};
// returns bit length of the integer x
function nbits(x) {
var r = 1, t;
if((t=x>>>16) != 0) { x = t; r += 16; }
if((t=x>>8) != 0) { x = t; r += 8; }
if((t=x>>4) != 0) { x = t; r += 4; }
if((t=x>>2) != 0) { x = t; r += 2; }
if((t=x>>1) != 0) { x = t; r += 1; }
return r;
}
// JSBN-style add and multiply for SJCL w/ 24 bit radix
sjcl.bn.prototype.am = function (i,x,w,j,c,n) {
var xl = x&0xfff, xh = x>>12;
while (--n >= 0) {
var l = this.limbs[i]&0xfff;
var h = this.limbs[i++]>>12;
var m = xh*l+h*xl;
l = xl*l+((m&0xfff)<<12)+w.limbs[j]+c;
c = (l>>24)+(m>>12)+xh*h;
w.limbs[j++] = l&0xffffff;
}
return c;
}
var Montgomery = function (m)
{
this.m = m;
this.mt = m.limbs.length;
this.mt2 = this.mt * 2;
this.mp = m.invDigit();
this.mpl = this.mp&0x7fff;
this.mph = this.mp>>15;
this.um = (1<<(m.radix-15))-1;
};
Montgomery.prototype.reduce = function (x)
{
var radixMod = x.radixMask + 1;
while (x.limbs.length <= this.mt2) // pad x so am has enough room later
x.limbs[x.limbs.length] = 0;
for (var i = 0; i < this.mt; ++i) {
// faster way of calculating u0 = x[i]*mp mod 2^radix
var j = x.limbs[i]&0x7fff;
var u0 = (j*this.mpl+(((j*this.mph+(x.limbs[i]>>15)*this.mpl)&this.um)<<15))&x.radixMask;
// use am to combine the multiply-shift-add into one call
j = i+this.mt;
x.limbs[j] += this.m.am(0,u0,x,i,0,this.mt);
// propagate carry
while (x.limbs[j] >= radixMod) { x.limbs[j] -= radixMod; x.limbs[++j]++; }
}
x.trim();
x = x.shiftRight(this.mt * this.m.radix);
if (x.greaterEquals(this.m)) x = x.sub(this.m);
return x.trim().normalize().reduce();
};
Montgomery.prototype.square = function (x)
{
return this.reduce(x.square());
};
Montgomery.prototype.multiply = function (x, y)
{
return this.reduce(x.mul(y));
};
Montgomery.prototype.convert = function (x)
{
return x.abs().shiftLeft(this.mt * this.m.radix).mod(this.m);
};
Montgomery.prototype.revert = function (x)
{
return this.reduce(x.copy());
};
sjcl.bn.prototype.powermodMontgomery = function (e, m)
{
var i = e.bitLength(), k, r = new this._class(1);
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8 || !m.testBit(0)) {
// For small exponents and even moduli, use a simple square-and-multiply
// algorithm.
return this.powermod(e, m);
}
var z = new Montgomery(m);
e.trim().normalize();
// precomputation
var g = new Array(), n = 3, k1 = k-1, km = (1<<k)-1;
g[1] = z.convert(this);
if (k > 1) {
var g2 = z.square(g[1]);
while (n <= km) {
g[n] = z.multiply(g2, g[n-2]);
n += 2;
}
}
var j = e.limbs.length-1, w, is1 = true, r2 = new this._class(), t;
i = nbits(e.limbs[j])-1;
while (j >= 0) {
if (i >= k1) w = (e.limbs[j]>>(i-k1))&km;
else {
w = (e.limbs[j]&((1<<(i+1))-1))<<(k1-i);
if (j > 0) w |= e.limbs[j-1]>>(this.radix+i-k1);
}
n = k;
while ((w&1) == 0) { w >>= 1; --n; }
if ((i -= n) < 0) { i += this.radix; --j; }
if (is1) { // ret == 1, don't bother squaring or multiplying it
r = g[w].copy();
is1 = false;
} else {
while (n > 1) { r2 = z.square(r); r = z.square(r2); n -= 2; }
if (n > 0) r2 = z.square(r); else { t = r; r = r2; r2 = t; }
r = z.multiply(r2,g[w]);
}
while (j >= 0 && (e.limbs[j]&(1<<i)) == 0) {
r2 = z.square(r); t = r; r = r2; r2 = t;
if (--i < 0) { i = this.radix-1; --j; }
}
}
return z.revert(r);
}