Files
xahau.js/src/js/sjcl-custom/sjcl-ecdsa-recoverablepublickey.js
Geert Weening 3204998fcb [TASK] update sjcl
- native support for k256
- improved entropy by taking advantage of platform crypto

- remove unnecessary sjcl overrides from sjcl-secp256k1.js
- updated ripple-lib curve instantiations to use k256
- add curve override so c256 points to k256

16dde36fa2
2014-12-08 15:02:24 -08:00

307 lines
9.9 KiB
JavaScript

/**
* This module uses the public key recovery method
* described in SEC 1: Elliptic Curve Cryptography,
* section 4.1.6, "Public Key Recovery Operation".
* http://www.secg.org/download/aid-780/sec1-v2.pdf
*
* Implementation based on:
* https://github.com/bitcoinjs/bitcoinjs-lib/blob/89cf731ac7309b4f98994e3b4b67b7226020181f/src/ecdsa.js
*/
// Defined here so that this value only needs to be calculated once
var FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR;
/**
* Sign the given hash such that the public key, prepending an extra byte
* so that the public key will be recoverable from the signature
*
* @param {bitArray} hash
* @param {Number} paranoia
* @returns {bitArray} Signature formatted as bitArray
*/
sjcl.ecc.ecdsa.secretKey.prototype.signWithRecoverablePublicKey = function(hash, paranoia, k_for_testing) {
var self = this;
// Convert hash to bits and determine encoding for output
var hash_bits;
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
hash_bits = hash;
} else {
throw new sjcl.exception.invalid('hash. Must be a bitArray');
}
// Sign hash with standard, canonicalized method
var standard_signature = self.sign(hash_bits, paranoia, k_for_testing);
var canonical_signature = self.canonicalizeSignature(standard_signature);
// Extract r and s signature components from canonical signature
var r_and_s = getRandSFromSignature(self._curve, canonical_signature);
// Rederive public key
var public_key = self._curve.G.mult(sjcl.bn.fromBits(self.get()));
// Determine recovery factor based on which possible value
// returns the correct public key
var recovery_factor = calculateRecoveryFactor(self._curve, r_and_s.r, r_and_s.s, hash_bits, public_key);
// Prepend recovery_factor to signature and encode in DER
// The value_to_prepend should be 4 bytes total
var value_to_prepend = recovery_factor + 27;
var final_signature_bits = sjcl.bitArray.concat([value_to_prepend], canonical_signature);
// Return value in bits
return final_signature_bits;
};
/**
* Recover the public key from a signature created with the
* signWithRecoverablePublicKey method in this module
*
* @static
*
* @param {bitArray} hash
* @param {bitArray} signature
* @param {sjcl.ecc.curve} [sjcl.ecc.curves['k256']] curve
* @returns {sjcl.ecc.ecdsa.publicKey} Public key
*/
sjcl.ecc.ecdsa.publicKey.recoverFromSignature = function(hash, signature, curve) {
if (!signature || signature instanceof sjcl.ecc.curve) {
throw new sjcl.exception.invalid('must supply hash and signature to recover public key');
}
if (!curve) {
curve = sjcl.ecc.curves['k256'];
}
// Convert hash to bits and determine encoding for output
var hash_bits;
if (typeof hash === 'object' && hash.length > 0 && typeof hash[0] === 'number') {
hash_bits = hash;
} else {
throw new sjcl.exception.invalid('hash. Must be a bitArray');
}
var signature_bits;
if (typeof signature === 'object' && signature.length > 0 && typeof signature[0] === 'number') {
signature_bits = signature;
} else {
throw new sjcl.exception.invalid('signature. Must be a bitArray');
}
// Extract recovery_factor from first 4 bytes
var recovery_factor = signature_bits[0] - 27;
if (recovery_factor < 0 || recovery_factor > 3) {
throw new sjcl.exception.invalid('signature. Signature must be generated with algorithm ' +
'that prepends the recovery factor in order to recover the public key');
}
// Separate r and s values
var r_and_s = getRandSFromSignature(curve, signature_bits.slice(1));
var signature_r = r_and_s.r;
var signature_s = r_and_s.s;
// Recover public key using recovery_factor
var recovered_public_key_point = recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor);
var recovered_public_key = new sjcl.ecc.ecdsa.publicKey(curve, recovered_public_key_point);
return recovered_public_key;
};
/**
* Retrieve the r and s components of a signature
*
* @param {sjcl.ecc.curve} curve
* @param {bitArray} signature
* @returns {Object} Object with 'r' and 's' fields each as an sjcl.bn
*/
function getRandSFromSignature(curve, signature) {
var r_length = curve.r.bitLength();
return {
r: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, 0, r_length)),
s: sjcl.bn.fromBits(sjcl.bitArray.bitSlice(signature, r_length, sjcl.bitArray.bitLength(signature)))
};
};
/**
* Determine the recovery factor by trying all four
* possibilities and figuring out which results in the
* correct public key
*
* @param {sjcl.ecc.curve} curve
* @param {sjcl.bn} r
* @param {sjcl.bn} s
* @param {bitArray} hash_bits
* @param {sjcl.ecc.point} original_public_key_point
* @returns {Number, 0-3} Recovery factor
*/
function calculateRecoveryFactor(curve, r, s, hash_bits, original_public_key_point) {
var original_public_key_point_bits = original_public_key_point.toBits();
// TODO: verify that it is possible for the recovery_factor to be 2 or 3,
// we may only need 1 bit because the canonical signature might remove the
// possibility of us needing to "use the second candidate key"
for (var possible_factor = 0; possible_factor < 4; possible_factor++) {
var resulting_public_key_point;
try {
resulting_public_key_point = recoverPublicKeyPointFromSignature(curve, r, s, hash_bits, possible_factor);
} catch (err) {
// console.log(err, err.stack);
continue;
}
if (sjcl.bitArray.equal(resulting_public_key_point.toBits(), original_public_key_point_bits)) {
return possible_factor;
}
}
throw new sjcl.exception.bug('unable to calculate recovery factor from signature');
};
/**
* Recover the public key from the signature.
*
* @param {sjcl.ecc.curve} curve
* @param {sjcl.bn} r
* @param {sjcl.bn} s
* @param {bitArray} hash_bits
* @param {Number, 0-3} recovery_factor
* @returns {sjcl.point} Public key corresponding to signature
*/
function recoverPublicKeyPointFromSignature(curve, signature_r, signature_s, hash_bits, recovery_factor) {
var field_order = curve.r;
var field_modulus = curve.field.modulus;
// Reduce the recovery_factor to the two bits used
recovery_factor = recovery_factor & 3;
// The less significant bit specifies whether the y coordinate
// of the compressed point is even or not.
var compressed_point_y_coord_is_even = recovery_factor & 1;
// The more significant bit specifies whether we should use the
// first or second candidate key.
var use_second_candidate_key = recovery_factor >> 1;
// Calculate (field_order + 1) / 4
if (!FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR) {
FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR = field_modulus.add(1).div(4);
}
// In the paper they write "1. For j from 0 to h do the following..."
// That is not necessary here because we are given the recovery_factor
// step 1.1 Let x = r + jn
// Here "j" is either 0 or 1
var x;
if (use_second_candidate_key) {
x = signature_r.add(field_order);
} else {
x = signature_r;
}
// step 1.2 and 1.3 convert x to an elliptic curve point
// Following formula in section 2.3.4 Octet-String-to-Elliptic-Curve-Point Conversion
var alpha = x.mul(x).mul(x).add(curve.a.mul(x)).add(curve.b).mod(field_modulus);
var beta = alpha.powermodMontgomery(FIELD_MODULUS_PLUS_ONE_DIVIDED_BY_FOUR, field_modulus);
// If beta is even but y isn't or
// if beta is odd and y is even
// then subtract beta from the field_modulus
var y;
var beta_is_even = beta.mod(2).equals(0);
if (beta_is_even && !compressed_point_y_coord_is_even ||
!beta_is_even && compressed_point_y_coord_is_even) {
y = beta;
} else {
y = field_modulus.sub(beta);
}
// generated_point_R is the point generated from x and y
var generated_point_R = new sjcl.ecc.point(curve, x, y);
// step 1.4 check that R is valid and R x field_order !== infinity
// TODO: add check for R x field_order === infinity
if (!generated_point_R.isValidPoint()) {
throw new sjcl.exception.corrupt('point R. Not a valid point on the curve. Cannot recover public key');
}
// step 1.5 Compute e from M
var message_e = sjcl.bn.fromBits(hash_bits);
var message_e_neg = new sjcl.bn(0).sub(message_e).mod(field_order);
// step 1.6 Compute Q = r^-1 (sR - eG)
// console.log('r: ', signature_r);
var signature_r_inv = signature_r.inverseMod(field_order);
var public_key_point = generated_point_R.mult2(signature_s, message_e_neg, curve.G).mult(signature_r_inv);
// Validate public key point
if (!public_key_point.isValidPoint()) {
throw new sjcl.exception.corrupt('public_key_point. Not a valid point on the curve. Cannot recover public key');
}
// Verify that this public key matches the signature
if (!verify_raw(curve, message_e, signature_r, signature_s, public_key_point)) {
throw new sjcl.exception.corrupt('cannot recover public key');
}
return public_key_point;
};
/**
* Verify a signature given the raw components
* using method defined in section 4.1.5:
* "Alternative Verifying Operation"
*
* @param {sjcl.ecc.curve} curve
* @param {sjcl.bn} e
* @param {sjcl.bn} r
* @param {sjcl.bn} s
* @param {sjcl.ecc.point} public_key_point
* @returns {Boolean}
*/
function verify_raw(curve, e, r, s, public_key_point) {
var field_order = curve.r;
// Return false if r is out of bounds
if ((new sjcl.bn(1)).greaterEquals(r) || r.greaterEquals(new sjcl.bn(field_order))) {
return false;
}
// Return false if s is out of bounds
if ((new sjcl.bn(1)).greaterEquals(s) || s.greaterEquals(new sjcl.bn(field_order))) {
return false;
}
// Check that r = (u1 + u2)G
// u1 = e x s^-1 (mod field_order)
// u2 = r x s^-1 (mod field_order)
var s_mod_inverse_field_order = s.inverseMod(field_order);
var u1 = e.mul(s_mod_inverse_field_order).mod(field_order);
var u2 = r.mul(s_mod_inverse_field_order).mod(field_order);
var point_computed = curve.G.mult2(u1, u2, public_key_point);
return r.equals(point_computed.x.mod(field_order));
};