mirror of
https://github.com/Xahau/xahau.js.git
synced 2025-11-28 08:05:51 +00:00
- native support for k256
- improved entropy by taking advantage of platform crypto
- remove unnecessary sjcl overrides from sjcl-secp256k1.js
- updated ripple-lib curve instantiations to use k256
- add curve override so c256 points to k256
16dde36fa2
307 lines
9.9 KiB
JavaScript
307 lines
9.9 KiB
JavaScript
/**
|
|
* This module uses the public key recovery method
|
|
* described in SEC 1: Elliptic Curve Cryptography,
|
|
* section 4.1.6, "Public Key Recovery Operation".
|
|
* http://www.secg.org/download/aid-780/sec1-v2.pdf
|
|
*
|
|
* Implementation based on:
|
|
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/89cf731ac7309b4f98994e3b4b67b7226020181f/src/ecdsa.js
|
|
*/
|
|
|
|
// Defined here so that this value only needs to be calculated once
|
|
var FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR;
|
|
|
|
/**
|
|
* Sign the given hash such that the public key, prepending an extra byte
|
|
* so that the public key will be recoverable from the signature
|
|
*
|
|
* @param {bitArray} hash
|
|
* @param {Number} paranoia
|
|
* @returns {bitArray} Signature formatted as bitArray
|
|
*/
|
|
sjcl.ecc.ecdsa.secretKey.prototype.signWithRecoverablePublicKey = function(hash, paranoia, k_for_testing) {
|
|
|
|
var self = this;
|
|
|
|
// Convert hash to bits and determine encoding for output
|
|
var hash_bits;
|
|
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
|
|
hash_bits = hash;
|
|
} else {
|
|
throw new sjcl.exception.invalid('hash. Must be a bitArray');
|
|
}
|
|
|
|
// Sign hash with standard, canonicalized method
|
|
var standard_signature = self.sign(hash_bits, paranoia, k_for_testing);
|
|
var canonical_signature = self.canonicalizeSignature(standard_signature);
|
|
|
|
// Extract r and s signature components from canonical signature
|
|
var r_and_s = getRandSFromSignature(self._curve, canonical_signature);
|
|
|
|
// Rederive public key
|
|
var public_key = self._curve.G.mult(sjcl.bn.fromBits(self.get()));
|
|
|
|
// Determine recovery factor based on which possible value
|
|
// returns the correct public key
|
|
var recovery_factor = calculateRecoveryFactor(self._curve, r_and_s.r, r_and_s.s, hash_bits, public_key);
|
|
|
|
// Prepend recovery_factor to signature and encode in DER
|
|
// The value_to_prepend should be 4 bytes total
|
|
var value_to_prepend = recovery_factor + 27;
|
|
|
|
var final_signature_bits = sjcl.bitArray.concat([value_to_prepend], canonical_signature);
|
|
|
|
// Return value in bits
|
|
return final_signature_bits;
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* Recover the public key from a signature created with the
|
|
* signWithRecoverablePublicKey method in this module
|
|
*
|
|
* @static
|
|
*
|
|
* @param {bitArray} hash
|
|
* @param {bitArray} signature
|
|
* @param {sjcl.ecc.curve} [sjcl.ecc.curves['k256']] curve
|
|
* @returns {sjcl.ecc.ecdsa.publicKey} Public key
|
|
*/
|
|
sjcl.ecc.ecdsa.publicKey.recoverFromSignature = function(hash, signature, curve) {
|
|
|
|
if (!signature || signature instanceof sjcl.ecc.curve) {
|
|
throw new sjcl.exception.invalid('must supply hash and signature to recover public key');
|
|
}
|
|
|
|
if (!curve) {
|
|
curve = sjcl.ecc.curves['k256'];
|
|
}
|
|
|
|
// Convert hash to bits and determine encoding for output
|
|
var hash_bits;
|
|
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
|
|
hash_bits = hash;
|
|
} else {
|
|
throw new sjcl.exception.invalid('hash. Must be a bitArray');
|
|
}
|
|
|
|
var signature_bits;
|
|
if (typeof signature === 'object' && signature.length > 0 && typeof signature[0] === 'number') {
|
|
signature_bits = signature;
|
|
} else {
|
|
throw new sjcl.exception.invalid('signature. Must be a bitArray');
|
|
}
|
|
|
|
// Extract recovery_factor from first 4 bytes
|
|
var recovery_factor = signature_bits[0] - 27;
|
|
|
|
if (recovery_factor < 0 || recovery_factor > 3) {
|
|
throw new sjcl.exception.invalid('signature. Signature must be generated with algorithm ' +
|
|
'that prepends the recovery factor in order to recover the public key');
|
|
}
|
|
|
|
// Separate r and s values
|
|
var r_and_s = getRandSFromSignature(curve, signature_bits.slice(1));
|
|
var signature_r = r_and_s.r;
|
|
var signature_s = r_and_s.s;
|
|
|
|
// Recover public key using recovery_factor
|
|
var recovered_public_key_point = recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor);
|
|
var recovered_public_key = new sjcl.ecc.ecdsa.publicKey(curve, recovered_public_key_point);
|
|
|
|
return recovered_public_key;
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* Retrieve the r and s components of a signature
|
|
*
|
|
* @param {sjcl.ecc.curve} curve
|
|
* @param {bitArray} signature
|
|
* @returns {Object} Object with 'r' and 's' fields each as an sjcl.bn
|
|
*/
|
|
function getRandSFromSignature(curve, signature) {
|
|
|
|
var r_length = curve.r.bitLength();
|
|
|
|
return {
|
|
r: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, 0, r_length)),
|
|
s: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, r_length, sjcl.bitArray.bitLength(signature)))
|
|
};
|
|
};
|
|
|
|
|
|
/**
|
|
* Determine the recovery factor by trying all four
|
|
* possibilities and figuring out which results in the
|
|
* correct public key
|
|
*
|
|
* @param {sjcl.ecc.curve} curve
|
|
* @param {sjcl.bn} r
|
|
* @param {sjcl.bn} s
|
|
* @param {bitArray} hash_bits
|
|
* @param {sjcl.ecc.point} original_public_key_point
|
|
* @returns {Number, 0-3} Recovery factor
|
|
*/
|
|
function calculateRecoveryFactor(curve, r, s, hash_bits, original_public_key_point) {
|
|
|
|
var original_public_key_point_bits = original_public_key_point.toBits();
|
|
|
|
// TODO: verify that it is possible for the recovery_factor to be 2 or 3,
|
|
// we may only need 1 bit because the canonical signature might remove the
|
|
// possibility of us needing to "use the second candidate key"
|
|
for (var possible_factor = 0; possible_factor < 4; possible_factor++) {
|
|
|
|
var resulting_public_key_point;
|
|
try {
|
|
resulting_public_key_point = recoverPublicKeyPointFromSignature(curve, r, s, hash_bits, possible_factor);
|
|
} catch (err) {
|
|
// console.log(err, err.stack);
|
|
continue;
|
|
}
|
|
|
|
if (sjcl.bitArray.equal(resulting_public_key_point.toBits(), original_public_key_point_bits)) {
|
|
return possible_factor;
|
|
}
|
|
|
|
}
|
|
|
|
throw new sjcl.exception.bug('unable to calculate recovery factor from signature');
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* Recover the public key from the signature.
|
|
*
|
|
* @param {sjcl.ecc.curve} curve
|
|
* @param {sjcl.bn} r
|
|
* @param {sjcl.bn} s
|
|
* @param {bitArray} hash_bits
|
|
* @param {Number, 0-3} recovery_factor
|
|
* @returns {sjcl.point} Public key corresponding to signature
|
|
*/
|
|
function recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor) {
|
|
|
|
var field_order = curve.r;
|
|
var field_modulus = curve.field.modulus;
|
|
|
|
// Reduce the recovery_factor to the two bits used
|
|
recovery_factor = recovery_factor & 3;
|
|
|
|
// The less significant bit specifies whether the y coordinate
|
|
// of the compressed point is even or not.
|
|
var compressed_point_y_coord_is_even = recovery_factor & 1;
|
|
|
|
// The more significant bit specifies whether we should use the
|
|
// first or second candidate key.
|
|
var use_second_candidate_key = recovery_factor >> 1;
|
|
|
|
// Calculate (field_order + 1) / 4
|
|
if (!FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR) {
|
|
FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR = field_modulus.add(1).div(4);
|
|
}
|
|
|
|
// In the paper they write "1. For j from 0 to h do the following..."
|
|
// That is not necessary here because we are given the recovery_factor
|
|
// step 1.1 Let x = r + jn
|
|
// Here "j" is either 0 or 1
|
|
var x;
|
|
if (use_second_candidate_key) {
|
|
x = signature_r.add(field_order);
|
|
} else {
|
|
x = signature_r;
|
|
}
|
|
|
|
// step 1.2 and 1.3 convert x to an elliptic curve point
|
|
// Following formula in section 2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion
|
|
var alpha = x.mul(x).mul(x).add(curve.a.mul(x)).add(curve.b).mod(field_modulus);
|
|
var beta = alpha.powermodMontgomery(FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR, field_modulus);
|
|
|
|
// If beta is even but y isn't or
|
|
// if beta is odd and y is even
|
|
// then subtract beta from the field_modulus
|
|
var y;
|
|
var beta_is_even = beta.mod(2).equals(0);
|
|
if (beta_is_even && !compressed_point_y_coord_is_even ||
|
|
!beta_is_even && compressed_point_y_coord_is_even) {
|
|
y = beta;
|
|
} else {
|
|
y = field_modulus.sub(beta);
|
|
}
|
|
|
|
// generated_point_R is the point generated from x and y
|
|
var generated_point_R = new sjcl.ecc.point(curve, x, y);
|
|
|
|
// step 1.4 check that R is valid and R x field_order !== infinity
|
|
// TODO: add check for R x field_order === infinity
|
|
if (!generated_point_R.isValidPoint()) {
|
|
throw new sjcl.exception.corrupt('point R. Not a valid point on the curve. Cannot recover public key');
|
|
}
|
|
|
|
// step 1.5 Compute e from M
|
|
var message_e = sjcl.bn.fromBits(hash_bits);
|
|
var message_e_neg = new sjcl.bn(0).sub(message_e).mod(field_order);
|
|
|
|
// step 1.6 Compute Q = r^-1 (sR - eG)
|
|
// console.log('r: ', signature_r);
|
|
var signature_r_inv = signature_r.inverseMod(field_order);
|
|
var public_key_point = generated_point_R.mult2(signature_s, message_e_neg, curve.G).mult(signature_r_inv);
|
|
|
|
// Validate public key point
|
|
if (!public_key_point.isValidPoint()) {
|
|
throw new sjcl.exception.corrupt('public_key_point. Not a valid point on the curve. Cannot recover public key');
|
|
}
|
|
|
|
// Verify that this public key matches the signature
|
|
if (!verify_raw(curve, message_e, signature_r, signature_s, public_key_point)) {
|
|
throw new sjcl.exception.corrupt('cannot recover public key');
|
|
}
|
|
|
|
return public_key_point;
|
|
|
|
};
|
|
|
|
|
|
/**
|
|
* Verify a signature given the raw components
|
|
* using method defined in section 4.1.5:
|
|
* "Alternative Verifying Operation"
|
|
*
|
|
* @param {sjcl.ecc.curve} curve
|
|
* @param {sjcl.bn} e
|
|
* @param {sjcl.bn} r
|
|
* @param {sjcl.bn} s
|
|
* @param {sjcl.ecc.point} public_key_point
|
|
* @returns {Boolean}
|
|
*/
|
|
function verify_raw(curve, e, r, s, public_key_point) {
|
|
|
|
var field_order = curve.r;
|
|
|
|
// Return false if r is out of bounds
|
|
if ((new sjcl.bn(1)).greaterEquals(r) || r.greaterEquals(new sjcl.bn(field_order))) {
|
|
return false;
|
|
}
|
|
|
|
// Return false if s is out of bounds
|
|
if ((new sjcl.bn(1)).greaterEquals(s) || s.greaterEquals(new sjcl.bn(field_order))) {
|
|
return false;
|
|
}
|
|
|
|
// Check that r = (u1 + u2)G
|
|
// u1 = e x s^-1 (mod field_order)
|
|
// u2 = r x s^-1 (mod field_order)
|
|
var s_mod_inverse_field_order = s.inverseMod(field_order);
|
|
var u1 = e.mul(s_mod_inverse_field_order).mod(field_order);
|
|
var u2 = r.mul(s_mod_inverse_field_order).mod(field_order);
|
|
|
|
var point_computed = curve.G.mult2(u1, u2, public_key_point);
|
|
|
|
return r.equals(point_computed.x.mod(field_order));
|
|
|
|
};
|
|
|